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ABSTRACT

Given the tendency of creating interfaces between human and machines that increas-
ingly allow simple ways of interaction, it is only natural that research effort is put into
techniques that seek to simulate the most conventional mean of communication humans
use: the speech. In the human auditory system, voice is automatically processed by the
brain in an effortless and effective way, also commonly aided by visual cues, such as
mouth movement and location of the speakers. This processing done by the brain includes
two important components that speech-based communication require: Voice Activity De-
tection (VAD) and Sound Source Localization (SSL). Consequently, VAD and SSL also
serve as mandatory preprocessing tools for high-end Human Computer Interface (HCI)
applications in a computing environment, as the case of automatic speech recognition
and speaker identification. However, VAD and SSL are still challenging problems when
dealing with realistic acoustic scenarios, particularly in the presence of noise, reverbera-
tion and multiple simultaneous speakers. In this work we propose some approaches for
tackling these problems using audiovisual information, both for the single source and
the competing sources scenario, exploiting distinct ways of fusing the audio and video
modalities. Our work also employs a microphone array for the audio processing, which
allows the spatial information of the acoustic signals to be explored through the state-
of-the art method Steered Response Power (SRP). As an additional consequence, a very
fast GPU version of the SRP is developed, so that real-time processing is achieved. Our
experiments show an average accuracy of 95% when performing VAD of up to three si-
multaneous speakers and an average error of 10cm when locating such speakers.

Keywords: Voice Activity Detection, Sound Source Localization, Multiple Speakers,
Competing Sources, Multimodal Fusion, Microphone Array, Hidden Markov Model, Sup-
port Vector Machine, GPU Programming.



RESUMO

Detecção de Atividade de Voz e Localização de Fontes Sonoras Simultâneas
utilizando Informações Audiovisuais

Em vista da tentência de se criarem intefaces entre humanos e máquinas que cada vez
mais permitam meios simples de interação, é natural que sejam realizadas pesquisas em
técnicas que procuram simular o meio mais convencional de comunicação que os huma-
nos usam: a fala. No sistema auditivo humano, a voz é automaticamente processada pelo
cérebro de modo efetivo e fácil, também comumente auxiliada por informações visuais,
como movimentação labial e localizacão dos locutores. Este processamento realizado
pelo cérebro inclui dois componentes importantes que a comunicação baseada em fala
requere: Detecção de Atividade de Voz (Voice Activity Detection - VAD) e Localização
de Fontes Sonoras (Sound Source Localization - SSL). Consequentemente, VAD e SSL
também servem como ferramentas mandatórias de pré-processamento em aplicações de
Interfaces Humano-Computador (Human Computer Interface - HCI), como no caso de re-
conhecimento automático de voz e identificação de locutor. Entretanto, VAD e SSL ainda
são problemas desafiadores quando se lidando com cenários acústicos realísticos, particu-
larmente na presença de ruído, reverberação e locutores simultâneos. Neste trabalho, são
propostas abordagens para tratar tais problemas, para os casos de uma e múltiplas fontes
sonoras, através do uso de informações audiovisuais, explorando-se variadas maneiras de
se fundir as modalidades de áudio e vídeo. Este trabalho também emprega um arranjo de
microfones para o processamento de som, o qual permite que as informações espaciais
dos sinais acústicos sejam exploradas através do algoritmo estado-da-arte SRP (Steered
Response Power). Por consequência adicional, uma eficiente implementação em GPU
do SRP foi desenvolvida, possibilitando processamento em tempo real do algoritmo. Os
experimentos realizados mostram uma acurácia média de 95% ao se efetuar VAD de até
três locutores simultâneos, e um erro médio de 10cm ao se localizar tais locutores.

Palavras-chave: Detecção de Atividade de Voz, Lcalização de Fontes Sonoras, Múlti-
plos Locutores, Fusão Multimodal, Arranjo de Microfones, Modelo de Markov Oculto,
Support Vector Machine, Programação em GPU.
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1 INTRODUCTION

In most cases where a computer is used for a generic task, a mouse and a keyboard
are employed as interfaces between the user and the machine. Despite being of easy use,
they may not be adequate for a variety of applications, implying on the fact that other
ways of human-machine interaction might be more promising (such an example would
be the touchscreen in tablets and smartphones). Based on this and also in the frequent
advances of technologies related to computing, it is only natural to exist high interests in
developing ways of interaction that are similar to those of common use between humans.
Particularly, speech represents a vast part of the information exchanged during those in-
teractions (JAIMES; SEBE, 2007). Therefore, once computers are able to efficiently com-
prehend human-like communication, human-computer interaction (HCI) becomes more
convenient and effective.

However, differently from human-human interaction, HCI still presents many chal-
lenges. As an example, in automatic speech recognition (ASR), which is one of the main
branches of HCI (THIRAN; MARQUÉS; BOURLARD, 2010), it is necessary to recog-
nize words in audio signals that may have been corrupted by external environment factors,
such as noise, reverberation and other competing speech sources. Therefore, to compen-
sate for these degradations, user-level systems require front-end techniques to function
robustly. In this context, Voice Activity Detection (VAD) and Sound Source Localization
(SSL) are two of the most important preprocessing tools in speech-based HCI. In VAD,
the main goal is to distinguish segments of a signal that contain speech from those that
do not, so that any processing effort may be focused only on information that contain
speech. In SSL, the main idea is to explore the spatial information of the acoustic signals
through microphone array beamforming techniques in order to enhance the speech of a
source of interest while supressing those of competing sources and lowering environment
noise (BRANDSTEIN; WARD, 2001).

Such benefits of VAD and SSL are actually unconsciously performed and availed
day-by-day by the human brain in a effortless and effective way. The so called "cocktail-
party" problem is a good example of such situation (BENESTY; CHEN; HUANG, 2008):
in short, if many people are having parallel conversations in a party, it may be desir-
able to focus attention on one person among the many that are simultaneously speak-
ing. Thanks to our brain’s ability of processing auditive and visual informations (as lip
movements) conjunctionally, we are able to easily comprehend a given person’s speech.
However, the same is not true for digitally automated systems, where existing algorithms
tend to fail in such scenario. In most cases, VAD and SLL are approached for a single
speech source case, what might not be appropriate for a number of situations. In ap-
plications such as multi-conferences, gaming scenarios, and also HCI, it is most often
desirable, as in the cocktail-party example, to be able to distinguish between different
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speakers that might overlap their speeches. This ends up extending both VAD and SSL
to more complex problems. Some recent works have been proposed for simultaneous
speakers VAD (MARABOINA et al., 2006; BERTRAND; MOONEN, 2010; LORENZO-
TRUEBA; HAMADA, 2010), and for simultaneous speakers SSL (DO; SILVERMAN,
2010; ZHANG; RAO, 2010). However, those approaches were based solely on acoustic
signal processing techniques and some used large-aperture microphone arrays.

On the other hand, some other researches have approached VAD and SSL using both
image and sound signal processing techniques (ASOH et al., 2004; BUTKO et al., 2008;
ALMAJAI; MILNER, 2008; PETSATODIS; PNEVMATIKAKIS; BOUKIS, 2009). The
main idea is that, similarly to as done by the brain, by fusing more than one modality of
data it is possible explore the correlation between them in a way that if either the audio or
video provide unreliable information, one may compensate for the other’s flaws, making
the algorithm more robust to adverse situations. However, in most audiovisual-based
works, such as the ones mentioned above, it has been only approached the single sound
source problem. In this work, we explore different ways of fusing the audio and video
modalities to perform VAD and SSL of simultaneous speech sources. Our work employs a
microphone array for the audio processing, which allows us to exploit spatial information
of the speech sources (process similar to what the human ears do), and a color camera,
which allows visual information such as lip movements to be used. We aim, in general, at
multi-user HCI systems, such as videoconferencing and gaming scenarios.

This dissertation is presented as a collection of previously written articles that have
already been published (BLAUTH et al., 2012; MINOTTO et al., 2013) or that are under
revision process. The referred works have dealt with VAD and SSL of one and multiple
speakers in different ways. We have explored distinct methods for fusing audio and video
data, achieving above 90% VAD accuracy in all works. Additionally, as a consequence
of the necessity for real-time processing of HCI applications, we have also developed
an efficient GPU version of the Steered Response Power (SRP), which is a key audio
processing technique (MINOTTO et al., 2012) used in our algorithms.

For better understanding of the chronological progress of our works through the men-
tioned papers, Section 1.1 is devoted to explaining our contributions in each article, indi-
vidually, as well as their interconnections.

1.1 Overview of the Papers

As mentioned, this dissertation has been developed as a collection of papers. Chap-
ters 3 through 6 represent articles that have been published or are under revision process.
In fact, we present three of the five published papers during this Masters course and an
extra one that has already been submitted. The main contributions of the referred articles
summarize to VAD and SSL of single and simultaneous speakers, and GPU implementa-
tions of the SRP-PHAT (SRP with Phase Transform) and the Cubic Splines Interpolation
algorithms.

• Chapter 3 (BLAUTH; MINOTTO et al., 2012): we present an approach that per-
forms single speaker VAD using a audio information only (video is included for
SSL). We have developed a Hidden Markov Model (HMM) competition scheme,
through which VAD is performed by analyzing the output of the SRP-PHAT micro-
phone array beamforming technique. The SRP-PHAT is mainly an SSL algorithm,
and is known to be robust in realistic conditions. We extend it to a VAD algorithm
by assessing the spatio-temporal behavior of the dominating sound source against
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two HMMs, one that models speech situations and one that models silence. The
dominant speaker is classified as active or inactive by comparing the output of both
HMMs. For the SSL part of the algorithm, video cues are included from the results
of a face-tracking algorithm. The output of the SRP-PHAT is weighted based on the
location of the tracked faces, and a third speech-related HMM is used to produce the
location of the main speech source. This work is a result of many collaborators, so
we highlight that our main contribution is related to the development of the HMM
competition scheme used for performing VAD, which is later extended in our other
works.

• Chapter 4: in this article (MINOTTO et al., 2013), we expand the previously
mentioned one to a multimodal technique. We combine our audio-based ap-
proach (BLAUTH; MINOTTO et al., 2012) to the video-based approach of (LOPES
et al., 2011) through a decision fusion scheme. We study many supervised classi-
fication algorithms for combining the results of the individual unimodal classifiers.
The well known Machine Learning software Weka (HALL et al., 2009) is used for
exploring a variety of approaches, through which it is concluded that a C4.5 de-
cision tree (QUINLAN, 1993) presents the best benefits in this scenario (trade-off
between accuracy and speed, and also robust against overfitting). As another con-
tribution of the work, we also analyze the robustness of our approach to adverse
situations (intentionally generated), confirming that one modality in fact robustly
compensates for the other’s flaws by using the proposed fusion approach.

• Chapter 5: a multimodal approach for simultaneous speakers VAD and SSL is de-
veloped. In this work, we extend the ideas from both previously mentioned pa-
pers. The HMM competition scheme is reformulated in order to deal with multiple
speakers in the scene. An optical-flow algorithm is used to assess lip movements
of each user, which generates visual features as inputs to a Support Vector Ma-
chine (SVM) classifier. The SVM outputs a video-based VAD probability for each
potential speaker, and the audio modality is processed by the multi-user HMM com-
petition scheme, at which the video probability is incorporated. This characterizes
the combination of both modalities, and is considered a mid-fusion approach, since
the output of a classifier is applied to the input of another one. The final VAD
decision is performed by analyzing the competing models, and its results are also
reutilized for generating a final SSL position (recalling the HMM scheme uses the
SRP-PHAT SSL method).

• Chapter 6 (MINOTTO et al., 2012): this chapter describes the GPU implementa-
tions we have developed to achieve real-time processing of our multimodal sys-
tems. As it may be observed, all our approaches employ the SRP-PHAT algorithm
through a microphone array. Despite its known robustness against noise and re-
verberations situations, the SRP-PHAT has a high computational cost as a down-
side. For this reason, we have developed two Compute Unified Device Architecture
(CUDA) versions of the algorithm, as well as one for the Cubic Splines Interpo-
lation, which is commonly applied as a part of the SRP-PHAT itself. Using such
implementations we are then able to achieve real-time processing in our previously
mentioned VAD/SSL approaches.

From the referred papers we may notice the accomplished evolution of our techniques,
from a single-speaker unimodal work to a multiple speakers multimodal VAD and SSL
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algorithm. Incorporating extra modalities of data into our methods was a natural path
to be taken, given that the more realistic the scenario is, the more complex the problem
becomes. While auditive information is more robust for performing VAD, visual informa-
tion shows to indeed strengthen the audio modality (and enhance SSL) when an adequate
fusion technique is applied, which by itself is a wide field of research (ATREY et al.,
2010; THIRAN; MARQUÉS; BOURLARD, 2010). For this reason, we also consider the
proposed fusion approaches as contributions of this dissertation (Section 2.5 provides re-
view on the main aspects of multimodal fusion). More precisely, in Chapter 4 a decision
fusion approach is employed (two unimodal classifiers are combined into a final multi-
modal one). In Chapter 5 a mid-fusion technique is used (the output of the video classifier
is combined with the input of the audio one). And for a feature-fusion approach, in our
ongoing/future work, we have been combining multiple features from both modalities
into a single multimodal classifier. Preliminary results of this new approach also show to
be promising by reaching an average VAD accuracy of 95% of up to three simultaneous
speakers.
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2 THEORY REVIEW

In this chapter we present some of the theory required for the comprehension of our
proposed works. Given this dissertation is organized as a collection of previously pro-
duced papers, the theoretical overview of this chapter is restricted to the topics that were
not covered in great details in the articles. In Sections 2.1 through 2.4 we unify some
concepts regarding microphone arrays that are not common to all papers. We also explain
some of the main aspects related to multimodal analysis in Section 2.5.

2.1 Microphone Arrays and the Time Difference of Arrival

A Microphone Array consists of a set of microphones properly positioned in a way
that it becomes possible the extraction of spatial information from the captured acoustic
signals (BENESTY; CHEN; HUANG, 2008). This ability is mainly explored for the
tasks of speech enhancement and SSL, which are techniques that have been applied in
the past for many practical purposes, such as videoconferencing (KELLERMANN, 1991;
CHU, 1995; WANG; CHU, 1997), ASR (HUGHES et al., 1998, 1999; WEINSTEIN et al.,
2004), military practices (SILVERMAN; PATTERSON W.R.; FLANAGAN, 1999), and
echo cancellation (JOHNSON; DUDGEON, 1993a). Currently, some work on those areas
are still being developed (BENESTY; CHEN; HUANG, 2008), but with a largest attention
on techniques related to HCI, as in the focus of this work. For purpose of illustration,
Figure 2.1 shows an example of an eight-elements microphone array, which is also the
one that is going to be used for this work.

When an array of microphones is used as an acoustic capture system one is able to
efficiently exploit the spatiality of the incoming sound waves, what is not achievable with
only one microphone. This is possible due to something called Time Difference of Ar-
rival (TDOA) that is provided by microphone arrays. The TDOA, thus, represents the
difference in time that sound waves carrying same information take to travel from on mi-
crophone to another. In other words, it is the delay between two microphones receiving
the same data. This is a consequence of the physical distance between the microphones,
and is considered the main property of a microphone array that signal processing algo-
rithms may avail from. Figure 2.1 helps the description of this process.

In the illustration, M is the number of microphones in the array system, and rqm is
the distance from microphone m to the sound source located in q, for m = 1, 2, ...,M .
Therefore, we may denote τqm as being the travel time of a sound wave originated in q and
propagated towards the microphone m:

τqm =
rqm
c

(2.1)
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Figure 2.1: Example of a microphone array system.

where c represents the speed of sound (343m/s), τqm is given in seconds, and rqm may be
established using the simple Pythagorean theorem, since the position of the sound source
and microphones (in this example) are known. From this equation, then, it is possible to
define the TDOA between microphones m and l and a point q as being

τqml = τqm − τ
q
l =

rqm − r
q
l

c
(2.2)

From this definition of the TDOA, most techniques involving microphone arrays are
derived. In the following sections we focus on the most important ones for the under-
standing of this work.

Common information 

Sound source 

Informações em comum 

Fonte sonora 
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    .... 

 

    .... 

Figure 2.2: TDOA: Common information being received at different moments by the
microphones.
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2.2 Sound Wave Propagation

In this section we describe a model for the sound wave propagation that is consistent
and suited for this work’s practices. For that, we divided this section into two different
topics: firstly it is explained assumptions that simplify the physical model for acoustic
waves propagation, and secondly it is presented the mathematical equations that describe
the sound signals emission and acquisition.

2.2.1 Simplified Acoustic Model

A sound source, either a human or a mechanic transducer are not ideal radiators of
spherical waves (form of the acoustic wave). Additionally, in realist environments, sound
waves are emitted with some degree of directionality, what is imposed by sound source,
and suffer from spatial attenuation. Beyond that, they suffer from phenomena such as
diffraction, reverberation, and also depend upon the medium the are being propagated
through. For those reasons, for the sound wave model to be precisely correct, it would
need a complex mathematical formulation dependent upon many variables. However,
it has been already studied and experimented a simplified model that has been shown
to be adequate enough for practical implementations (JOHNSON; DUDGEON, 1993a;
BRANDSTEIN; WARD, 2001; BENESTY; CHEN; HUANG, 2008). The following as-
sumptions summarize this model.

• The sound source are modeled as points. This simplifies the complex radiation
patterns of human head models into a spherical wave propagation model.

• The propagation medium is homogeneous, which guarantees that the speed of
sound c is constant everywhere. This implies that the acoustic propagation is non-
refractive.

• The medium is lossless. This ensures that the sound waves do not lose energy
during propagation.

• The Doppler effect is negligible. The sound signals’ frequencies do not change if
its source is moving.

Note that in practice c may change as a function of the room temperature. For that, it
is taken into account that this does not occur during the course of a experiment, so that
the same parametrization of c may be used (343.3 m/s). Additionally, for c to have a
significant change, the temperature would also have to drastically change.

2.2.2 Acoustic Signals Mathematical Description

The mathematical definition of the microphone digital signals and sound source prop-
agating signals is necessary for later describing all algorithms related the microphone
arrays. Therefore, we may define the signal received by microphone m at time t as being

xm(t) = s(t) + nm(t) (2.3)

where s(t) is the sound wave emitted by the source, and nm(t) is the term due to noise
present in each microphone m (still, m = 1, 2, ...,M ). Note that this term is based in
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the microphones indexes, i.e., does not depend upon s(t). Thus, it is a result of indi-
vidual stochastic processes individual to each microphone (BENESTY; CHEN; HUANG,
2008), which is an important factor exploited by all the SSL algorithms that will be further
presented.

It may be observed that Eq. (2.3) does not explicitly present a term describing envi-
ronmental reverberations. According to Johnson and Dudgeon (JOHNSON; DUDGEON,
1993a), it is commonly omitted, since reverberations, differently from noises, depend on
s(t). Therefore, for sakes of simplicity, it is assumed that s(t) embeds the reverberation
information too.

Once the equation of the mics. received signals is described, it is then possible to
derive them to a more specific version that is more suited for describing microphone
array techniques (DIBIASE, 2000). Recalling Eq. (2.2) that describes the TDOA of a pair
of microphones ml and a point q in space, we may incorporate it into xm(t), and describe
the signal received by each microphone as a function of not only t, but q too:

xm(t,q) = s(t− τqam) + nm(t) (2.4)

where a is a constant that represents a reference microphone, and τqam is the TDOA for
between microphone m and the reference one.

Generally, a is taken to represent the microphone most distant from the sound source
q. This is convenient because, since τqa −τqm is never negative, the function is casual, what
is something needed for practical systems (DIBIASE, 2000). In other words, Eq. (2.4)
shows that the signal of a microphone m corresponds to a time-advanced version of the
signal of the reference microphone a. We may also notice that the delay term is not
inserted in nm(t), due to the fact that the noise of different microphones are uncorrelated,
thus, in practice, it is irrelevant to insert τqam into nm(t).

2.3 Beamforming

When one wants to perform tasks such as speech enhancement and/or SSL, it is often
used algorithms based on beamforming. This class of techniques consist in virtually
focusing the array of microphones in capturing the signals originating from a specific
location in space, in such a way that informations originated elsewhere are attenuated.
This process is often called spatial filtering (BENESTY; CHEN; HUANG, 2008) and its
output is a signal often called the steered response of the beamforming process.

In Figure 2.3 an example of beamforming is given. A sound source of interest (a
person), inside a room, emits sound waves (speech) that are corrupted by interfering noise
sources. Besides the noise, the person’s speech also suffer from reverberation caused by
spatial aspects in the room, such as objects and walls. This picture shows a completely
adverse (realistic) scenario where it may be hard to locate the sound source of interest due
to the interfering noise and reverberations. However, using beamforming techniques, one
could still be able to locate it and apply, for example speech enhancement algorithm to
that source (BRANDSTEIN; WARD, 2001). Nevertheless, the precision with which the
source is located is dependent upon the technique that is used (in Section 2.4.2 we present
the SRP-PHAT - a state-of-the-art one).
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Figure 2.3: Example of a situation where spatial filtering is useful.

2.3.1 Delay-and-Sum

As explained before, beamforming is the process of finding the steered response of a
certain point in space. For this purpose, different algorithms have been proposed (BEN-
ESTY; CHEN; HUANG, 2008), however, among them the delay-and-sum technique
stands out due to being very simple and yet efficient.

As its name suggests, the delay-and-sum, in short, consists of applying delays to each
microphone signal and summing them. Specifically, those delays (related to the TDOAs)
are applied in order to compensate for the misalignment between the signals xm(t) (as
explained in 2.1). Once each signal is time-aligned, they are summed to form a enhanced
version of the original signals. Figure 2.3.1 illustrates this process, where y(t) represents
the steered response, i.e., the output of the delay-and-sum algorithm.
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Figure 2.4: Delay-and-sum algorithm represented schematically.

Translating this schematic representation of the delay-and-sum into its mathematical
representation, we may define it through the following equation (for an array of M micro-
phones).

y(t,q) =
M∑
m=1

xm(t− τqam) (2.5)

Applying the Fourier Transform, it may be computed in the frequency domain as
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Y (ω,q) =
M∑
m=1

Xm(ω)e−jωτ
q
am (2.6)

where ω is the frequency parameter and the delay term is now represented as a complex
exponential.

Analyzing the algorithm, we may note that y(t,q) is not only a function of time, but
also a function of a position q in space. From that, it may be concluded that, if q is in fact
the position of the speaker, y(t,q) will represent its speech in an enhanced form. Note
that this happens as a result to the fact that the noise nm(t), as stated in Subsection 2.2.2,
is uncorrelated between different microphones, making them sum in a destructive manner,
no matter what value of q is passed as parameter. Consequently, the opposite happens to
the speech signal sm(t) of the sound source: it will sum in a constructive manner, thus,
causing the speech to be enhanced. On the other hand, if q is not the position of the
speaker, y(t,q) will represent an attenuated a and poorly audible version of the person’s
speech, because the whole signal (not only the noise) will sum in a destructive way.

To better visualize this process of signal attenuation and enhancement, we may ob-
serve Figure 2.3.1, where the signal of the fourth microphone is taken as reference
(a = 4), and the delay-and-sum algorithm is applied. In this example, each signal in-
dividually received additive white Gaussian noise in order to simulate nm(t), and the
sinusoid segment simulates the delayed common information between the microphones.
We may observe that, as explained, the signal’s information of interest was enhanced,
while the noise was attenuated. Once again, this happens because the location that was
beamformed contained a speaker.

2.3.2 Filter-and-Sum

The filter-and-sum algorithm may be seen as a more general case of the delay-and-
sum. The algorithm’s idea is very simple: it is the delay-and-sum with filtering. More
specifically, in between its delaying and summation steps, there is a filtering process ap-
plied individually to each signal xm(t). Recalling the frequency-domain definition of
the delay-and-sum in Eq. (2.6), we may define the filter-and-sum, also in the frequency-
domain, by the following expression.

Y (ω,q) =
M∑
m=1

Wm(ω)Xm(ω)e−jωτ
q
am (2.7)

where Wm(ω) is a generic term representing a filter, Xm(ω) remains the Fourier Trans-
form of xm(t), and e−jωτ

q
am is the delay term. The choice of an adequate filter is depen-

dent upon the characteristics of the environment and the sound source (BRANDSTEIN;
WARD, 2001), and may be chosen among many different already studied approaches. A
good overview of some of those approaches may be found in (KWAK; KIM, 2008). How-
ever, in practice, the most famous one was proposed in (DIBIASE, 2000) for the purpose
of sound source localization and will be further explained in Section 2.4.2.

2.4 Sound Source Localization

As seen in Figure 2.3.1, performing the beamforming of a location which contains
a speaker will cause the output signal to have a high amount of energy, whereas of a
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Figure 2.5: Example of delay-and-sum of a location containing an active sound source of
interest (speaker).

position which does not contain a speaker will output a signal with low energy. This is an
important aspect that is deeply exploited in the SSL algorithms. In other words, the SSL
algorithms through beamforming are an extension, in some way, of the delay-and-sum
and/or filter-and-sum techniques.

Next subsections explain how such extension is done by describing how the SRP-
PHAT algorithm is derived from a filter-and-sum. We also show its two possible formu-
lations, one in the frequency-domain, and another one in the time-domain.

2.4.1 Steered Response Power

As means of exploiting the energy characteristics of the output signal of a beamformed
position, it is possible to compute the steered response power (SRP) of that position. The
term SRP, as the name suggests, computes the power of a steered response signal, i.e., the
energy of the output of a beamforming algorithm. The SRP may be expressed in terms of
a point q, through the following expression.

P (q) =

∫ ∞
−∞
|y(t,q)|2 dt (2.8)

However, it is more interesting to represent it using the frequency-domain definition
of y(t,q). This may be done using Parseval’s theorem, which states that the total en-
ergy contained in a waveform summed across all of time t is equal to the total energy
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of the waveform’s Fourier Transform summed across all of its frequency components ω.
Therefore, the SRP may be represented in the frequency-domain.

P (q) =

∫ ∞
−∞
|Y (ω,q)|2 dω (2.9)

Substituting Y (ω,q) by its complete expression, we get the expanded version of the
SRP of a filter-and-sum:

P (q) =

∫ ∞
−∞

∣∣∣∣∣
M−1∑
m=0

Wm(ω)Xm(ω)e−jωτ
q
am

∣∣∣∣∣
2

dω (2.10)

where Wm(ω) still represents a filtering function, and will be further explained in Subsec-
tion 2.4.2.

Now that it is possible to measure the acoustic energy of a given point q in space, we
may derive this to a sound source localization algorithm by simply recalling that a point
which contains an active speaker will emanate a larger amount of acoustic energy than
points which do not contain an active speaker. Therefore, given a set of candidate sound
source locations, the one which potentially represents a speaker position will have the
highest SRP among the set. Mathematically, we can describe the estimate q̂ of the sound
source location as being

q̂ = argmax
q∈Q

P (q), (2.11)

where Q is an user-defined set of real-world coordinates to be scanned. Generally, it is
chosen in a way that its points compose a geometric form such as a line, square or cube
(depending on the dimensionality of the search process).

2.4.2 Steered Response Power with Phase Transform

When the filtering function Wm(ω) is chosen to be the phase transform (PHAT) func-
tion, the SRP becomes the SRP-PHAT. This approach was proposed in (DIBIASE, 2000)
and is still known as a state-of-the-art technique for SSL in noisy and reverberant envi-
ronments.

The PHAT filter may be defined in the following way.

Wm(ω) =
1

|Xm(ω)|
(2.12)

Therefore, substituting Eq. (2.12) into Eq. (2.9), the SRP becomes the SRP-PHAT:

P (q) =

∫ ∞
−∞

∣∣∣∣∣
M∑
m=1

Xm(ω)

|Xm(ω)|
e−jωτ

q
am

∣∣∣∣∣
2

dω. (2.13)
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It may be observed that the effect of the PHAT filter is to simply remove the magnitude
information of the sound signal, leaving only the phase information. In other words, it
equally weights all the frequency components of the signal during the calculation of the
SRP-PHAT, which is highly advantageous because it removes the contribution that noise
and reverberation would have for the SRP. Moreover, since the TDOA information (delay)
is only contained in the phase term of the signals, it is only normal that using the amplitude
would increase the SRP-PHAT outputs based on the loudness of the sound and not on its
delay information (which would enhance noise sources instead).

Now for the estimation of the sound source location, the same step described in
Eq. (2.11) still holds. It summarizes in finding the position that generates the largest
SRP-PHAT value among the set Q of candidate locations. To better visualize this pro-
cess, Figure 2.4.2 illustrates the scanning process over an arbitrary Q.
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Figure 2.6: Example of the SRP-PHAT being used for SSL.

2.4.3 Alternate Formulation of the SRP-PHAT

The SRP-PHAT allows another practical implementation through which a lower com-
putational complexity may be achieved at the cost of less localization accuracy. The
approach described in Section 2.4.2 is entirely computed in the frequency-domain, so we
refer to it as the frequency-domain version. The one described in this section has some
steps done in the time-domain, so we refer to it as the time-domain version. These terms
are extensively referred in Chapter 6 where we propose GPU implementations of both
versions.

The energy of a signal in the frequency domain was described through Eq. (2.9). This
equation may also be equivalently represented as,

P (q) =

∫ ∞
−∞

Y (ω,q)Y ∗(ω,q)dω (2.14)

where ∗ denotes the complex conjugate operator.
Substituting Eq. (2.7) in Eq. (2.14) and again using the PHAT filter, we obtain

P (q) =

∫ ∞
−∞

(
M∑
m=1

Xm(ω)

|Xm(ω)|
e−jωτ

q
amdω

)(
M∑
l=1

X∗l (ω)

|X∗l (ω)|
ejωτ

q
aldω

)
. (2.15)
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Rearranging this expression yields

P (q) =

∫ ∞
−∞

M∑
m=1

M∑
l=1

(
Xm(ω)

|Xm(ω)|
e−jωτ

q
amdω

)(
X∗l (ω)

|X∗l (ω)|
ejωτ

q
aldω

)
. (2.16)

Through Eq. (2.2) we may notice that

τqal − τ
q
am = τqm − τ

q
l = τqml. (2.17)

Using such notion and organizing the multiplications in Eq. (2.16) we obtain

P (q) =

∫ ∞
−∞

M∑
m=1

M∑
l=1

Xm(ω)X∗l (ω)

|Xm(ω)X∗l (ω)|
ejωτ

q
mldω. (2.18)

Since the SRP-PHAT of pairml is the same as for pair lm, it is possible to reduce the num-
ber of iterations in the second summation. Furthermore, it is also possible to interchange
the order of the integral and the summations, given that in practice the microphones’ sig-
nals and filters contain finite energy. This way, we obtain the following expression for the
SRP-PHAT.

P (q) =
M∑
m=1

M∑
l=m+1

∫ ∞
−∞

Xm(ω)X∗l (ω)

|Xm(ω)X∗l (ω)|
ejωτ

q
mldω. (2.19)

This integral in Eq. (2.19) is also know as the Generalized-Cross-Correlation with
the Phase Transform (GCC-PHAT) of a microphone pair ml. It may be solved through
the Inverse Fourier Transform (instead of an iteration process over the integral) to obtain
its corresponding time-domain representation Rml(τ). Therefore, we may describe this
alternate formulation of the SRP-PHAT in terms of the summation of the GCC-PHATs of
all unique microphone pairs:

P (q) =
M∑
m=1

M∑
l=m+1

Rml(τ
q
ml). (2.20)

This formulation yields a faster processing speed, for the integrals may be solved once for
each pair of microphones prior to the search-space scanning step, but introduces an im-
precision during the delaying process of the signals, which happens due to the truncation
of τqml when Rml(τ

q
ml) is accessed. These topics are covered in more details in Chapter 6.

2.5 Multimodal Fusion

Applications that explore more than one modality of data have recently become more
common in researches that deal with multimedia analysis tasks (ATREY et al., 2010).
The combination of multiple modalities through a proper multimodal fusion approach
may be highly beneficial for problems that can have multiple input streams of different
nature. Such examples may include audiovisual speaker detection, human tracking, event
detection, etc. In particular, our work deals with speakers detection/localization which
implies in the use of video and audio as the input modalities. Therefore, the idea is that
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in situations where the audio might be corrupted by noise and/or reverberation, visual
cues can compensate for it, making the final algorithm more robust. Conversely, if the
visual modality is unreliable (as in moments where the users are too distant from the
camera), auditive features may strengthen the final algorithm. Such benefits resulting
from a multimodal fusion approach, however, demand that a more complex analysis of the
input data is performed. For this reason some practical difficulties emerge in a multimodal
processing scenario:

1. The media streams are asynchronous in most cases, which means their processing
time are dissimilar. This may require a preprocessing synchronization step to be
applied or require the fusion approach to deal with such problem.

2. The modalities may present varying confidences according to the scenario at which
they are captured. As in the previous example, the video modality may be less
reliable than the audio if the users are standing far away from the camera. Such
characteristic may require some weighting approach of the streams.

3. What information (features) should be extracted from each modality. Audio-based
and video-based applications, as in this work for example, may use a variety of
algorithms for extracting speech related features for the classification process.

4. How the features extracted from each modality should be fused. Multimodal fusion
may happen in different levels, such as at the feature level, the decision level or as
a hybrid approach between those two. For this reason the combination approach
is also an important aspect of multimodal analysis that should be chosen carefully
according to the characteristics of the problem.

In our works, the first topic is basically covered through block-based processing of
the audio modality, and for this reason, is not addressed during the multimodal fusion
approaches. In more details, block-based processing of the audio means simply taking
buffers composed of many audio samples as input for each image of the video modality.
Since the audio sampling frequency is much higher than the video’s (44100Hz vs 20fps, in
our systems) we may synchronize both modalities by processing, e.g., 2205 audio samples
for each input image.

The second topic is also something that may or may not be handled in the fusion
approach. One case of modality weighting would be by doing it implicitly through an
automated training process of a supervised classifier where failure cases (as those men-
tioned) are included in the training dataset, so that the classifier learns how to address
such adverse situations. Another approach would be to assess the modality’s reliability
through some additional information extracted from its corresponding input stream and
explicitly weight that modality’s contribution to the fusion approach. One example of the
first case is given in Chapter 4 where adverse situations are handled by a decision tree
classifier; and the second case is approached in Chapter 5 by reducing the contribution of
the visual cues based on the distance of the users from the camera.

The third topic is rather generalized to be categorized into different approaches. From
the audio modality, for example, many different features may be extracted for speech de-
tection purposes. Some examples include energy and entropy of the signal (LEE; MUHK-
ERJEE, 2010a), coefficients of the Discrete Cosine Transform of the signals (GAZOR;
ZHANG, 2003), and higher order statistics of the signal’s linear predictive coding (LPC)
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residuals (NEMER; GOUBRAN; MAHMOUD, 2005). For the video modality, informa-
tion regarding the user’s mouth is usually extracted to explore its movement across time.
For this purpose, some works, for example, propose the use of optical-flow (GURBAN;
THIRAN, 2006; AUBREY; HICKS; CHAMBERS, 2010; TIAWONGSOMBAT et al.,
2012), shape information (AUBREY et al., 2007), and color information (SCOTT et al.,
2009; LOPES et al., 2011). Given such variety of methods for extracting information
from the input modalities, the choice of the algorithm to use should be based upon what
best suits the multimodal scenario. Sometimes, one of the influencing factors may also
be the type of capture hardware available in the system, what may restrict or broaden the
range of employable techniques.

The fourth matter related to multimodal analysis we raised is also very important for
the final robustness of an algorithm. As mentioned, multiple modalities may be fused
using many different approaches. To better understand the most common ones of the lit-
erature, Figure 2.7 illustrates early fusion (or feature-level fusion), mid fusion, and late
fusion (or decision-level fusion). The first case, of early fusion, happens when the features
of the modalities (in our case, audio and video) are unified into a larger set of features to be
classified by some sort of classifier (either supervised or not). The third case, summarizes
in individually classifying the features of each modality to later combine the separate re-
sults through a third classification technique. The second case is an intermediate approach
between the previous others: the result of a unimodal classifier is combined with the input
features of the other modality; the modified features are then classified by a final and uni-
modal method, and we name this approach as mid fusion. An example of mid-fusion is
given in Chapter 5, where we propose to fuse the output of an SVM-based lip motion ana-
lyzer to the input of an HMM-based audio approach. In Chapter 4 a late-fusion method is
proposed, where we use a decision tree technique to combine our algorithm of Chapter 3
to the work of (LOPES et al., 2011).
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Abstract

This paer proposes a multimodal approach to distinguish silence from speech situa-
tions, and to identify the location of the active speaker in the latter case. In our approach, a
video camera is used to track the faces of the participants, and a microphone array is used
to estimate the Sound Source Location (SSL) using the Steered Response Power with the
phase transform (SRP-PHAT) method. The audiovisual cues are combined, and two com-
peting Hidden Markov Models (HMMs) are used to detect silence or the presence of a
person speaking. If speech is detected, the corresponding HMM also provides the spatio-
temporally coherent location of the speaker. Experimental results show that incorporating
the HMM improves the results over the unimodal SRP-PHAT, and the inclusion of video
cues provides even further improvements.

3.1 Introduction

Nowadays, keyboard and mouse are the most popular devices for Human Computer
Interaction (HCI), adopted by the vast majority of personal computers. Despite being
intuitive and easy to use, they may not be adequate in a variety of applications. For
instance, the manual annotation of multimedia data (photos, videos, and music clips, to
name a few) into a set of tags using keyboard and mouse is a tiresome task, and other
ways of interaction (such as audiovisual data) seem to be more natural. In particular,
the analysis of speech and facial features appear to be promising in the development of
multimodal HCI systems (JAIMES; SEBE, 2007).

There are several challenges when exploring facial cues and speech data to develop
HCI systems. Firstly, the face must be detected and tracked robustly in time, which is
a complex task in the presence of partial occlusions, head tilts and turns. Secondly, the
audio analysis (mainly speech detection) is highly corrupted by background noise (e.g.
an air-conditioning system), so that it is necessary to detect when a person is speaking or
not (this problem is usually referred to as Voice Activity Detection - VAD). Finally, when
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more than one user is captured by the camera, it is important to determine which person is
actually interacting with the computer (in the case of voice commands, that means finding
the active speaker at a given time).

This chapter presents a new approach to estimate the location of the active speaker
based on audiovisual cues. We propose a Hidden Markov Model (HMM) that charac-
terizes the expected spatio-temporal properties of a typical speaker considering the input
captured by an array of microphones, and its extension to include visual cues. This HMM
imposes spatio-temporal constraints on the location of the active speaker, improving the
results of audio-only localization. Another HMM to model silence periods is also pre-
sented, so that VAD can also be achieved by comparing the speech and silence HMMs.

The remainder of this chapter is organized as follows: Section 3.2 presents some
related work, and the proposed approach is described in Section 3.3. Some experimental
results are provided in Section 3.4, and the conclusions are drawn in Section 3.5.

3.2 Related Work

There are several approaches for VAD and for SSL, using mostly audio cues, video
cues or a combination of both (multimodal processing). In general, VAD and SSL are
considered as two separate problems, and a brief revision of both problems is presented
below.

Most of existing approaches for VAD rely on audio cues, either relying on character-
istics of voice patterns in the frequency domain or pre-determined (or estimated) levels of
background noise. Sohn et al. (SOHN et al., 1999) presented a statistical method using the
complex Gaussian assumption in the frequency domain for both speech and noise, based
on the likelihood ratio test (LRT). Additionally, they also proposed an effective hang-over
scheme based on an HMM. Ramirez and collaborators (RAMIREZ et al., 2005) proposed
its extension, by employing multiple observations to include temporal smoothing. A fur-
ther improvement was presented in (RAMIREZ et al., 2007), by using contextual multiple
hypothesis testing.

Other authors have used different statistical models to characterize speech periods.
For instance, a Laplacian distribution was used to model speech in the DCT domain
in (GAZOR; ZHANG, 2003), which has shown to be a better model than a Gaussian.
More recently, Lee and Muhkerjee (LEE; MUHKERJEE, 2010b) proposed a statistical
algorithm for VAD, aiming to detect higher level speech activities (e.g. sentences instead
of syllables, words, phrases, etc.). Their approach uses two distinct features for VAD,
energy and entropy in the DCT domain, which are modeled as chi-square and Gaussian
distributions respectively.

It should be noticed that the approaches described in (SOHN et al., 1999; GAZOR;
ZHANG, 2003) aim to detect very short-time silence periods suitable for tasks such as
speech coding or automatic speech recognition, while our approach aims to detect higher
level speech activities, as in (LEE; MUHKERJEE, 2010b; RAMIREZ et al., 2005, 2007).

Regarding SSL (in our case, the sound source is the active speaker), most approaches
rely only on audio information. It is necessary to have more than one microphone, and to
analyze the relationships among the signals captured by different microphones (BRAND-
STEIN; WARD, 2001). For a two-microphone case, we can find the time difference of
arrival (TDOA) using the generalized cross-correlation (GCC) method, which involves a
frequency weighting function (BRANDSTEIN; WARD, 2001). One of the most popular
frequency weighting for GCC is the phase transform (PHAT), which effectively whitens
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the microphone signals to equally emphasize all frequencies before computing the cross
correlation. Even with noise and reverberation, the GCC-PHAT has been reported to work
reasonably well in many practical situations (BRANDSTEIN; WARD, 2001).

For multiple microphone cases, we can find the source location by triangulation given
a set of TDOA’s from different microphones pairs (BRANDSTEIN; ADCOCK; SIL-
VERMAN, 1997). The TDOA-based method becomes unreliable when the individual
TDOA estimates are inaccurate to begin with. Unfortunately, this is often the case in typ-
ical acoustic environments. Alternatively we can use the Steered Response Power (SRP)
method (DIBIASE, 2000), which can be considered as an extension of the GCC method
to multiple microphones. The main idea of the SRP is to steer the microphone array to all
possible candidate source locations to find one with the maximum power, typically using
some frequency weighting (filtering in the time domain). In particular, the SRP method
with the PHAT frequency weighting (SRP-PHAT) has been reported to be more robust
with respect to acoustic corruptions, such as background noise and reverberation com-
pared with the TDOA-based methods (BRANDSTEIN; WARD, 2001; DIBIASE, 2000;
DO; SILVERMAN; YU, 2007).

With an array consisting M microphones, the SRP-PHAT of the sound source at a
position q is (DIBIASE, 2000)

P (q) =
M∑
m=1

M∑
l=1

∫
Xm(ω)X∗l (ω)

|Xm(ω)X∗l (ω)|
ejω(∆q

m−∆q
l )dω, (3.1)

where Xm(ω) is the Fourier Transform of the signal at the mth microphone, ∆q
m is the

time delay computed from position q to the mth microphone.
Since the SRP-PHAT requires significant amount of computation, i.e., double summa-

tion and one integration for each candidate source, an alternative expression was proposed
in (ZHANG; ZHANG; FLORENCIO, 2007):

P (q) =

∫ ∣∣∣∣∣
M∑
m=1

Xm(ω)

|Xm(ω)|
ejω∆q

m

∣∣∣∣∣
2

dω. (3.2)

SSL can also be done using statistical modeling of multichannel audio signals us-
ing e.g., multivariate complex Gaussian (ZHANG; ZHANG; FLORENCIO, 2007), or
Laplacian (LEE; KALKER; SCHAFER, 2008) distributions whose computational cost
is typically much higher than the SRP-PHAT and thus not quite suitable for real-time
implementations. Furthermore, it is important to note that the audio-based approaches
described so far work on sound buffers independently, not exploring temporal coherence.

Multimodal approaches for SSL explore different sensors, mostly focused on audio-
visual integration. Wang and Brandstein (WANG; CHU, 1997) proposed a face tracking
algorithm based on both sound and visual cues. Initial talker locations are estimated
acoustically from microphone array data, based on the TDOA estimation followed by a
triangulation procedure. The final location is obtained based on video cues (acquired with
a single camera), using mostly motion and edge information. Their work was further ex-
tended in (WANG; GRIEBEL; BRANDSTEIN, 2000) by adding head pose estimation
using multiple cameras and multi-channel speech enhancement techniques.

In (VERMAAK et al., 2001) and (PEREZ; VERMAAK; BLAKE, 2004), a particle
filtering framework was employed for data fusion, since it deals better with non-Gaussian
distributions (opposed to Kalman filtering). Both approaches explore only a pair of micro-
phones and a single monocular camera, and obtain the sound localization by measuring
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the TDOA between signals arriving at the two microphones. In (VERMAAK et al., 2001),
an active contour tracking approach was used to explore visual data, using monochromatic
information, while color and motion cues were used in (PEREZ; VERMAAK; BLAKE,
2004).

Gatica-Perez and collaborators (GATICA-PEREZ et al., 2007) presented a probabilis-
tic approach to jointly track the location and speaking activity of multiple speakers in
meeting room equipped with a circular microphone array (with 8 microphones) on a table
and multiple cameras, that capture frontal and top views of the participants. They used
the SRP-PHAT approach for SSL, and the visual observations were based on models of
the shape and spatial structure of human heads. The fusion was performed with a Markov
Chain Monte Carlo particle filter. Despite the good results presented in the paper, a point
to be improved is the initialization of the targets. Also, the computational cost was not
discussed, and more than one camera is required.

The group of Zhang (ZHANG et al., 2008) proposed a multimodal speaker identifica-
tion approach that fuses audio and visual information at the feature level by using boosting
to select features from a combined pool of both audio and visual features simultaneously,
using a circular array with 6 microphones and a panoramic camera. The authors showed
that their multimodal approach performed better than a unimodal sound source locator,
but the motion cue may pose problems for stationary participants. Talantzis and col-
laborators (TALANTZIS; PNEVMATIKAKIS; CONSTANTINIDES, 2008) proposed an
approach that estimates independently the position of the active speaker in cluttered and
reverberant environments using audio and video information, and combined both outputs.
Their method was tested with a large microphone array (80 microphones located in dif-
ferent locations inside the acoustic enclosure and organized in different topologies), and
a set of five synchronized and calibrated cameras. One clear drawback of their approach
is the hardware requirement (tens of microphones and multiple calibrated cameras).

Although VAD and SSL have been treated as independent problems in the literature,
this chapter presents a new approach that explores spatio-temporal characteristics that
arise in the SSL problem to solve the VAD problem. To further improve SSL results,
we have also included visual information captured by a single camera. The proposed
approach is described in the next section.

3.3 Our Approach

The proposed approach explores the expected spatio-temporal consistency of audio
signals through two competing HMMs (one for silence and the other for speech) to distin-
guish silence from speech. When voice activity is detected, visual information is included
in the third HMM to provide a robust estimate of the active speaker. To correlate audio
and video signals, we assume a linear microphone array and a video camera placed right
at the center of the array, arranged so that the camera plane is vertical and parallel to the
array. The users are expected to be at an approximately constant distance D from the
array, so that the search space required for the SRP-PHAT is linear, parallel to the array,
and its length L is given by the Field of View (FOV) of the camera given D. A schematic
representation of the required setup is provided in Figure 3.1(a), and our prototype room
based on such setup is given in Figure 3.1(b).

The first step of our algorithm consists of initially discretizing the search space into
N equally spaced positions qi and applying Equation (3.2) to compute the SRP-PHAT
values at such points, as illustrated in Figure 3.1(a). Since the distance between adjacent
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Figure 3.1: (a) Schematic representation of the proposed approach. (b) Our prototype
system.

points is given by L/(N − 1), it is clear that parameter N relates to the precision of SSL:
larger values for N lead to search points closer to each other providing higher spatial
resolution at the cost of higher computational cost. Based on these N points, a 2D feature
vector is computed (described in Section 3.3.1), and HMMs that describe both speech and
silence situations are proposed.

One important thing to note here is that the spatial resolution is bounded by the choice
of the sampling frequency. For example, at 44,100 Hz sampling frequency with the sound
propagation speed of 343 m/s, one sample delay corresponds to 343/44100 = 0.78 cm
propagation distance. For a 6 element microphone array with the microphone spac-
ing of 8 cm, we can achieve the minimum FOV of sin−1

(
.78

8·(6−1)

)
= 1.12◦ that gives

tan(1.12◦) = 1.96 cm lateral distance (precision) for sources at 1 m away from the mi-
crophones. Therefore, N needs to be carefully chosen not to incur higher computational
cost without gaining higher spatial resolution depending upon specific applications.

3.3.1 The Proposed HMMs

A HMM can be used to model dynamic systems that may change their states in time.
A HMM with discrete observables is characterized by λ = (A,B, π), where A = [aij]
for 1 ≤ i, j ≤ N is the transition matrix that contains the probabilities of state changes,
B = [bi(O)] for 1 ≤ i ≤ N describes the observation probability for each state, and
π = [πi] for 1 ≤ i ≤ N contains the initial probabilities of each state. Clearly, the choice
of the parameters is crucial to characterize a given HMM.

In this work, we explore specific characteristics that are expected to arise in silence
and speech situations to devise two HMMs that describe each situation. In the test stage,
the HMM that best describes the captured observations is used to detect silence or speech
periods. Furthermore, the speech HMM embeds spatio-temporal coherence, increasing
the robustness of the SSL (when speech is detected).

The proposed HMMs consist of N hidden states, and each state S(t) at time t relates
to a discretized spatial position used to compute the SRP-PHAT. Another key issue is the
definition of a set of observables that are adequate for silence/speech discrimination and
SSL. In this work, the observables are two-dimensional vectors O = (O1, O2) that are
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computed based on the SRP-PHAT responses in all discretized positions, given by

O1 = argmax
i

P (qi), (3.3)

O2 =
maxP (qi)∑N
i=1 P (qi)

. (3.4)

It is important to note that O1 is exactly the discretized position that produces the
maximal SRP-PHAT response. The second observable O2 can be viewed as a confidence
measure when estimating O1. In speech situations, O1 should provide the correct location
of the speaker, and O2 tends to be a large value (since the global maximum is expected
to be considerably larger than the mean). On the other hand, in silence situations, all
values of P (qi) tend to be similar, and the largest one is selected as the location of the
(inexistent) sound source. In this case, however, O2 will be smaller (close to the lower
bound), and this information is crucial when building the competing HMMs.

In theory, the lower bound for O2 is 1/N , and the upper bound is 1. We have observed
in different experiments (with different speakers and varying background noise) that O2

gets really close to the minimum theoretical value 1/N when no active speaker is present,
and stays very far from the upper bound 1. In fact, when N increases so does the de-
nominator in Equation (3.4), so that O2 tends to be smaller. For a given value of N , an
experimentally set maximum bound Omax

2 is defined, and the values of O2 are quantized
into Q2 possible values within the range Omin

2 = 1/N and Omax
2 to obtain an HMM with

discrete range observables.1

A widely used approach to select the parameters for a given HMM is the Baum-Welch
algorithm (RABINER, 1989), which iteratively estimates the parameters λ = (A,B, π)
based on a set of training data. Our HMM, however, presents a relatively high number
of states (N ) and observables (N × Q2), which would require a large amount of training
samples (comprising several situations such as speakers in different positions, alternation
of speech and silence, presence/absence of background noise, etc.). Instead, we propose
a parametric model for the HMM parameters based on the expected behavior of the user
in audiovisual HCIs, as described next.

3.3.1.1 The Speech HMM

The joint probability distribution2 psp
i (O1, O2) for a given state qi can be written as

psp
i (O1, O2) = psp

i (O1|O2)psp(O2), (3.5)

where psp(O2) is the distribution of O2 during speech situations (which does not depend
on the state qi), and psp

i (O1|O2) is the conditional probability of O1 given O2, which
is strongly affected by i. During speech situations, larger values for O2 are expected
to arise, since sharper peaks tend to occur in the SRP-PHAT. The proposed model is a
discrete Gaussian distribution centered at Omax

2 :

psp(O2) = exp

{
−(O2 −Omax

2 )2

2σ2
sp

}
, (3.6)

1Values of O2 larger than Omax
2 were quantized to the largest possible value. In all experiments, we

quantized the values O2 into Q2 = 7.
2Since our observables are discrete, all PDFs should add up to unity. For the sake of simplicity, the

normalization factor of each discrete PDF will be omitted.
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where σsp relates to the variation of O2 in speech situations.
In order to find an adequate model for psp

i (O1|O2), it is first important to note the
following. If a given state qi is in fact the actual position of the active speaker (in speech
situation), the observable with the highest probability of occurring is O1 = i, so that
psp
i (O1|O2) is expected to present a peak at O1 = i. If the confidence O2 is large, the

probability should decay rapidly as O1 gets far from i. If O2 is smaller, the decay should
be slower, since the confidence is smaller and other values of O1 are also expected to be
encountered with higher probability. There are several functions that satisfy those criteria,
and in this work an exponential function was chosen to model the decay from the peak:

psp
i (O1|O2) = exp

{
−|O1 − i|
f(O2)

}
, (3.7)

where f(O2) is a monotonically decreasing function that controls the probability decay
for different values of O2. Our choice for f based on empirical evaluations is another
exponential function:

f(O2) = 2N exp{−2N(O2 −Omin
2 )}, (3.8)

so that a very sharp peak of psp
i (O1|O2) appears when O2 ≈ Omax

2 , and the decay is very
slow when O2 ≈ Omin

2 .
In order to define the state transition matrix, we first observe that the user typically

does not present abrupt head movements in time in most HCIs for multimedia applica-
tions. Hence, during speech periods, the state transition probability asp

ij , psp(S(t+ 1) =
qj|S(t) = qi) should prioritize the maintenance of the current state or changes to neigh-
boring states, and penalize changes to states far away from each other. In this work, an
exponential function was used to build the transition matrix Asp:

asp
ij = νi exp

{
−|i− j|

βsp

}
, (3.9)

where βsp controls the decay of the exponential and νi is a normalization factor to guaran-
tee that each line of Asp adds up to unity. Let us recall that the spacing between adjacent
positions is L/(N −1), and let vm be the maximum lateral speed of a participant (in m/s),
and Fs be the sampling frequency (in samples per second). Then, we select βsp = vm(N−1)

FsL ln 2
,

so that aij = 0.5aii when |i− j|L/(N−1) = vm/Fs, i.e., the probability of moving at the
maximum speed within adjacent frames is half of the probability of staying at the same
position. If vm increases, so does βsp, meaning that wider transitions should be allowed
during speech situations.

For the sake of illustration, the transition matrix Asp and the probability density func-
tion psp

25(O1, O2) related to state q25 (N = 51) are shown graphically in Figure 3.2 (the
parameters used to generate those plots are stated in Section 3.4).

3.3.1.2 The Silence HMM

The silence-related HMM can be viewed as the “dual” of the speech-related HMM.
As it was already pointed out, during silence periods the response of the SRP-PHAT at
each position (state) should be similar, so that observable O2 is expected to be close to
the smallest possible value, which is Omin

2 . As in the speech situation, the joint probability
function can be written as

psi
i (O1, O2) = psi

i (O1|O2)psi(O2). (3.10)
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Figure 3.2: Illustration of (a) the transition matrix and (b) probability distribution function
of observables (i = 25), for the speech-related HMM.

Function psi(O2) was obtained similarly to its counterpart in speech situations:

psi(O2) = exp

{
−(O2 −Omin

2 )2

2σ2
si

}
, (3.11)

where σsi relates to the variation of O2 in silence situations.
For the conditional probability psi

i (O1|O2), there are two important things to be noted.
First, such distribution should not depend on the state qi, since the position of the peak is
related to noise, and not to an actual sound source at position qi. Secondly, all observables
O1 should be equally probable, for the same reason. Hence, the same uniform conditional
probability function is chosen for all states:

psi
i (O1|O2) = psi(O1|O2) =

1

N
. (3.12)

If in speech situations the peak of the SRP-PHAT is expected to be close in tempo-
rally adjacent observations, the same is not true for silence periods. Since all responses
are usually similar, background noise may play a decisive role when retrieving the high-
est peak, which may be far from the one detected in the previous observation. In fact,
the proposed state transition matrix for the silence-related HMM considers all transitions
equally probable:

asi
ij =

1

N
. (3.13)

As for the initial distribution π for both speech and silence HMMs, we assumed that
all states (i.e., positions) are initially equally probable.

3.3.1.3 Silence Detection and Location of the Active Speaker

Given the speech HMM λsp, the silence HMM λsi, and a sequence of observables
Ot =

{
O(t − T ),O(t − T + 1), ...,O(t)

}
within a time window with size T , we

can compute how well each HMM describes Ot. More precisely, this can be done by
computing P (Ot;λsp) and P (Ot;λsi) using the forward-backward procedure (RABINER,
1989). Hence, based on a temporal window of size T , a given t is classified as silence if
P (Ot;λsp) < P (Ot;λsi), and classified as speech otherwise.
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When the speech HMM wins, it is possible to apply the Viterbi algorithm (RA-
BINER, 1989) to compute the most probable sequence of states

{
S(t−T +1), S(t−T +

2), ..., S(t)
}

based on the sequence of observations
{
O(t−T+1), O(t−T+2), ..., O(t)

}
.

Since each state is related to a discretized position used in the SRP-PHAT algorithm, the
sequence of states relate to the most probable trajectory of the active speaker considering
the last T samples (and the last estimated state S(t) is retrieved as the current position of
the active speaker).

3.3.2 Inclusion of Video Information

Despite the improvement of the temporal coherence through the use of the HMM,
noisy environments and severe reverberation may produce erroneous peaks in the SRP-
PHAT computation, even when a participant is effectively speaking. Assuming that the
participants are the possible sound sources, and they are usually facing the camera (which
is a plausible hypothesis in HCI applications), the use of a face detection or tracking algo-
rithm could guide the selection of the largest power location in the SRP-PHAT algorithm.

In this work, we used the face tracker algorithm described in (BINS et al., 2009), that
is robust with respect to significant head tilts and turns and also to partial occlusions. In
a nutshell, the approach in (BINS et al., 2009) is based on the individual tracking of KLT
(Kanade-Lucas-Tomasi) features, which are combined in a robust manner using Weighted
Vector Median Filters.

The face tracker provides, at each frame, the number k of identified faces, as well as
the face centers x1, x2,... xk in image coordinates. Since the camera is fixed and the depth
of detected faces is assumed to be around 1 m, a simple projective mapping can be used to
relate each face center in image coordinates (pixels) to its corresponding position in world
coordinates (cm). Finally, this position in world coordinates can be easily mapped to the
discretized positions qi used in the computation of the SRP-PHAT, which are equivalent
to the states used in the proposed HMMs. Let fj = h(xj) denote the mapping from the
image coordinates of the jth detected face to its correspondent state.

Although there may be several ways to combine audiovisual cues, in this work we em-
ployed a simple (but effective) technique to weight the output produced by the SRP-PHAT
based on the detected faces, so that spatial locations around the detected faces are prior-
itized. More precisely, given the SRP-PHAT responses P (qi), the weighted responses
P ′(qi) are given by

P ′(qi) =
k∑
j=1

P (qi)
(
1 + γ exp{−(i− fj)2/2σ2}

)
, (3.14)

where γ > 0 controls the amplitude of the exponential, and σ the standard deviation.
Experimentally, we set γ = 0.25 and σ = N/30.

One approach to improve the unimodal SRP-PHAT algorithm is to find the maximum
of the weighted SRP-PHAT responses provided in Equation (3.14), which embed video
information. To further include spatio-temporal coherence in the model, the HMM de-
scribed in Section 3.3.1 is also included, using P ′(qi) instead of P (qi) in Equations (3.3)
and (3.4).

It is important to note the face tracker artificially increases the SRP-PHAT value at
the face position, which could bias the silence detector. In this regard, for silence de-
tection, described in the previous subsection, we use only audio information to com-
pute P (Ot;λsp) and P (Ot;λsi). When speech is detected, the audiovisual HMM (using
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the video-based weighted SRP-PHAT responses) is then used to improve the estimated
location of the active speaker. In the next section, we present some results of the si-
lence/speech discrimination, as well as comparisons of speaker localization using the uni-
modal SRP-PHAT algorithm and the proposed improvements presented in this chapter.

3.4 Experimental Results

All our experiments were conducted in our prototype room, which is equipped with
a uniform array of six DPA 4060 omnidirectional microphones, placed 8 cm apart from
each other, and a Logitech Quickam Pro 5000 webcam as depicted in Fig. 3.1(b). The
participants are expected to be found approximately 1 meter away from the camera and
the array (and approximately 50 cm from the monitor), and the field of view of our web-
cam considering such distance corresponds to a region approximately 94 cm wide. This
linear search space was discretized into N = 51 points, yielding a distance of approxi-
mately 1.88 cm between neighboring points in the discretized search space based on our
discussion on the spatial resolution in Section 3.3.

The audio signals were captured at 44,100 Hz, and 4096 samples were used to com-
pute the SRP-PHAT (so that we update the SRP-PHAT localization approximately every
0.093 s). Video capture was synchronized with audio, so that approximately Fs = 10
audiovisual samples are captured per second. The size T of the temporal window de-
scribed in Section 3.3.1.3 is related to temporal coherence. If a small value is chosen for
T , speech hiatus between consecutive words may be detected as silence, which is usually
not desirable for speech recognition. On the other hand, larger values for T provide better
temporal consistency, but also lead to delays when detecting speech-silence or silence-
speech changes. In this work we used T = Fs = 10, which corresponds to a window
approximately 1 second long, and showed to be efficient to deal with speech hiatus and
not present a long delay when the location of the speaker changes.

For our experimental setup, the selection of the required parameters is given as fol-
lows. Given a training sequence containing both speech and silence periods in approx-
imately equal proportions (we used video sequence 3, described later in this work), we
compute O2 for all frames, and remove the largest 2% values (to eliminate possible out-
liers). Then, define Omax

2 as the maximum of the remaining values (for our setup, we
obtained Omax

2 = 0.0603). To avoid the need of having ground truthed data for training,
we defined σsi = σsp required in Equations (3.6) and (3.11). They are defined as the
standard deviation of O2 in the training sequence (that contains both speech and silence
periods), obtaining the value of 0.0133 for our experimental setup. Also, assuming that
the maximum lateral speed of the participants is at most vm = 1.31 m/s (that is the mean
speed of pedestrians with unconstrained flow as reported in (ROBIN et al., 2009)), and
the given values for L and N , we get βsp = 0.2011(N − 1) in Equation (3.9).

A total of seven ground-truthed video sequences, 1 minute long each, were gener-
ated to evaluate the accuracy of the proposed approach. The first three sequences contain
a single speaker, that alternates speech with silence, and the other four sequences con-
tain two participants, that alternate speech (and shorter periods of silence). Table 3.2
provides a very brief description of each video sequence used in this Section (number
of participants, presence/type of background noise, number of speech-related frames),
and the processed video sequences can be accessed at http://www.inf.ufrgs.
br/~crjung/multimodal_localization/. For all sequences, the nine initial
frames were discarded in the analysis, since the proposed HMM requires a time span of

http://www.inf.ufrgs.br/~crjung/multimodal_localization/
http://www.inf.ufrgs.br/~crjung/multimodal_localization/
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ten frames.

3.4.1 Voice Activity Detection

For VAD, only the first three sequences were used, since the other videos contain
smaller periods of silence (and much more alternation between speakers and silence peri-
ods, which makes the manual markings for VAD/silence inaccurate). In total, 1914 frames
were analyzed, and VAD results are summarized in Table 3.1, that shows the confusion
matrix for both video sequences. Considering the results of all three sequences, the true
positive rate was around 88.93%, and the true negative rate around 85.73%, yielding a
total accuracy of 87.62%. It is also important to note that the temporal coherence im-
posed by the HMMs causes small delays in the silence/speech detection, which impacts
the quantitative analysis. More precisely, from the 237 samples incorrectly classified,
35.87% occured at most five frames from a silence/speech or speech/silence transition. If
we consider this 5-frames tolerance, the overall accuracy increases to 92.06%.

Actual
Video 1 Video 2 Video 3

Speech Silence Speech Silence Speech Silence

Detected Speech 395 44 306 25 308 25
Silence 28 171 74 218 23 284

Table 3.1: VAD results.

3.4.2 Active Speaker Location

To evaluate the accuracy of the proposed SSL algorithm, we compared the actual
position of the active speaker with the SRP-PHAT approach, the combination of the
SRP-PHAT with the speech HMM (called SRP-PHAT+HMM), and the complete ap-
proach combining the video-based weighting function, SRP-PHAT and HMM (called
SRP-PHAT+video+HMM). The location of the active speaker was discretized into po-
sitions qi, each of which is considered as one of the hidden states of the HMM. Ground-
truth data were manually generated for the video sequences, and the errorE (absolute dif-
ference between the actual and the detected position) was evaluated for the three analyzed
approaches, considering only speech-related frames from the seven video sequences.

Table 3.2 summarizes the quantitative analysis, providing the mean errors for each
approach and video sequence. This table also presents the percentage of correct results
(hits) achieved by each approach. A certain detection was considered a hit when E ≤ τ ,
where τ ≥ 0 is a tolerance that allows detected positions close to the ground truth to
be considered correct (in Table 3.2 we used τ = 3, which corresponds to a tolerance of
approximately 5.64 cm). In most video sequences, the percentage of hits was improved
when the HMM was employed, and in all sequences it was further improved when video
information was included. The exception was video 2, that contains a person moving rel-
atively fast while speaking. Since the HMM tends to preserve spatio-temporal coherence,
it may also present small delays when the position changes rapidly, which explains the
apparent loss of performance in this sequence. As shown in Figure 3.3, the introduction of
the HMM indeed produces a smoother localization of the active speaker when compared
to the direct use of SRP-PHAT, but introducing some delay when more abrupt motion
happens.
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Figure 3.3: Results of active speaker localization for video 2.

A plot of the percentage of hits as a function of τ considering all video sequences is
presented in Figure 3.4. As it can be observed, the accuracy of the multimodal approach
presents the best results for all tolerance values τ .
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Figure 3.4: Percentage of correct localization results (hits) for different tolerance values.

As the number of microphones increases, the SRP-PHAT algorithm tends to further
amplify the signal at the actual position of the sound source, so that better results for
SSL are expected. An extra gain is also expected using the proposed approach, since
increasing the number of microphones also tends to produce larger values for O2 dur-
ing speech situations, as shown in Figure 3.5. Table 3.3 shows the overall SSL accu-
racy considering all seven video sequences using SRP-PHAT, SRP-PHAT+HMM, and
SRP-PHAT+video+HMM, using a different number of microphones. As expected, re-
sults produced by SRP-PHAT alone are considerably degraded when fewer microphones
are used, but the proposed approach keeps the overall accuracy around 90% even when
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Approach SRP-PHAT SRP-PHAT SRP-PHAT
+HMM +video+HMM

Video 1: One person, low background noise, 423 speech frames
Mean error 1.53 0.98 0.57
Hits (%) 90.31 94.09 99.53
Video 2: One person, AC turned on in the middle, 377 speech frames
Mean error 2.16 2.24 1.16
Hits (%) 86.74 81.43 94.96
Video 3: One person, music in background, 329 speech frames
Mean error 1.52 1.93 0.24
Hits (%) 93.62 94.83 100.00
Video 4: two persons, low background noise, 500 speech frames
Mean error 4.35 2.98 2.51
Hits (%) 76.20 90.20 92.20
Video 5: two persons, music in background, 452 speech frames
Mean error 4.65 2.39 2.37
Hits (%) 73.45 88.05 93.36
Video 6: two persons, switching positions, 432 speech frames
Mean error 4.06 2.15 1.69
Hits (%) 78.70 87.73 93.75
Video 7: two persons, 483 speech frames
Mean error 4.23 1.12 1.06
Hits (%) 80.12 93.17 95.24

Table 3.2: Performance of the analyzed algorithms for locating the active speaker. Error
relates to the absolute difference between the actual hidden state of the HMM and the
detected state (1 unit ≈ 1.88 cm).

only two microphones are used. In fact, the gain of introducing the HMM to SRP-PHAT
when using two microphones is around 12%, whereas the gain of further including video
information rises to almost 50%.

2 mics 4 mics 6 mics
SRP-PHAT 60.31% 74.67% 82.01%
SRP-PHAT+HMM 70.76% 86.85% 89.95%
SRP-PHAT+HMM+video 89.52% 94.46% 95.33%

Table 3.3: Accuracy of different SSL algorithms varying the number of microphones.

It is also important to notice that the distance D from the users to the camera should
also impact the results, since it changes the relation between distances in image coor-
dinates (pixels) and world coordinates (meters). However, as D usually does not vary
significantly (particularly in HCIs that also involve keyboard typing), so we did not eval-
uate the effect of varying D in our experiments.

3.5 Conclusions

This chapter presented a new approach to simultaneously distinguish silence from
speech, and to locate the active speaker in the latter case. Audio information is captured
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Figure 3.5: Plot of observableO2 for several frames of video sequence 3. Shaded regions
relate to speech, and the others to silence.

through an array of microphones, and the SRP-PHAT algorithm is used to provide an
estimate location based solely on audio cues. A face tracking algorithm is then used to
detect the participants across time, and the tracked faces are used to improve the results
provided by the SRP-PHAT. Finally, two HMMs are built to model typical silence and
speech situations, respectively. The HMMs are used to detect silence or speech situations,
and in that case, the corresponding HMM embeds spatio-temporal coherence.

The experimental results showed that the proposed HMM increases the accuracy of the
SSL when compared to the SRP-PHAT, and the combination with the face tracking algo-
rithm presents even better results. The gain with respect to SRP-PHAT alone is even more
considerable when few microphones are used, as shown in Table 3.3. A possible future
research direction would be the formulation of a different HMM to allow the localiza-
tion of more than one participant speaking simultaneously, and the use of programmable
graphic processing units (GPUs), to reduce execution time. A more comprehensive study
on other functions to model psp

i (O1, O2) can also be performed.
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Abstract

Audiovisual voice activity detection is a necessary stage in several problems, such
as advanced teleconferencing, speech recognition, and human-computer interaction. Lip
motion and audio analysis provide a large amount of information that can be integrated to
produce more robust audiovisual voice activity detection (VAD) schemes, as we discuss in
this chapter. Lip motion is very useful for detecting the active speaker, and in this chapter
we introduce a new approach for lips and visual VAD. First, the algorithm performs skin
segmentation to reduce the search area for lip extraction, and the most likely lip and non-
lip regions are detected using a Bayesian approach within the delimited area. Lip motion
is then detected using Hidden Markov Models (HMMs) that estimate the likely occurrence
of active speech within a temporal window. Audio information is captured by an array of
microphones, and the sound-based VAD is related to finding spatio-temporally coherent
sound sources through another set of HMMs. To increase the robustness of the proposed
system, a late fusion approach is employed to combine the result of each modality (au-
dio and video). Our experimental results indicate that the proposed audiovisual approach
presents better results when compared to existing VAD algorithms.

4.1 Introduction

Voice activity detection is an important problem for various applications, such as
video-conferencing (to identify silence periods and improve sound quality), speech recog-
nition systems (VAD is crucial to determine which audio frames to process), and human-
computer interaction systems for identifying human activities involving speech.

Speech is a bimodal signal, involving acoustic and visual information (SODOYER
et al., 2009). Nevertheless, automatic speech recognition (ASR) systems often focus on
acoustic information only. Typical audio-based VAD (AVAD) algorithms rely on some
kind of estimate for background noise, and speech is detected when the signal intensity
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is higher than the noise level (TANYER; OZER, 2000). This focus on audio informa-
tion makes these systems very sensitive to environmental and channel issues (e.g. noise),
which has motivated research in audio preprocessing techniques and noise adaptation
algorithms (SOHN; SUNG, 1998; SOON; KOH; YEO, 1999). Also, there are several
challenging issues related to these approaches, such as non-stationary audio noise, rever-
berations, speech with low voice intensity etc.

Visual information like body and facial expressions, or lips and tongue movements,
can complement to audio information and help in the voice activity recognition task.
Actually, lip motion information is one of the best visual clues for recognizing when a
person is speaking or is silent, since the lips move more than 80% of the time in hu-
man speech (WANG; WANG; XU, 2010). In fact, studies with controlled video infor-
mation (SODOYER et al., 2009) demonstrate that lip movement is highly correlated to
speech, but the extraction of visual cues using computer vision algorithms is still a chal-
lenging task.

Another class of approaches explores both audio and video cues for VAD, aiming to
improve the robustness of individual modalities. Such techniques must deal with large
amounts of data, particularly when multiple cameras and/or microphones are used. This
work proposes a multimodal VAD (MVAD) approach based on a single monocular cam-
era and an array of microphones, focusing on a videoconferencing or human-computer
interaction setup where the participants are facing the camera at a roughly known dis-
tance. Video information is explored by temporally analyzing the region around the lips,
and audio information is used to detect spatio-temporally coherent sound sources in a
search space. Each modality is analyzed separately by individual classifiers that are both
based on HMMs competition schemes. Using the output probability of each individual
approach, a new classifier is built for MVAD. This way, our main contributions are the
presented color-based visual voice activity detection (VVAD) algorithm and the late fu-
sion scheme to the AVAD algorithm in (BLAUTH et al., 2012). We show that having good
unimodal VAD algorithms, many possible supervised classifiers may be used to form a
robust MVAD approach.

The remainder of this chapter is organized as follows. Section 4.2 revises some VAD
approaches, and the proposed MVAD algorithm is described in Section 4.3, along with
the color-based VVAD technique. Experimental results are presented in Section 4.4, and
the conclusions drawn in the final section.

4.2 Related Work

Lip segmentation is an active research area, and several methods have been proposed.
For example, Wang et al. (WANG; WANG; XU, 2010) proposed to extract Haar-Like fea-
tures, local variances and train an SVM classifier for lip detection; then, a Kalman filter
estimates the mouth center in the next video frame to track the lips in real time. However,
if the Kalman filter fails to predict the next mouth and lips locations, and lip tracking is
interrupted. Rohani et al. (ROHANI et al., 2008) used a fuzzy clustering approach for lip
contour extraction. They preprocess the face images using local Successive Mean Quan-
tization Transform (SMQT) features and a split up Snow classifier, and lips are estimated
to be in the lower part of the frame partition. An RGB to pseudo hue transformation is
performed in this smaller frame portion, and Fuzzy c-means (FCM) is used for clustering
lip and non-lip pixels. Afterwards, they filter morphologically the detected blobs, model
lips as ellipses to select and enhance the detected lip pixels. The method of Rohani et
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al. obtains good results, however it is dependent on the face detection quality for locat-
ing the lips correctly, i.e. the estimate of the face portion where lips are located before
the lip are segmented, which is not detailed in (ROHANI et al., 2008). Skin information
also has been proposed to delimit the lip search area. Yao and Gao (YAO; GAO, 2001)
proposed to detect lips based on skin and lip chrominance transformations. We propose a
Bayesian approach to model skin tones using Gaussian mixtures (YANG; AHUJA, 1999;
FIGUEIREDO; JAIN, 2002; WEBB, 2002), and delimit a prior lip search area. Then,
the chrominance information available on the CIELAB and on the HSV (Hue, Saturation,
and Value) color spaces are used to discriminate lips and non-lips pixels within the skin
delimited area. Finally, the lips are segmented by maximum-likelihood with the Otsu
method (OTSU, 1979).

Once the lips are extracted, the problem of VVAD can be approached. Sodoyer et
al. (SODOYER et al., 2006) proposed to exploit in controlled situations the smoothed
temporal differences of inter-lips width and height. Despite the good results achieved by
this approach, it is hard to assess the influence of errors in inter-lips width and height
estimates. Aubrey and colleagues (AUBREY et al., 2007) proposed two algorithms for
VVAD, one based on active appearance models (AAMs) to obtain the lips and a Hid-
den Markov Model (HMM) for VAD, and the other employing a retinal filter in a region
around the lips, and the temporal difference and a metric for VAD. They concluded that
the AAM-based method was suitable for the detection of the non-speech sections contain-
ing complex lip movements, and the retinal filter based method was better on the detection
of non-speech where the lips move less.

Aoki et al. (M. AOKI K. MASUDA; ARIKI, 2007) proposed an approach for VAD
based on lip shape tracking using Elastic Bunch Graph Matching (EBGM), combined with
audio cues. The visual analysis in this work employs the Gabor wavelet to extract feature
points, and EBGM to match a generic face graph with the detected features. The lip
aspect ratio (height over width) is used to measure mouth openness, and the aspect ratios
temporal differences are thresholded to produce VAD in videos (which is combined with
audio cues). However, the temporal differences can be noisy affecting the VAD results,
and the authors used an infrared camera to better handle lighting changes. Sodoyer et
al. (SODOYER et al., 2009) studied the existing relationship between lip movements and
VAD, and concluded that the lips shapes can be similar during both voice activity or
silence, and that dynamical parameters can provide enough separability if an adequate
temporal window is used in the analysis.

For audio-based VAD, many different approaches exist. Sohn et al. (SOHN et al.,
1999) proposed an AVAD method that uses frequency bands of the speech signal as in-
put features for the likelihood ratio test, which is then followed by an HMM hang-over
scheme to impose temporal coherence to the detector. Lee and Muhkerjee (LEE; MUHK-
ERJEE, 2010a) proposed a statistical detector suitable for activities that contain high lev-
els of speech. They model the entropy and the energy of the audio signals, in the decor-
related domain, as Gaussian and chi-square distributions, respectively. For classification
they use the joint likelihood ratio estimate of the proposed features, for a given time in-
terval, followed by an HMM-based smoothing technique. Gazor and Zhang (GAZOR;
ZHANG, 2003) modeled clean and noisy speech, also in the decorrelated domain, as
Laplacian and Gaussian distributions, also using HMM for preventing false negatives for
weak speech. Despite performing well, as reported by the authors, statistical VAD algo-
rithms, such as these just mentioned, require accurate estimation of each frame’s signal-
to-noise ratio (SNR). Although noise at each frame can be adaptively estimated (SOHN
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et al., 1999), signals that contain high levels of noise, and/or in which the noise is non-
stationary, are very challenging for AVAD algorithms (LEE; HASEGAWA-JOHNSON,
2009).

In the work of Blauth and colleagues (BLAUTH et al., 2012), AVAD is treated as a
spatio-temporal coherence problem through the use of a microphone array. HMMs are
used as a tool to evaluate the behavior of the Steered Response Power using the Phase
Transform (SRP-PHAT) method across time. If the SRP-PHAT behaves as the HMMs
predict it should do in speech situations, speech is considered active, and inactive other-
wise. This method does not require close speech capture and is robust against noise and
reverberation. This owes to the SRP-PHAT being a robust sound source localization (SSL)
method (DIBIASE, 2000), and to the HMMs’ temporal analysis of the SRP-PHAT’s co-
herence. High levels of noise (stationary or non-stationary) are also well handled as long
as noise source is not within the SRP-PHAT’s search region, given that this approach
works under the assumption that the potential speaker is inside it.

In the context of multimodal approaches, many works are focused on the localization
problem, using visual features mainly for finding faces and heads and leaving VAD mostly
to audio cues. For instance, in the work of Wang and Brandstein (WANG; BRAND-
STEIN, 1997) initial talker locations are estimated acoustically from microphone ar-
ray data, based on the time-difference of arrival estimation followed by a triangulation
procedure. The final location is obtained based on video cues (acquired with a single
camera), using mostly motion and edge information. Their work was further extended
in (WANG; GRIEBEL; BRANDSTEIN, 2000) by adding head pose estimation using mul-
tiple cameras and multi-channel speech enhancement techniques. In (GATICA-PEREZ
et al., 2007), an array of microphones is combined with several cameras (frontal and
top views of the participants), but visual information is used only to detect the shape
and spatial structure of human heads. Talantzis and collaborators (TALANTZIS; PNEV-
MATIKAKIS; CONSTANTINIDES, 2009) proposed an approach that estimates indepen-
dently the position of the active speaker in cluttered and reverberant environments using
audio and video information, and combined both outputs. Their method was tested with
a large microphone array (80 microphones located in different locations inside the acous-
tic enclosure and organized in different topologies), and a set of five synchronized and
calibrated cameras. Blauth and colleagues (BLAUTH et al., 2012) explored the spatio-
temporal coherence of the sound source for VAD, and used a face tracking to improve
localization results.

In (ALMAJAI; MILNER, 2008) an MVAD algorithm has been proposed, where
AVAD and VVAD are performed separetely using Gaussian Mixture Models and later
fused by a SNR-based weighting approach. They use mono audio recordings with
simulated white noise, showing good VAD accuracy, which is however affected when
testing the algorithm on speakers different from those used for training it. Takeuchi
et al. (TAKEUCHI S.; HAYAMIZU, 2009) use Mel-Frequency Cepstral Coefficients
(MFCC) as audio features and optical flow of the speakers mouth as visual features
through an multi-stream HMM system (approach similarly employed by speech recog-
nition systems). Their algorithm shows good performance in a relatively controlled en-
vironment, that however decreases proportionally to noise levels in the audio modality.
In (PETSATODIS; PNEVMATIKAKIS; BOUKIS, 2009) MFCCs are used in combina-
tion with a mouth opening measure to form the MVAD approach. Individual HMMs are
used for each modality, generating confidence measures that are fused by a hierarchy
scheme. If a face is recognized VVAD is performed to detect lip movements, which, if
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Figure 4.1: (a) Schematic representation of the proposed approach. (b) Our prototype
system.

positive, is assisted by the AVAD. When lips are found to not be moving or no face is rec-
ognized, speech decision is delegated to the audio modality alone. While this approach
presents good results, it may be highly degraded due to to false positives of the VVAD.

In this chapter, we present a new approach for lip motion extraction and VVAD. We
study its accuracy when solely applied to the video data of multimodal recordings, as well
as when combined with existing AVAD algorithm for performing MVAD on the same
recordings. Next, we describe our approach for VVAD, we summarize the AVAD algo-
rithm that is fused with our VVAD approach, and finally describe the MVAD integration
approach.

4.3 Our Approach

Our setup is similar to the one described in (BLAUTH et al., 2012). We have a linear
array of eight microphones and an off-the-shelf webcam placed at the center of the array.
The participants are facing the camera and the array, and are expected to be encountered
at approximate distance D from the array, as illustrated in Fig. 4.1.

A face detector/tracker (BINS et al., 2009) is used to extract the faces of the par-
ticipants at each frame, and the lips region of each participant is extracted and used to
infer voice activity, as explained next. The AVAD approach explores an array of micro-
phones (BLAUTH et al., 2012) to find spatio-temporal coherent sound sources within the
search region where the participants are expected. Both VVAD and AVAD procedures
produce a fuzzy answer (value between 0 and 1), which can be used independently to
detect voice activity. The output of these answers are then fed to a new classifier that
produces the final MVAD result based on audiovisual cues. The proposed approach is
detailed next.

4.3.1 Visual Voice Activity Detection (VVAD)

Our VVAD technique consists of lip detection based on color information, and the
exploration of the temporal evolution of the extracted lips’ movement through HMMs in
order to detect voice activity or silence. It was inspired in (LOPES et al., 2011), including
a color correction scheme to improve the detection of the lips region, and it is described
next.
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4.3.1.1 Skin Detection

In our approach, skin detection is performed using prior probability Gaussian mixture
models for the skin (YANG; AHUJA, 1999), hair, and background classes, based on the
‘a’ and ‘b’ channels of the CIELAB color space. These models will be used later to
classify pixels in the skin, hair, and background classes in face image sequences.

As mentioned above, the skin color probabilistic model is based on the ‘a’ and ‘b’
channels of CIELAB color space. The mixing parameters of the a priori probability
representing the pixel colors in each class (i.e. mean vectors, covariance matrices, and
priors of the skin, hair, and background classes) are estimated using the Gaussian Mixture
Modeling method proposed in (FIGUEIREDO; JAIN, 2002). Given the class probability
density function (PDF), the Bayes rule (WEBB, 2002) can be used for assigning the image
pixels to the above mentioned classes:

p(ωj|x) =
p(x|ωj)p(ωj)

p(x)
, (4.1)

where ωj is the jth class, j = 1, ..., n; p(ωj|x) is the posteriori probability; p(x|ωj) is
the a priori pixel probability modeled by the Gaussian mixture; p(ωj) is the class prior
probability estimated from the number of samples per class in the training set; and p(x)
is the evidence probability based on the complete training data set. For a given class ωj ,
the a priori probability of the Gaussian mixture is

p(x|ωj) =

g∑
i=1

πi · pi(x; Θi), (4.2)

where g is the number of mixing components; πi is the mixing parameter i, where∑g
i=1 πi = 1 and πi ≥ 0; pi(x; Θi) is the ith Gaussian PDF; and Θi denotes the pa-

rameters of the ith Gaussian, namely, bi-variate mean vectors µi and covariance matrices
Σi for i = 1, ..., g (estimated using (FIGUEIREDO; JAIN, 2002)). Finally, a pixel is
classified as belonging to a skin region using the Bayes rule (WEBB, 2002):

p(ωj|x) > p(ωk|x), k = 1, ..., n; k 6= j. (4.3)

4.3.1.2 Lip Detection

Prior to the lip detection step, we correct the image colors aiming to obtain intensity
levels similar to those used in the training data. This way, effects arising from the variation
of illumination and camera-specific characteristics can be conpensated. Our approach is
based on the diagonal model in (HORDLEY et al., 2005). More precisely, to perform the
color correction to an input image, we first assume a reference one that is obtained from
our training set. We treat the input image as a version of the reference one, having the
same illuminant, but that has been previously subjected to intensity changes (e.g. due to
motion within the room). This way, the color transformation tc = µ′c

µc
is applied to the

input image, where c denotes the channels R, G and B, µc and µ′c are the means of the
RGB channels of the input and the reference images, respectively, and tc is the illuminant
transformation for each pixel, such that c′ = ctc is the corrected pixel color.

For detecting the lips, we may reduce the number of potential mouth-related pixels by
priorly detecting the skin regions within the recognized speaker’s face. Eq. (4.3) allows
us to perform such skin detection, generating a binary mask for those pixels. In some
cases, however, this proccess may end up not identifying some of the lip pixels (which
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(a) (b) (c)

(d) (e)

Figure 4.2: (a) binary mask corresponding to the skin regions (i.e. face) in (b); (b)
p(ωlip|x); (c) p(ωnon−lip|x); (d) initial lip regions. (e) morphological post-processing

should be, since we treat them as skin too). For this reason, to ensure that mouth pixels
are included in the mask, we apply a morphological closing with a circular dilatation
operator of 15 pixels, and a circular erosion operator of 23 pixels within the mask (these
parameters were determined experimentally for a 320 × 240 image). As an illustration,
the binary mask corresponding to Fig. 4.2(b) is shown in Fig. 4.2(a).

Having this binary mask of skin pixels (within which lie the lip pixels), we use the
Bayes rule in Eq. (4.3) to perform the lip detection. For this, we first create an a priori
bivariate probability model for the lips using Eq. (4.2), similarly to the skin model. The
parameters of the GMM are the normalized values, between [0, 255], of the the Hue chan-
nel (HSV color space) and ‘A’ channel (CIELAB color space) of the lip-related pixels in
our training samples, and the mixing parameters πi are again estimated through the ap-
proach in (FIGUEIREDO; JAIN, 2002). We then assign the pixels within the skin binary
mask to the lip class based on the values of p(ωlip|x) and p(ωnon−lip|x) = 1 − p(ωlip|x).
The p(ωlip|x) and p(ωnon−lip|x) values for the skin binary mask in Fig. 4.2(a) are il-
lustrated in Figs. 4.2(b) and 4.2(c), respectively. Finally, p(ωlip|x) is discretized in 255
values, and lip regions are segmented as extended objects using Otsu’s technique (OTSU,
1979), as illustrated in Fig. 4.2(d). It can be observed that most of the lips regions are
effectively segmented using the proposed color-based approach, but false positives often
occur around the nose and eyes region. To refine the lip detection, some morphological
post-processing steps are applied. A closing operator with a 2× 5 rectangular structuring
element (determined experimentally for frames with 320×240 pixels) is used to fill small
gaps inside the mouth, and the largest remaining connected component is detected as the
lips. The result of the post-processing step is shown in Fig. 4.2(e).

4.3.1.3 Visual Voice Activity Detection

The proposed approach explores the expected movement of the lips during speech
periods to distinguish silence from speech, using two competing HMMs (one for silence
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and another for speech), as described next.
An HMM can be used to model dynamic systems that may change their states in

time (RABINER, 1989). A model with N states and a discrete observable variable (with
M possible values) is characterized by λ = (A,B, π), where A = [aij] for 1 ≤ i, j ≤ N
is the transition matrix that contains the probabilities of state changes, B = [bij] for
1 ≤ i ≤ N , 1 ≤ j ≤M describes the discrete PDF of the observable for each state i, and
π = [πi] for 1 ≤ i ≤ N contains the initial probabilities of each state.

In this work, we use two competing HMMs for the VVAD task, one for characterizing
speech situations and other for silence situations. The speech HMM is described by λv

sp =
(Av

sp,B
v
sp, π

v
sp), and the silence HMM by λv

si = (Av
si,B

v
si, π

v
si), where the sp and si subscripts

denote speech and silence, respectively, and the v superscript denotes video, and is used
to differ between other similar variables that are related to audio. For both HMMs, we
use N v = 2 hidden states, which are related to the current status of the mouth: open
or closed. The observable variable Ov(t) is the estimated height of the mouth at each
frame t, computed using the color-based lip extraction algorithm previously described
(Section 4.3.1.2) and is discretized into M v values.

Given the speech HMM λv
sp and the silence HMM λv

si, and given a sequence of obser-
vations Ov

t =
{
Ov(t − T ), Ov(t − T + 1), ..., Ov(t)

}
within a time window of size T ,

we can compute how well each HMM represents Ov
t . More precisely, this can be done

by computing P (Ov
t ;λ

v
sp) and P (Ov

t ;λ
v
si) using the forward-backward procedure (RA-

BINER, 1989). Hence, based on this temporal window of size T , a given frame t may
be classified as silence if P (Ov

t ;λsp) < P (Ov
t ;λ

v
si), and classified as speech otherwise.

Based on this approach, we can also compute a kind of posterior VVAD probability value
between 0 and 1, instead of binary classification result:

P (VVAD|Ov
t ) =

P (Ov
t ;λ

v
sp)

P (Ov
t ;λ

v
sp) + P (Ov

t ;λ
v
si)
. (4.4)

This allows us to use the video-based HMMs competition scheme to generate a normal-
ized feature for a further multimodal classifier (process described in Section 4.3.3).

For choosing the appropriate values of λv
sp, λv

si, T and M v, we have used the follow-
ing process. For the size of the discrete time window T , larger values tend to increase
the temporal coherence of the results, but also produce larger delays to detect silence-
to-speech or speech-to-silence changes (since such transitions present observations used
in both, speech and silence HMMs). On the other hand, smaller values for T lead to
smaller delays in detecting transitions, but make the system more susceptible to noise.
In this work, we used T = 10, which corresponds to 1 second for video sequences ac-
quired at 10 frames per second. For choosing the number of possible observables, we
set M v = 10, which experimentally has shown to be enough for representing different
levels of confidence of our mouth height measure. Larger M would increase the com-
putational complexity of the algorithm at no advantage in accuracy, and smaller values
would reduce the representativeness of our visual feature. To obtain the parameters of
both HMMs, ground truth video sequences were used, where each frame was manually
labeled as silence or speech. Each set of T adjacent frames marked as speech was used
to build a training dataset for the speech HMM, and an analogous training dataset was
created for the silence HMM. The Baum-Welch algorithm (RABINER, 1989) was then
applied independently to each dataset to obtain matrices A and B for each model, while
the initial probability vector π was considered uniform.
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4.3.2 Audio Voice Activity Detection

In this work, AVAD is performed by evaluating the spatio-temporal coherence of the
sound-source candidate through competing HMMs, similarly to (BLAUTH et al., 2012).
The main rationale is that an active sound source should produce a peak in the SRP-PHAT
that is both temporally and spatially coherent to the expected behavior of a human speaker,
whereas sound absence should reflect as random global maxima in the SRP-PHAT as a
result of the background audio noise and reverberations.

Given this idea, we start by computing the SRP-PHAT P (qi), described in (DIBIASE,
2000), for a set of equidistant points qi in a search space. The HMMs are modeled as
havingN a hidden states, where each state at time t represents one of the discretized spatial
position qi. The observable of the HMMs is a two-dimensional vector O = (O1, O2)
given by

O1 = argmax
i

P (qi), O2 =
maxP (qi)∑N
i=1 P (qi)

, (4.5)

where O1 is exactly the discretized position that produces the SRP-PHAT’s maximum,
and O2 can be viewed as a confidence measure when estimating O1, and is discretized
into Q values, so that M a = QN a. For active speech, O1 should provide the correct
location of the speaker, and O2 tends to be large (since the global maximum is expected
to be considerably larger than the mean). On the other hand, for silence, all values of
P (qi) tend to be similar making O2 smaller, and O1 should arise in a random qi.

For the parameters defining λa
sp, we have chosen, as in (BLAUTH et al., 2012), para-

metric distributions instead of trained models (like the video approach). The chosen PDF
for describing Ba

sp is the following:

p
{sp,si}
i (O1, O2) = p

{sp,si}
i (O1|O2)p{sp,si}(O2), (4.6)

where p(O2) is the distribution of O2 which is independent of the state i, and pi(O1|O2)
is the conditional probability of O1 given O2, which is strongly affected by i. The choices
for p{sp,si}

i (O1|O2) and p{sp,si}(O2) are the same as in (BLAUTH et al., 2012), and their
main characteristics are briefly described below.

When there is an active speaker, we expect a predominant peak of the SRP-PHAT
values, implying in the observation of large values for O2. For this reason, psp(O2) is
responsible for implementing this effect in Ba

sp, that is, increasing p{sp,si}
i (O1, O2) as func-

tion of O2. This is done by modeling psp(O2) as discrete Gaussian centered at the maxi-
mum value Omax

2 . Additionally, if a given state i is in fact the actual position of the active
speaker (in speech situation), the observable with the highest probability of occurring is
O1 = i, so that psp

i (O1|O2) is expected to present peak at O1 = i. If the confidence O2

is large, the probability should decay rapidly as O1 gets far from i. If O2 is smaller, the
decay should be smoother, since the confidence is smaller and other values of O1 are also
expected to be encountered with higher probability. On the other hand, during silence
periods we expect to find smaller values for O2, since the SRP-PHAT values tend to be
nearly homogeneous. Similarly to psp(O2), a discrete Gaussian was also used to model
psi(O2), but now centered at the smallest possible value Omin

2 for observable O2. Addi-
tionally, during silence situations the location of the SRP-PHAT peak is expected to be
random, so that a uniform distribution is chosen for psi

i (O1|O2). For sake of illustration,
the speech observation matrix is graphically shown in Figure 4.3(b), for q25, N a = 51
and Q = 7.
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Figure 4.3: Illustration of (a) the transition matrix and (b) probability distribution function
of observables (i = 25, N a = 51 and Q = 7), for the speech-related HMM.

For the state transition matrix Aa
sp, we prioritize the maintenance of the current state

or changes to neighboring states, and penalizes changes to states far away from each other
(recall that each state is a discretized SRP-PHAT position qi). This helps our model ex-
plore the fact that active and coherent speech sources are expected to be found, at each
frame t, not too far from its previous location, in frame t−1. However, during silence pe-
riods, an opposite reasoning can be used (random located peaks, thus no spatio-temporal
coherence, as previously mentioned). This allows us to define an uniform distribution of
the transition matrix Aa

sp, which is graphically shown in Figure 4.3(a), also for N a = 51.
Finally, VAD is decided based on a time interval of T samples, similarly to the VVAD

approach. More precisely, given a sequence of observationsOa
t =

{
Oa(t−T ),Oa(t−T+

1), ...,Oa(t)
}

within a time window with size T containing the current observation Oa(t)
and the previous T − 1 observations, we compute how well each HMM describes Oa

t .
In other words, we compute P (Oa

t ;λ
a
sp) and P (Oa

t ;λ
a
si) and then a posterior audio-based

VAD probability:

P (AVAD|Oa
t) =

P (Oa
t ;λ

a
sp)

P (Oa
t ;λ

a
sp) + P (Oa

t ;λ
a
si)
. (4.7)

It is important to note that visual data (information about the location of the faces) was
used in (BLAUTH et al., 2012) to only improve sound source localization, leaving VAD
for the audio modality, while in this work we use visual data to form our final MVAD
algorithm. Next, we present our audiovisual approach for VAD.

4.3.3 Audiovisual VAD

Each of the approaches described above (VVAD and AVAD) may be used indepen-
dently to detect voice activity, as previously mentioned. However, there are situations that
are very challenging to each modality (audio or video), which would make an unimodal
approach not robust to adverse situations. For instance, when the mouth is covered or
when the lips moves without speech (e.g., smile or yawn), the VVAD approach tends to
fail. When there is a localized sound source (e.g. a cell phone ringing) within the search
range of the SRP-PHAT, the AVAD approach tends to fail. Hence, a joint audiovisual ap-
proach is expected to produce better results than using audio and video cues individually.

Fusion of multiple modalities can be performed at the feature level (early fusion) or
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at the classification level (late fusion) (ATREY et al., 2010), and in this work we employ
the latter approach. The main reason for this choice is that each classifier (audio and
video) provides a normalized response that can be related to a confidence of the detection.
Therefore, having a later fusion approach can be easily modified to accommodate changes
in either the VVAD or the AVAD algorithms, whereas the early fusion approach depends
heavily on the chosen features.

To build our audiovisual voice activity detector, we initially created a set of video se-
quences acquired with a single monocular camera and an array of microphones. These
sequences contain different participants and some conditions that may degrade the analy-
sis of the audio or video information (this is detailed in Section 4.4). Audio information
was captured at 44100 Hz, and video information captured at 10 frames per second (FPS)
with a resolution of 640 × 480 pixels for some videos, and 960 × 720 for others. In to-
tal, 5112 multimodal frames were acquired, where each frame corresponds to one image
(video frame) and to 4096 audio samples (amount used in the SRP-PHAT algorithm at
each time t). All frames were manually ground truthed, so that we know if there is an
active speaker or not, and also the location of the speaker when there is speech.

Having the ground truth of all 5112 multimodal frames, we then computed their audio
and visual features (Eq. (4.7) and Eq. (4.4)) in order to train a supervised classifier. Since
the literature is vast regarding supervised classifier, and many different techniques could
suite our two-dimensional feature space, we have explored some possible algorithms
using the machine learning software Weka, which is fully described in (HALL et al.,
2009). We have tested decision trees such as the C4.5 (QUINLAN, 1993), Functional
Trees (GAMA, 2004), Alternating Decision Trees (FREUND, 1999); neural networks,
such as Multilayer Perceptron (RUSSELL; NORVIG, 2003), Voted Perceptron (FRE-
UND; SCHAPIRE, 1998); two Support Vector Machine (SVM) algorithms, (PLATT,
1999) and (SHALEV-SHWARTZ; SINGER; SREBRO, 2007); decision rule algorithms,
like decision tables (DT) (KOHAVI, 1995), hybrid DT/naive Bayes (HALL; FRANK,
2008) and one rule classifier (HOLTE, 1993).

Among all tested supervised classifiers, we chose the C4.5 decision tree (named J48
in Weka), due to showing good classification results, as some other algorithms, but also
at the faster classification speed. In particular, the C4.5 algorithm uses the concept of
information gain for choosing, at each tree level, the attribute that best splits the training
set into successively more homogeneous sub-datasets. By assigning, to a decision node,
an attribute with maximum information gain, the C4.5 algorithm will create a leaf (class
label) when the entropy of a sub-dataset is zero (maximum homogeneity). After the final
decision tree is built, it is pruned, decreasing the number of tests needed for classifying a
sample. Reducing the tree’s size also helps avoiding overfitting of the training set, which
is a common problem when small a dataset is used for training.

Figure 4.4 shows an example of a C4.5 decision tree that was built (and pruned) using
our labeled multimodal frames. The attributes of Eqs. (4.4) and (4.7) are respectively de-
noted as “vvad_spe_prob” and “avad_spe_prob”, and the class labels are called “speech”
and “silence”.

4.4 Experimental Results

In this section we present a classification accuracy comparison of different algorithms.
We use individually our VVAD approach, our AVAD approach, the multimodal approach,
as well other state-of-the-art algorithms for AVAD. The multimodal recordings consist of
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Figure 4.4: Pruned C4.5 decision tree classifier generated by supplying our labeled mul-
timodal frames to the training process.

one-speaker scenarios, with varying audio background noise. Noise situations were gen-
erated by real-world sources such as competing speech (people talking in background),
typing and clicking sounds, air-conditioner on, door slams etc. This makes our test sce-
nario challenging and realistic given that the noise is non-stationary and in some cases
reaches 0 dB SNR. All eight recordings are one minute long, with approximately equal
amount of speech and non-speech moments1. The speakers alternate between 10 sec-
onds of non-speech and 10 seconds of speech, starting with non-speech. During speech
moments, they produce small speech hiatuses, which is common during normal voice
activity, and they were marked as voice activity when generating ground truth data. Addi-
tionally, in two of those recordings, the speaker purposely imposes a scenario that would
likely fool the AVAD and the VVAD (one recording for each detector), so that we can
evaluate if the proposed MVAD fusion approach is in fact keeping an overall good result
even under failure of one of the modalities.

Sequences called Normal 1 through Normal 4 were recorded by male individual

1The referred dataset (including the ground truths) can be found at http://www.inf.ufrgs.br/
~crjung/mvad/mvad.htm.

http://www.inf.ufrgs.br/~crjung/mvad/mvad.htm
http://www.inf.ufrgs.br/~crjung/mvad/mvad.htm
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speakers, and sequences Normal 5 and Normal 6 by female speakers. Normal sequences
refer to the recordings where the participants behaved normally, as one would do in a
regular conversation (but still having background noises, such as those previously men-
tioned). Recordings named Fooling AVAD and Fooling VVAD were created to purposely
impose challenges to the audio-based and video-based approaches, respectively. For mis-
leading the VVAD, the participant moved his mouth during non-speech moments (e.g. by
smiling and yawning), and generating occlusions in the mouth region when speaking. For
tricking the AVAD, the participant of interest remained in silence while another person
nearby kept speaking (recall that our approach implicitly selects the participants of inter-
est as a consequence of the SRP-PHAT’s search region). Figure 4.5 illustrates, for four of
the recordings, an image frame of the speakers’ activity.

(a) (b)

(c) (d)

Figure 4.5: Illustration of the recorded sequences: (a) Normal 1, (b) Normal 5, (c) Fool-
ing VVAD, (d) Fooling AVAD

Table 4.1 shows a comparison of different VAD approaches for the Normal record-
ings (individually and mean of all of them), to which we refer using the Nor. acronym.
We have used our VVAD approach described in section 4.3.1.3, our AVAD approach
described in section 4.3.2, the multimodal approach described in 4.3.3 and the AVAD ap-
proaches of some works previously mentioned: Sohn’s algorithm (SOHN et al., 1999) and
the Energy-Entropy (EE) approach (LEE; MUHKERJEE, 2010a). As it can be observed,
AVAD approaches that rely mostly on signal/noise discrimination based on intensities
(as (SOHN et al., 1999)) produced values as low as 55.87%. This is actually expected,
since the SNR of some recordings is low, and the noise is non-stationary, making the
estimated noise level to be inaccurate. On the other hand, our AVAD produces higher



57

accuracy rates, since it relies on the spatio-temporal continuity of the sound source. Fur-
thermore, the proposed MVAD increased the accuracy rates in most cases, achieving a
rate above 85% in all videos.

Table 4.1: Classification accuracy of five unimodal approaches as well as the proposed
multimodal fusion approach.

Nor. 1 Nor. 2 Nor. 3 Nor. 4 Nor. 5 Nor. 6 All

AVAD (Ours) 94.37% 89.20% 81.69% 91.71% 88.26% 95.31% 90.09%
VVAD (Ours) 90.61% 80.13% 72.61% 81.85% 85.92% 69.80% 80.15%
MVAD (Ours) 94.05% 92.49% 85.45% 97.03% 89.67% 95.46% 92.07%
AVAD (EE) 90.61% 81.22% 65.10% 68.23% 85.76% 73.55% 77.41%
AVAD (Sohn) 91.71% 88.26% 56.18% 58.22% 84.98% 71.99% 75.22%

Table 4.2 shows the analysis for the two sequences created for fooling the AVAD and
VVAD approaches. As expected, all AVAD approaches present low detection rates for
recording Fooling AVAD, and the VVAD approach presented low accuracy for recording
Fooling VVAD. However, the proposed MVAD present a high detection rate for both
scenarios (above 93%), indicating that it indeed preserves good qualities of each modality.
Table 4.2 also presents the average detection rates for all videos and for normal videos
(repeating for easier comparison). As it can be observed, the average accuracy of our
MVAD approach is above 91% when considering all videos.

Table 4.2: Classification accuracy for (1) the “fooling” recordings, (2) all normal record-
ings, (3) and all recordings.

Fooling VVAD Fooling AVAD All Videos All Normal Videos

AVAD (Ours) 91.71% 52.74% 85.62% 90.09%
VVAD (Ours) 58.93% 91.08% 80.61% 80.15%
MVAD (Ours) 93.87% 96.09% 91.82% 92.07%
AVAD (EE) 78.09% 64.48% 75.88% 77.41%
AVAD (Sohn) 75.12% 55.56% 72.75% 75.22%

Results shown so far were created by running a cross-validation method with ten folds,
and taking the average of all folds. The pool used to extract training and test samples
contain audiovisual frames for all the recordings, so one could claim that the trained
classifier is biased to a specific scenario (since its training probably contains frames from
the same speaker used for testing the approach). To evaluate the invariance of the MVAD
classifier, we performed a second training procedure using only a subset of recordings to
train the classifier, and tested using all of them. Table 4.3 shows the resulting accuracies
using such procedures, where only videos shown in italic were used to train the model.
As expected, accuracies for videos using both in training and testing were higher, but
the MVAD results for recordings that were not present in the training procedure were
also high (the lowest value accuracy was 85%). The average accuracy for all videos was
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91.52%, and the average for the videos that were not present in the training dataset was
89.90%.

Table 4.3: Individual classification accuracy of our MVAD approach, for all recordings,
and using the videos in italic for building the decision tree.

Sequence Name MVAD (Our Approach)

Normal 1 94.84%
Normal 2 90.92%
Normal 3 85.13%
Normal 4 95.93%
Normal 5 88.89%
Normal 6 94.68%

Fooling VVAD 94.37%
Fooling AVAD 93.27%

All Videos 92.10%
All Normal Videos 91.52%

In an overview of our experiments, we may notice that the MVAD approach presents
better classification accuracy than the AVAD or VVAD approach. In other words, fusing
our proposed VVAD method to the AVAD work in (BLAUTH et al., 2012) has provided
reasonable overall VAD accuracy. Additionally, the multimodal detector provides robust-
ness when adverse conditions arise to one of the modalities (which are the case of most
realistic environments). More important is that, although classification step we have used
is simple, it earns good results, implying that the extracted audio and video features alone
are robust, such that many kinds of classifiers may produce good results.

4.5 Conclusions

This work has presented a new approach for visual voice activity detection, which has
indicated to be well suited for fusion with an AVAD technique, forming a robust multi-
modal VAD approach. We have run tests using multimodal sequences recorded with a
monocular camera and an eight-sensor microphone array, which have shown good over-
all performance under normal realistic environments, and also when purposely corrupt-
ing either the audio or the video modality. We explored different algorithms using the
well-known machine learning software Weka, finding that many supervised classifiers
perform well using the proposed audio and video features, which, per se, also highlights
the features’ robustness. For our quantitative tests, we have manually ground truthed our
recordings and chose the C4.5 decision tree algorithm for the classification step. Our
VVAD approach consists of exploring the movement of the speaker’s lips through the
height of the mouth, which is found by our color-based segmentation approach; a com-
peting HMMs scheme is then used for extracting a normalized VVAD probability. For the
AVAD part, we also compute a normalized AVAD feature through a similar HMMs com-
petition scheme that explores the spatio-temporal coherence of the sound source through
the SRP-PHAT SSL method, with microphone arrays (BLAUTH et al., 2012).



59

References

See the unified bibliography of the dissertation.



60

5 SIMULTANEOUS SPEAKER VOICE ACTIVITY DETEC-
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Abstract

Humans can extract speech signals that they need to understand from a mixture of
background noise, interfering sound sources, and reverberation for effective communica-
tion. Voice Activity Detection (VAD) and Sound Source Localization (SSL) are the key
signal processing components that humans can do by processing sound signals received
at both ears, sometimes with the help of visual cues by localizing and observing the lip
movements of the speaker that they listen to. Both VAD and SSL serve as the crucial
design elements for building natural Human Computer Interface (HCI) applications in-
volving human speech, such as speaker identification and speech recognition. The design
and implementation of robust VAD and SSL algorithms in practical acoustic environments
are still challenging problems, particularly when multiple simultaneous speakers exist in
the same audiovisual scene. In this work we propose a multimodal approach that uses
Support Vector Machines (SVMs) and Hidden Markov Models (HMMs) for assessing the
video and audio modalities through an RGB camera and a microphone array. By analyz-
ing the individual speakers’ spatio-temporal activities and mouth movements, we propose
a mid-fusion approach to perform both VAD and SSL for multiple active and inactive
speakers. We tested the proposed algorithm in scenarios with up to three simultaneous
speakers, showing an average VAD accuracy of 95.06% and average error of 10.9 cm
when estimating the three-dimensional locations of the speakers.

5.1 Introduction

When a computer is used for a generic task, a mouse and a keyboard are commonly
employed as the primary human-machine interfaces. Although being popular, they are
not as natural as human-to-human interactions and may not be adequate for a variety of
applications. Other kinds of interfaces can potentially be more promising such as touch
or gestures. Additionally, thanks to the advancement of computing resources even on
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mobile platforms, more sophisticated human-computer interfaces (HCI) are becoming
more viable and desired (JAIMES; SEBE, 2007), particularly those that allow human-to-
human-like interactions, such as speech. One of the main problems with speech-based
HCI, such as Automatic Speech Recognition (ASR), is that practical acoustic environ-
ments often include factors that significantly compromise the recognition accuracy of
human speech, such as noise, reverberation, and competing sound sources. It is impor-
tant to preprocess received signals to extract clean speech signals from such degradations
as an input to ASR systems. Voice Activity Detection (VAD) and Sound Source Local-
ization (SSL) are the most important examples of such front-end techniques. The main
goal of VAD is to distinguish segments of a signal that contain speech from those that
do not, such that a speech recognizer can process only the segments that contain voice
information. In addition, speech enhancement algorithms (EPHRAIM, 1992) can bene-
fit from the output of the VAD because accurate noise estimation is crucial and is often
updated during noise only observations (EPHRAIM; MALAH, 1985). In SSL, the main
goal is to identify the location of the active sound source, so that it is possible to enhance
its speech signal using spatial filtering techniques such as beamforming with microphone
arrays (BRANDSTEIN; WARD, 2001).

Most VAD and SSL approaches for HCI only consider single speaker scenarios. For
applications such as videoconferencing or gaming, it is often desired to distinguish dif-
ferent speakers that may be speaking simultaneously, and algorithms designed for single
speaker cases may not be suitable for such applications. Some recent works have proposed
techniques for simultaneous speaker VAD (MARABOINA et al., 2006; BERTRAND;
MOONEN, 2010; LORENZO-TRUEBA; HAMADA, 2010; DO; SILVERMAN, 2010;
ZHANG; RAO, 2010) relying solely on the acoustic modality. While audio-only-based
techniques might present promising results, leveraging from visual information is of-
ten beneficial when a video camera is available. In this context, other studies use the
joint (multimodal) processing of both image and audio (ASOH et al., 2004; BUTKO
et al., 2008; ALMAJAI; MILNER, 2008; PETSATODIS; PNEVMATIKAKIS; BOUKIS,
2009). The main idea is that by fusing more than one data modality it is possible to exploit
the correlation among them in such a way that one modality compensates for the flaws
from the others, making the algorithm more robust in adverse situations, especially with
competing sources.

Our proposed work performs VAD and SSL for simultaneous speaker scenarios, us-
ing audio and video modalities. In order to process the visual information, we use a face
tracker to identify potential sound sources (speakers) followed by optical-flow analysis
of the users’ lips with Support Vector Machines (SVMs) to determine whether or not
that specific user is actively speaking. For the audio analysis, we use a Hidden Markov
Model (HMM) competition scheme in conjunction with beamforming to individually
evaluate the spatio-temporal behavior of potential speakers that are pre-identified by the
face tracker. A mid fusion approach is proposed in between the visual VAD (VVAD) and
audio VAD (AVAD) to construct our final multimodal VAD (MVAD). SSL is then per-
formed for active speakers using information from the face tracker as well as the Steered
Response Power with Phase Transform (SRP-PHAT) beamforming algorithm (BRAND-
STEIN; WARD, 2001). Our experiments show an average accuracy of 95.06% and an
average error of 10.9 cm when performing VAD and 3D SSL respectively, of up to three
simultaneous speakers in a realistic environment with background noise and interfering
sound sources.

The remainder of this chaper is organized as follows. Section 5.2 summarizes some of
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the microphone array techniques used in our work followed by the most recent research
in the field of VAD and SSL. In Section 5.3, the proposed approach for multimodal VAD
and SSL is presented. Section 5.4 presents the experimental evaluation of our technique,
and conclusions are drawn in Section 5.5.

5.2 Related Work and Theoretical Overview

Typical existing VAD techniques are based on voice patterns in the frequency do-
main, pre-determined (or estimated) levels of background noise (SOHN et al., 1999), or
zero crossing rate (TANYER; OZER, 2000). These approaches, however, do not tend
to perform well in the multiple speaker scenario since simultaneous speech reflects as
overlapped signals in the time-frequency plane. Most approaches (as in this work), there-
fore, use microphone arrays due to its capability of exploiting spatial characteristics of
the acoustic signals such as through beamforming (TAGHIZADEH et al., 2011) or Inde-
pendent Component Analysis (ICA) aided by beampattern analysis (MARABOINA et al.,
2006). Furthermore, the addition of visual information is highly beneficial, since speech-
related visual features are invariant to the number of simultaneous active sound sources.

Another consequence of the simultaneous sources case is that both VAD and SSL
eventually become the same problem. When extending VAD from single to multiple
sources, for example, the microphone array can be employed so that different speakers
may be separately analyzed. In these cases, SSL is inevitable for not only identifying the
number of active sources, but also to detect which are the active ones among all possible
candidates. Reciprocally, for extending SSL from single to multiple sources, VAD must
be used for validating the located sound events, so that noise sources are not accounted
for as active speakers.

5.2.1 Related Work

In the work of Maraboina et al. (MARABOINA et al., 2006), frequency-domain ICA
is used to separate the speech signals of different sound sources, and beampattern anal-
ysis is used to solve the permutation problem in the frequency components. Unmixed
frequency bins are then separately classified using thresholding aided by K-means clus-
tering. This approach, however, assumes that the number of sound sources is known, and
it was only explored for two speakers scenario. Other approaches using ICA have also
been proposed, such as (BERTRAND; MOONEN, 2010), where they claim reasonable
VAD accuracy for simulated data.

In (YAMAMOTO et al., 2006), simultaneous VAD is performed for robot auditory
system purposes as a preprocessing step for ASR. It is shown that by applying sound
source localization through delay-and-sum far-field beamforming, it is possible to sep-
arate overlapping speech signals to the point that two sources are well detected. Their
results are evaluated in terms of ASR accuracy, and are obtained in a fixed environment.

Gurban and Thiran (GURBAN; THIRAN, 2006) propose a supervised multimodal
approach for VAD. They use the energy of the speech signal as audio feature and Optical
Flow of the mouth region as visual feature. A Gaussian Mixture Model is trained from
labeled data, and the Maximum Likelihood (ML) is applied to classify each data frame.
Their approach does not deal with simultaneous speakers and it was tested in a controlled
environment. The authors also mention that scenes having background movements may
degrade the algorithm’s performance, since no face detection/tracking algorithm is used.
In (ASOH et al., 2004), background subtraction using stereo cameras is combined with
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expectation maximization (EM) using microphone array; a Bayesian network trained with
a particle filter is used to estimate the direction of the sound sources.

In (MOHSEN NAQVI et al., 2012), multimodal analysis of multiple speakers is per-
formed to tackle the similar problem of blind source separation. Multiple cameras are
used by a three-dimensional (3D) face tracker to provide a priori information to a least-
squares-based beamforming algorithm with a circular microphone array to isolate dif-
ferent sources. The separated audio sources are further enhanced by applying a binary
time-frequency masking as a post-filtering process in the cepstral domain. Results are
not shown in terms of VAD or SSL accuracy, for only speech separation is attempted,
assuming the speakers are always active.

A different approach for joint VAD and SSL has been proposed in (TAGHIZADEH
et al., 2011), where the steered response power with phase transform (SRP-PHAT) method
is used to iteratively detect the speakers’ locations. For distinguishing the sources, the
SRP-PHAT’s gradient is used to separate different speakers’ regions in its power map.
VAD is then automatically performed when the iterative algorithm finds the last speaker,
which happens when the maximum’s position corresponds to the SRP-PHAT’s null point.
This approach, however, is based on the assumption of diffusive noise and may cause
false positives for directional noise such as door slams.

Other works also leverage from the proven robust SRP-PHAT algorithm (DIBIASE,
2000), such as by integrating it with clustering techniques in attempt to separate the max-
ima that belong to different speakers. Do et al. (DO; SILVERMAN, 2008) use Agglom-
erative Clustering (AC) with the Stochastic Region Contraction optimization method;
they later propose Region Zeroing and Gaussian Mixture Models (DO; SILVERMAN,
2010), achieving up to 80% correct classification rate for two speakers case using a large-
aperture microphone array; Cai et al. also explore AC, but with spectral sub-band SRP-
PHATs (CAI; ZHAO; WU, 2010). Alternatively, in (BRUTTI; OMOLOGO; SVAIZER,
2008) (where the SRP-PHAT is named Global Coherence Field - GCF), multiple speak-
ers are located by a de-emphasis approach of the GCF; the dominant speaker is localized
and then the GCF map is modified by compensating for the effects from the first speaker
and the position of the second speaker is detected. While this method can considerably
increase the localization rate of the second speaker, its computational cost is very high,
and the localization accuracy of the second speaker depends on that of the first one.

From the mentioned works, we may observe that many of the existing multi-source
SSL/VAD algorithms extended the SRP-PHAT in a way that speakers other than the dom-
inant one are localized and identified. In our work, we also use the SRP-PHAT for beam-
forming due to its robustness. Therefore, we briefly describe SSL using the SRP-PHAT
algorithm in the next section.

5.2.2 Sound Source Localization using the SRP-PHAT

For an array of Nmic microphones, the signal xm(t) captured at the mth microphone
can be described using a simplified acoustic model (DIBIASE, 2000),

xm(t) = αms(t− tqm) + um(t), (5.1)

where s(t) is the source signal, um(t) represents the combination of reverberation, inter-
ferences, and background noise, and αm and tqm denote the propagation attenuation and
delay of the signal s(t) from a source location q to the mth microphone, respectively.
Equivalently, Eq. (5.1) can be represented in the frequency domain as

Xm(ω) = αmS(ω)e−jωτ
q
m + Um(ω), (5.2)
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where ω = 2πf
Fs

is the normalized frequency in radians corresponding to the frequency f
(in Hz) of the continuous-time signal xm(t) that is sampled with the sampling rate of Fs
Hz, and τqm = tqmFs. We assume that the signal is sampled above the Nyquist rate.

Therefore, given a vector of Fourier transforms of observed signals, [X1(ω), X2(ω),
· · · , XNmic(ω)] for the normalized frequency ω, SSL may be seen as the problem of
finding a source location q that satisfies some optimality criteria such as Maximum-
Likelihood (ZHANG; ZHANG; FLORENCIO, 2007; LEE; KALKER, 2010) or maxi-
mum power of the filter-and-sum beamformer like the SRP-PHAT method (DIBIASE,
2000).

As previously mentioned, the SRP-PHAT is currently one of the state-of-the-art al-
gorithms for SSL due to its robustness against noise and reverberation. It finds a source
location by comparing, for a frame of data, the output energies of PHAT-weighted filter-
and-sum beamformers of different potential sound source locations in a search region.
The filter-and-sum beamformer steered at location q may be represented in the frequency
domain as

Y (ω,q) =

Nmic∑
m=1

Wm(ω)Xm(ω)e−jωτ
q
m , (5.3)

where Wm(ω) denotes a generic weighting function applied to the mth microphone’s sig-
nal. When this weighting function is chosen to be the PHAT, that is,Wm(ω) = |Xm(ω)|−1

we may define the SRP-PHAT of a point q by computing the energy of the PHAT-
weighted filter-and-sum of that point. Using Parseval’s theorem and ignoring the constant
scaling factor 1

2π
, this energy may be described as

P (q) =

∫ 2π

0

|Y (ω,q)|2 dω =

∫ 2π

0

∣∣∣∣∣
Nmic∑
m=1

Xm(ω)

|Xm(ω)|
e−jωτ

q
m

∣∣∣∣∣
2

dω. (5.4)

Once P (q) has been computed for all candidate positions using Eq. (5.4), we can
estimate the sound source location as

q̂ = argmax
q∈Q

P (q), (5.5)

whereQ denotes a set of points in space that represent all candidate locations. This max-
imization approach robustly finds the dominant sound source given a relatively short time
window (e.g. 50ms). While the SRP-PHAT may be implemented different ways (DIBI-
ASE, 2000), this description in Eq. (5.4) has been shown to be suitable for GPU imple-
mentation (MINOTTO et al., 2012).

In general, one drawback of using the SRP-PHAT’s global maxima to localize po-
tential speakers is that the precision of such approaches tend to drop as the number of
simultaneous speech sources increases. This is a rather common problem with beam-
forming techniques, since one speaker’s voice acts as noise to the others’ (BENESTY;
CHEN; HUANG, 2008). Moreover, to assume that a set of largest P (q) values repre-
sents the speakers’ positions is somewhat inaccurate, given that the SRP-PHAT’s power
map contains many local maxima due to noise and reverberation. Therefore, for eval-
uating which P (q) values truly characterizes a speaker, proper VAD technique must be
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Figure 5.1: (a) Schematic representation of the proposed approach. (b) Our prototype
system.
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Figure 5.2: Schematic representation of our algorithm’s flow. The indexes at the upper-
right corner of the boxes represent the order at which the individual steps are processed.
The blue arrows represent the moments where information between audio and video are
exchanged where the multimodal mid fusion happens.

employed using some kind of a priori knowledge (or assumptions) about the acoustic sce-
nario, e.g., known number of speakers (BRUTTI; OMOLOGO; SVAIZER, 2008), noise
is diffuse (TAGHIZADEH et al., 2011), or speakers’ P (q) are above a minimum noise
level (DO; SILVERMAN, 2010).

5.3 The Proposed Approach

Our work approaches multiple speaker VAD and SSL as joint problems. We employ a
linear microphone array and a conventional RGB camera. Our setup expects the users to
be facing the capture sensors and to be within the Field of View (FOV) of the camera, as
it is the case of most HCI systems (JAIMES; SEBE, 2007). A schematic representation
of the required setup is provided in Figure 5.1(a), and our prototype room based on such
setup is given in Figure 5.1(b). It is important to mention that for the entire work, we
adopt a Cartesian coordinate system, where the width dimension (x) is parallel to the
array, and positive to the right; the height dimension (y) is positive upwards; and the
depth dimension (z) is positive towards the camera’s FOV. This convention is also applied
for image coordinates’ x and y dimensions. Figure 5.2 summarizes the pipeline for the
proposed VAD and SSL approach, which is described next.
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5.3.1 Visual Analysis

The processing related to the the video modality may be summarized in two steps:
extracting proper visual features from different potential speakers, and then evaluate them
using some sort classification technique. Next subsections detail these two steps.

5.3.1.1 Visual Feature Extraction

In order to extract a reliable visual feature for VVAD, we exploit the fact that anyone
who has intention to speak moves the lips. As previously mentioned in Section 5.2.1
this has been approached in other works (TAKEUCHI S.; HAYAMIZU, 2009; ATREY
et al., 2010; AUBREY; HICKS; CHAMBERS, 2010; TIAWONGSOMBAT et al., 2012):
computing the optical flow of a region enveloping the speakers’ mouths. In this work, we
chose the Lucas-Kanade (LK) (LUCAS; KANADE, 1981) algorithm for such task, due
to its good compromise between computational cost and accuracy.

The first step in this process is to use a face tracker/detector algorithm to identify
the potential speakers in the captured image. We opted to use the face tracker in (BINS
et al., 2009) given its low computation complexity and robustness to light changes and
head rotation. After running the tracker for the current frame t, K faces in the scene are
detected/tracked, and we may then find the bounding rectangle of each speaker’s mouth
using the following anthropometric relations (FARKAS, 1994):

xtl
lips = xmid + (−0.4r, 0.25r) (5.6)

xbr
lips = xmid + (0.3r, 0.65r) (5.7)

where xtl
lips and xbr

lips respectively represent the coordinates of the top-left and bottom-right
corners of the lips’ bounding rectangle; xmid is the 2D location of the face’s center, and r
is the radius of the face (distance from xmid to any corner of the face’s bounding box). All
these values are expressed in image coordinates.

After the mouth region has been defined for each speaker, we then populate that re-
gion with punctual LK features that will be tracked between adjacent image frames using
the algorithm described in (BOUGUET, 2000). More precisely, for every new image
frame (at time t) we distribute NLK features inside each of the detected mouth regions of
frame t− 1, in a regular grid manner, and track them to their corresponding new position
at t. An illustration of this process is shown in Figure 5.3. Additionally, it is impor-
tant to notice that for defining the points to track, a feature selection algorithm such as
in (SHI; TOMASI, 1994) could be used instead. However, for our case, they provide no
extra tracking accuracy while increasing the overall computational cost of the proposed
approach.

For the feature extraction process, we leverage from the fact that, oppositely to si-
lence situations, the computed optical flow vectors tend to show large magnitudes during
speech. However, we also observe that since we analyze a region larger than the actual lip
area (which is necessary for not losing track of the mouths during head translations and
mainly rotations), not all optical flow vectors have large magnitudes during speech. For
this reason, we not only extract a measure of energy but also the standard deviation of the
magnitudes as our visual features.

Denoting xi(t) as the position of the ith LK feature, with relation to its face center,
and frame at time t (that has been tracked from t − 1), we may define the magnitude of
its resulting optical flow vector as Vi(t) = ||xi(t)− xi(t− 1)||, where || · || denotes the
Euclidean norm. Therefore, the extracted visual features from the optical flow process of
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Figure 5.3: Example of LK features distributed as a regular grid inside the mouths’ bound-
ing rectangle.

a given speaker are defined as

µV (t) =
1

NLK

NLK∑
i=1

Vi(t)

r
, (5.8)

σV (t) =

√√√√ 1

NLK − 1

NLK∑
i=1

(
Vi(t)

r
− µV (t)

)2

, (5.9)

where the division by r is used to normalize the features with respect to the image dimen-
sions and the distance of the users from the camera. We may also note the users’ lateral
velocity is automatically compensated by computing xi(t) with respect to the face cen-
ter. Therefore, µV (t) and σV (t) respectively represent the mean and standard deviation of
Vi(t), and are expected to be higher during speech than during silence. It is important to
notice that, although we describe these measures without a k index (for simplicity), they
are computed K times, once for each speaker.

Using these features for describing lip movements has two main advantages. They
represent well the movements of the lips even if the mouth region is not precisely es-
timated, which is the case of the used anthropometry-based approach, and they do not
require prior knowledge about the shape of the mouth, such as the contour of the lips.
However, despite such advantages, these features are not robust against small pauses dur-
ing speech, since they are computed between consecutive frames only, and in HCI appli-
cations (such as ASR) it is often desired that speech hiatuses are detected as part of the
spoken sentences instead of as silence moments (RABINER; SCHAFER, 1978). There-
fore, we analyze µV (t) and σV (t) over a longer time window of T frames. We propose
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four new features, extracted from Eqs. (5.8) and (5.9):

f1(t) =
1

T

T−1∑
i=0

µV (t− i), (5.10)

f2(t) =

√√√√ 1

T − 1

T−1∑
i=0

(µV (t− i)− f1(t))2, (5.11)

f3(t) =
1

T

T−1∑
i=0

σV (t− i), (5.12)

f4(t) =

√√√√ 1

T − 1

T−1∑
i=0

(σV (t− i)− f3(t))2. (5.13)

This imposes temporal coherence to the visual features to a point that speech hiatuses
do not become problems for a further classifier. By contrast, this approach may also
introduce a detection lag between speech-to-silence and silence-to-speech transitions.

5.3.1.2 Video-related Probability Estimation using SVM

The next step used for extracting a probability measure from our final visual features
is to use some sort of supervised classifier. In this work, we chose the SVM algorithm
implemented in (CHANG; LIN, 2011) for it provides the known robustness of SVM tech-
niques (SCHAPIRE; FREUND, 1998) and allows probability estimation (instead of bi-
nary labeling) using the approach described in (WU; LIN; WENG, 2004).

For training the SVM model, we perform a grid-search at the unknown parameters
running successive turns of 5-fold cross-validation, since employing this method is known
for avoiding overfitting problems (CHANG; LIN, 2011). The training data used during
this procedure are extracted from our labeled multimodal database (described in Sec-
tion 5.4). Finally, once the best set of parameters are found, the SVM model Φ is trained
(through the algorithm in (FAN; CHEN; LIN, 2005)), and a posterior speech probability
υ for the video modality is extracted as

υ = P (speech|fvid; Φ), (5.14)

where fvid = [f1(t), f2(t), f3(t), f4(t)] is a vector composed of the previously described
visual features, and intuitively P (silence|fvid; Φ) = 1− υ.

At this point, it is important to notice that υ could be directly used for the final de-
cision of a video-only VAD approach. However, its accuracy is highly dependent on the
distance of the speakers from the camera: as the user move far from the camera, the mouth
region appears smaller in image coordinates, and the optical flow tends to become noisier.
Also, participants moving at high lateral velocities may also corrupt the extracted visual
features. Despite the implicit compensation for lateral movements when computing xi(t),
abrupt translations may blur the faces, also corrupting the optical flow estimate. For this
reason, we propose a weighting factor wυ for Eq. (5.14), that is monotonically decreasing
with respect to both distance of the user from the camera and his/her lateral speed:

wυ = exp{−z′vid − v′x}, (5.15)

where z′vid = zvid/z
max
vid and v′x = vx/v

max
x are respectively the normalized depth and lateral

velocity of the user (measured in world coordinates), and zmin
vid ≤ zvid ≤ zmax

vid , and 0 ≤
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vx ≤ vmax
x . Furthermore the kth participant’s zvid is the depth component of the estimated

3D video-based position qvid
k (such estimation process is described in Section 5.3.2).

In other words, the VVAD is expected to have maximum effect for the multimodal
fusion when zvid = zmin

vid and vx = 0, and exponentially lose its effect as the users’ depths
and velocities reach zmax

vid and vmax
x respectively, having no effect at all when yvid > zmax

vid
and vx > vmax

x . An appropriate value for zmin
vid is chosen to be the minimum distance two

users may comfortably participate in a camera-equipped HCI system while not leaving its
FOV. As for zmax

vid , we chose the value at which the Lucas-Kanade optical flow algorithm
is not able to track the movements of the lips. Finally, for finding a reasonable value for
vmax
x we extracted the maximum velocity a user has reached in our multimodal recordings,

finding vmax
x = 0.25m/s. In our setup we used a Logitech Quickcam Pro 5000 camera,

and experimentally found zmin
vid = 0.5m and zmax

vid = 1.8m for VGA (640 × 480) video
sequences.

5.3.2 Audio Analysis

Computing the SRP-PHAT for identifying competing sound sources is known to be a
hard task. As mentioned in Section 5.2.1, many works have approached this using clus-
tering techniques (DO; SILVERMAN, 2008, 2010; CAI; ZHAO; WU, 2010) or some it-
erative isolation criteria (BRUTTI; OMOLOGO; SVAIZER, 2008; TAGHIZADEH et al.,
2011). These approaches, however, may be rather complex and also fail under high noise
conditions. We therefore propose a simple and effective process for isolating different re-
gions around potential speakers in the SRP-PHAT’s global search space Q, which shows
to be robust for the simultaneous speakers scenario, even under noisy and reverberant
conditions.

For the kth participant, we define an 1D ROI Qk as a subset of the global search
region Q. Each ROI is treated as individual space regions having their own, bounded,
coordinates system, that is centered around each participant’s 3D video-based location
qvid
k , as illustrated in Figure 5.4. This way, given a fixed length ` for Qk (in meters),

all ROIs may form equally sized horizontal line segments (parallel to the microphone
array) centered at each tracked face. Finally, Eqs. (5.4) and (5.5) can be calculated for
the kth speaker using Qk instead of Q, which allows us to later separately analyze the
SRP-PHAT’s behavior of each user through our HMM approach.

It is important to notice that an 1D ROI is chosen (instead of 2D or 3D) as a conse-
quence of our linear array configuration, since microphone arrays best discriminate loca-
tions parallel to the same direction most microphones are distributed along (JOHNSON;
DUDGEON, 1993b). Therefore, in the case of our linear array (previously depicted in
Figure 5.1), the SRP-PHAT is more accurate along the horizontal dimension, making an
1D ROI enough for our VAD approach, at low computational cost in the search process
of Eq. (5.5). As for the choice of a linear configuration, we base on the fact that in a
multimodal multi-user HCI applications, the users tend to stand side-by-side in order to
remain within the camera’s FOV, emphasizing the need for better localization along x, the
width dimension.

Before running the SRP-PHAT, qvid
k must be computed so the ROIs may be prop-

erly centered around each person’s 3D position. This is done by estimating qvid
k from

the 2D face-tracking results (the centering process must be repeated every frame), us-
ing an inverse projective mapping. Assuming a pinhole camera model and that the
camera is aligned with the microphone array, the relation between image coordinates
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xmid = (xpix, ypix) and world coordinates qvid = (xvid, yvid, zvid) is given by

xpix = flen
xvid

zvid
, ypix = flen

yvid

zvid
, (5.16)

where flen is the focal length of the camera.
Therefore, given the mean radius r1m (in pixels) of a face placed at one meter from the

camera (which can be estimated experimentally or based on the projection of the anthro-
pometric average face radius (FARKAS, 1994)), the z component (depth) of a detected
face can be estimated through

zvid = r/r1m, (5.17)

where r is the radius (in pixels) of the tracked face. This way, given zvid and the image-
related face central position xmid, it is possible to obtain the width and height world com-
ponents of the kth speaker by isolating xvid and yvid in Eq. (5.16). This allows the horizon-
tal search region Qk to be centered at the kth speaker’s video-based world position qvid

k ,
so that his/her audio-based location may be computed using the SRP-PHAT as

qaud
k = argmax

q∈Qk

P (q). (5.18)

Figure 5.4: Example of ROI-based SRP-PHAT search being performed for each user in
the scene. The 3D model is rendered from the scene’s information: the cylinder repre-
sents the camera; the cones represent the microphones; the gray planes form the global
search regionQ; the long parallelepipeds are the 1D ROIsQk; and the red spheres are the
locations estimated through Eq. (5.18).

At this point, it is important to notice that neither qaud
k nor qvid

k are the final location
that is computed by our SSL approach. These estimate are used by the HMMs for spatio-
temporal coherence analysis to perform both the final MVAD and SSL. These topics are
covered in the next subsections.

5.3.3 Multimodal Mid-Fusion using HMMs

Given the results of the video and audio analyses of each speaker, υ and P (qaud
k ),

respectively, we develop a fusion scheme by using an HMM competition scheme, which
is inspired in (BLAUTH et al., 2012; MINOTTO et al., 2013). We extend such works to
the multiple speaker scenario, also weighing the importance of υ by wυ.
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In summary, two HMMs that model the expected behavior of the SRP-PHAT peak for
the multiple speaker scenario are defined. One HMM describes speech situations, and
the other, silence situations. By extracting proper observations from the SRP-PHAT, it is
possible to use a competition scheme between both models in order to evaluate the SRP-
PHAT’s spatio-temporal behavior for different speakers; separate scores for the same set
of observations may be computed for each HMM through approaches such as the Viterbi
algorithm (RABINER, 1989), and then compared to form a final MVAD decision. There-
fore, Section 5.3.3.1 explains the general idea of our competition approach; in 5.3.3.2
and 5.3.3.3 the speech and silence HMMs are described respectively; Section 5.3.3.4
presents our MVAD approach, and 5.3.3.5 the SSL one; finally, in 5.3.3.6 we explain how
the parameter estimation of the HMMs is performed.

5.3.3.1 The Proposed HMMs

An HMM can be used to model dynamic systems that may change their states in time.
An HMM with discrete observables is characterized by λ = (A,B, π), where A = [aij]
for 1 ≤ i, j ≤ N is the transition matrix that contains the probabilities of state changes,
B = [bn(O)] for 1 ≤ n ≤ N describes the observation probability for each state, and
π = [πi] for 1 ≤ i ≤ N contains the initial probabilities of each state. Clearly, the choice
of the parameters is crucial to characterize a given HMM.

In (BLAUTH et al., 2012), competing HMMs were used for single-speaker VAD by
exploring the expected spatio-temporal location of the sound source when the speaker
is active. In this work we adopt a similar approach, but instead we build 2K compet-
ing HMMs (two for each detected face), also including the video-based VAD cue υ.
More precisely, each candidate sound source location in Qk is a state of the HMMs,
so that the number N of states depends on the size of the search region. We denote
Sk =

{
Sk1 , S

k
2 , ..., S

k
N

}
such N states for kth, with N given by

N =

⌊
`

spa

⌋
+ 1, (5.19)

where spa is the real-world spacing between neighboring points in Q, and should be
chosen (along with `) in a way that N is odd, allowing Sk to have a middle state.

In our approach, we determine an observable that is to able carry information about the
estimated speaker’s position as well as some sort of confidence measure of that estimate.
That is, recalling the HMMs’ states are the candidate positions of the SRP-PHAT, the
observation extracted for user k is a two-dimensional vector Ok = (Ok

1 , O
k
2) computed

based on P (q). It is given by

Ok
1 = qaud

k , (5.20)

Ok
2 =

P (qaud
k )

min
q∈Qk

P (q)
. (5.21)

The rationale of this approach is that, in speech situations, Ok
1 should provide the

correct location of the speaker, and Ok
2 tends to be a large value (since the maximum

is expected to be considerably larger than the minimum). On the other hand, in silence
situations, all values of P (q) tend to be similar, and qaud

k should represent the location of
the inexistent sound source. Additonally, in this later case, Ok

2 will be smaller, since the
maximum and mininum tend to be simillar. These informations are used when bulding
the competing models.
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In theory, the lower bound for Ok
2 is 1, and the upper bound Omax

2 is ∞. We have
observed in different experiments (with different speakers and varying background noise)
that O2 gets really close to 1 during non-speech, and reaches a maximum value during
speech. Therefore, we experimentally find the upper bound Omax

2 , and the values of O2

are quantized into L possible values within the range [1 Omax
2 ] to obtain an HMM with

discrete range of observables. Values of Ok
2 larger than Omax

2 are quantized into Omax
2 , and

we choose L = 8 (higher values show no extra representativeness for Ok
2 ). Variable Ok

1

represents the position at which the SRP-PHAT peak is located in Qk, and is therefore
discretized into N values.

The next step for defining the speech and silence HMMs is then to define the probabil-
ities of A, B and π in a way that, during true speech situations, the described observables
and states behave as modeled by the speech HMM, and during silence situations, as mod-
eled by the silence HMM. Next section details this matter.

5.3.3.2 The Speech HMM

For determining the parameters λ = (A,B, π) of an HMM, a widely used estima-
tion approach is the Baum-Welch algorithm (RABINER, 1989). For our HMM, however,
such approach is impracticable. The used models present a relatively high number of
states (N ) and observables (M = NL), which would require a large amount of train-
ing samples (comprising several situations such as speakers in different positions, alter-
nation of speech and silence, presence/absence of background noise etc.). Instead, we
propose parametric probability density functions (PDF) for the HMM matrices based on
the expected behavior of users in an audiovisual HCI situation. We also highlight that the
normalization process of the hereafter described PDFs are omitted for better readability,
although it is important to notice that π and the rows of matrices A and B must sum up to
unity.

Recalling the observation Ok is a two-element vector, we may define the distribution
of the observation in the nth state Skn using the following joint PDF (here we omit the k
affix for readability and for the fact the speech HMM λsp is the same to any user):

bsp
n (O) = bsp

n (O1, O2) = bsp
n (O1|O2)bsp(O2), (5.22)

where the superscript sp stands for “speech”, bsp(O2) is the distribution of O2 during
speech situations (which does not depend on the state Sn), and bsp

n (O1|O2) is the con-
ditional probability of O1 given O2, which is strongly affected by n.

Since sharp peaks tend to occur in the SRP-PHAT during speech situations, O2 is
expected to be large, and this fact should be availed by the speech HMM. Therefore,
bsp(O2) should be a monotonically increasing function, and the following exponential
function was chosen:

bsp(O2) = exp

{
c1

O2

Omax
2

}
, (5.23)

where c1 is an estimated auxiliary constant (see Section 5.3.3.6) that controls the decay of
bsp(O2).

Function bsp
n (O1|O2) describes the conditional density of O1 given O2. Since each

state n relates to a position in the search space O, the value of O1 (which is the position
of the largest SRP-PHAT value) should be close to n. Furthermore, if the confidence O2

is large, the probabilities should decay abruptly around this peak; if O2 is small, though,
the decay around the peak should be smoother, allowing other O1 to be encountered with
higher probabilities as well (even if the SRP-PHAT matches the actual position of the user
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with a low O2, it might be a coincidence). Inspired in (BLAUTH et al., 2012), we used
an exponential function to model this behavior:

bsp
n (O1|O2) = exp {−g(O2)|O1 − n|} , (5.24)

where g(O2) controls the speed at which bsp
n (O1|O2) decays due to changes in O2. This

means that, as the confidenceO2 gets larger, the decay around n should be faster, reducing
the chances of neighboring O1 to happen. Therefore, g(O2) is chosen as

g(O2) = exp {−c2O2 − c3} , (5.25)

where c2 and c3 are also auxiliary constants that are estimated using the approach de-
scribed in Section 5.3.3.6.

In order to find an adequate configuration for the state transition matrix Asp = asp
ij ,

it is first important to observe the following. Given that the ROIs are always centered
at each speaker’s position, we must expect O1 to move toward the central state during
speech situations, even if the SRP-PHAT peaks at neighboring states with high confi-
dence. Therefore, Asp is configured in such a way that aspN

2
j

is maximum (for 1 ≤ j ≤ N ),

and the probabilities decay as j distances from N/2. This way, Asp is defined as

Asp = asp
ij = exp

{
|N/2− j|+ 1

2σ2

}
, (5.26)

where σ is constant used for controlling the decay. As we may notice, asp
ij depends only

upon j, which is the state being transited to. In other words, regardless of which state the
speaker is located at, the one with the highest transition probability is the middle one.

For the sake of illustration, the transition matrix Asp, the observation matrix Bsp and
the probability density function psp

8 (O1, O2) related to state Sk8 (N = 17) are depicted in
Figure 5.5.
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Figure 5.5: Speech HMM matrices plots for N = 17 and L = 8. (a) Transition matrix
Asp, (b) Observation matrix Bsp and (c) Slice of observation matrix, for n = 8.

5.3.3.3 The Silence HMM

The silence-related HMM is characterized by λsi = (Asi, Bsi, πsi). As it was already
pointed out, during silence periods the response P (q) of the SRP-PHAT at each position
(state) should be similar, so that observable Ok

2 is expected to be close to the smallest
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possible value, which is 1. Furthermore, qaud
k will correspond to random positions inside

Qk, owing to background noise and reverberations. Therefore, similarly to Eq. (5.22), the
joint probability function of the observables, for state Skn, can be written as1

bsi
n(O) = bsi

n(O1, O2) = bsi
n(O1|O2)bsi(O2), (5.27)

where function bsi(O2) was obtained similarly to its counterpart in speech situations, ex-
cept that higher probabilities should occur for smaller values of O2:

bsi(O2) = exp

{
c1
Omax

2 −O2 + 1

Omax
2

}
, (5.28)

where c1 has the same value and role as in Eq. (5.23).
For the conditional probability psi

n(O1|O2), there are two important things to be noted.
First, such distribution should not depend on the state Skn, since the position of the peak
is related to noise, and not to an actual sound source at the discrete position n. Secondly,
all observables O1 should be equally probable, for the same reason. Hence, an uniform
conditional probability function is chosen:

bsi
k (O1|O2) =

1

N
. (5.29)

If in speech situations the peak of the SRP-PHAT is expected to be close in tempo-
rally adjacent observations, the same is not true for silence periods. Since all responses are
usually similar, background noise plays a decisive role when retrieving the highest peak,
which may be far from the one detected in the previous observation. In fact, the proposed
state transition matrix for the silence-related HMM considers all transitions equally prob-
able:

Asi = asi
ij =

1

N
. (5.30)

As for the initial distribution π for both speech and silence HMMs, we assumed that
all states (i.e., positions) are initially equally probable.

5.3.3.4 Multimodal VAD using the HMMs

Given the speech HMM λsp, the silence HMM λsi, and a sequence of observables
Okt = {Ok(t− T ),Ok(t− T + 1), ...,Ok(t)} for speaker k within a time window of size
T , we can compute how well both HMM describeOkt (this is the same time window used
in Section 5.3.1.1). If Okt was generated during a speech situation, then it should present
a higher adherence to λsp than λsi, and the opposite for silence situations. More precisely,
this can be done by computing likelihoods P (Okt ;λsp) and P (Okt ;λsi) using the forward-
backward procedure (RABINER, 1989). This way, an AVAD-only decision could be
performed such that the kth user at frame t is considered to be active if P (Okt ;λsp) >
P (Okt ;λsi).

However, as the number of simultaneous speakers increase, the height of the SRP-
PHAT peaks at the actual speaker positions is lowered, since one person’s voice acts as
noise to the others’. As a consequence, Ok

2 might not always be as large as expected,
so that false negatives may occur when there is speech. For this reason, we propose
a mid-fusion technique that attempts to boost the values of O2 based on visual cues,
particularly in simultaneous speech situations, by using the confidence υ of the VVAD

1We again omit the superscript k for the sake of readability. The PDFs are equal to all users.
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algorithm. More precisely, we propose an enhanced observable Ōk = (Ok
1 , Ō

k
2) for the

HMM competition scheme, with

Ōk
2 = Ok

2

(
1 +

υkwυk
c4

)
, (5.31)

where υk and wυk are computed for the kth user through Eqs. (5.14) and (5.15), respec-
tively, and c4 > 1 controls the contribution of the video modality to the multimodal fusion.
The value of c4 must be carefully chosen so that Ok

2 is effectively enhanced during simul-
taneous speech situations, but not overly amplified to avoid false VAD. Our procedure for
setting c4 is presented in Section 5.3.3.6.

Finally, according to our final MVAD approach, a given user is considered to be active
if P (Ōkt ;λsp) > P (Ōkt ;λsi). As for the time window T , it must be properly chosen. If
it receives a small value, speech hiatus between consecutive words may be detected as
silence, which is usually not desirable for speech recognition. On the other hand, larger
values for T provide better temporal consistency, but also lead to delays when detecting
speech-silence or silence-speech changes. In this work we chose T in a way it corresponds
to a window approximately 1 second long, since it showed to be efficient to deal with
speech hiatus and not present a long delay when the location of the speaker changes

5.3.3.5 Multimodal SSL

As previously mentioned in Section 5.2, in order to perform multiple speaker VAD,
one implicitly needs to perform localization (either in 3D or 2D in image coordinates),
so that active speakers may be differentiated from inactive ones. For this reason, despite
the main difficulty of a competing sources scenario being the VAD part itself, we also
implement SSL as a part of our algorithm. While we do not consider this to be the main
contribution of our work, we show that we may easily avail from our spatio-temporal-
based HMM formulation to locate the active speakers.

As a requirement for our MVAD approach, two location estimates are initially pro-
duced for each speaker, from the audio and video modalities, qaud

k and qvid
k , respectively.

Either one of them could be used as a final SSL decision for the speakers. However, both
estimates present inaccuracies due to practical issues. The audio location qaud

k is highly
corrupted by noise and reverberation, especially during simultaneous speech situations.
The video location qvid

k is affected by the depth estimation in Eq. (5.17), since the faces
radii r present small variations across time (and for different users). Therefore, we pro-
pose a more robust approach by reusing the speech HHM.

Recalling that our HMMs are based on the spatial locationsQk of the SRP-PHAT, it is
possible to use a decoding algorithm that finds the state sequence with length T that best
corresponds (according to some optimality criterion) to the sequence of observables Okt
evaluated using a given model λ. In our case, each state of the T decoded states would
correspond to the speaker location at each time frame, and such decoding process could
be performed using the Viterbi algorithm (RABINER, 1989). Therefore, by decoding the
active speakers’ Okt (same observables used for VAD) against the speech model λsp, the
last state in the computed sequence represent the most recent location of the kth speaker.
This approach introduces both spatial and temporal coherence to the SRP-PHAT’s lo-
cation estimates, due to the time-window analysis of the Viterbi algorithm and to the
characteristics of Asp and Bsp.

However, we must recall our HMM approach is applied only to the width dimension of
the search region, meaning only the horizontal position of each active speaker is brought
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from our MVAD approach. For this reason, for SSL purposes only, we separately decode
λsp using observables obtained from other two 1D ROIs, one spanning along the depth
dimension (z), and the other one along the height (y). They are also centered at qvid

k ,
such that the three ROIs are orthogonal to each other, allowing each 1D search region to
retrieve one component of the speakers’ 3D location. Therefore, denoting xkHMM, ykHMM
and zkHMM as the locations found by decoding the above 1D HMMs, we define the final
3D position of the kth speaker as

q̂k =
(
xkHMM, y

k
HMM, z

k
HMM

)
. (5.32)

Finally, it is important to notice this SSL approach still keeps our algorithm at a low
computational cost, since only 3N states are evaluated with the Viterbi method, oppositely
to N3 as would happen if a 3D cuboid-like ROI was used.

5.3.3.6 Parameter Estimation

As previously mentioned, due to the fact that matricesAsp andBsp of the speech HMM
are composed by a large set of states and observables, we opted to use parametric models.
However, the chosen PDFs present crucial parameters to which values must be assigned
for the HMMs to work properly. These are the case of c1 and Omax

2 in Eq. (5.23), c2 and
c3 in Eq. (5.25), σ in Eq. (5.26), and c4 in Eq. (5.31).

Based on manually labeled data from our multimodal sequences, we are able to ex-
tract the true observable occurrence count and transition count for each state of the speech
HMM, thus allowing us to compute the histogramsA′sp andB′sp, corresponding to the tran-
sition and observation matrices, respectively. Therefore, by using A′sp, B′sp, Asp and Bsp,
we may define residual functions that upon minimization allow the mentioned constants
to be estimated.

However, there are two main practical difficulties in such minimization problem. First,
the equations that describe Asp and Bsp are not linear, and no direct solution exist. Sec-
ondly, the computed histograms may present outliers due to errors in the manual labeling
process, compromising the estimation process through overfitting, specially in the case
where the training dataset has limited size. To ensure the first problem is avoided, a
trust region minimization approach (BYRD; SCHNABEL; SHULTZ, 1988) is applied,
which is a robust technique for solving non-linear ill-conditioned minimization prob-
lems (CONN; GOULD; TOINT, 2000). For the second issue, we assign an M-estimator as
our residue function, which is a robust statistics method for reducing the effect of outliers
during parameter estimation problems (SMALL; WANG, 2003). Among the many exist-
ing possible M-estimators, we have chosen the Huber function (HUBER, 1964), which
has been a popular choice since then (HUBER, 2005).

Finally, the last parameter to be estimated is c4 for the mid fusion approach in
Eq. (5.31). For this, we randomly select some multimodal recordings in our database,
and perform a linear search for possible values for c4 within the range of (1, 10] (using a
step of 0.1), and select c4 as the value that maximizes the total MVAD accuracy for those
recordings.

5.4 Experimental Evaluation

All our experiments were conducted in our prototype room, which is a computer lab
with the dimension of 4.5 m × 4 m × 3 m and the reverberation time of 0.6 seconds.
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Our data acquisition hardware is composed by an uniform array of eight DPA 4060 om-
nidirectional microphones, placed 8 cm apart from each other, and a Logitech Quickcam
Pro 5000 webcam positioned in the middle, as depicted in Fig. 5.1(b)2. The 1D ROIs Qk
were set to have N = 17 discrete locations, spaced 2 cm apart from each other, so that
` = 34 cm. The audio signals were captured at Fs = 44, 100 Hz, and the frame size of
B = 4096 samples were used to compute the SRP-PHAT at each frame. Video capture
was synchronized with audio, so that one image corresponds to one audio frame, implying
in an approximate frame rate of 10 images per second. Consequently the time window T
mentioned in Section 5.3.3.4 is chosen as T = 10.

To evaluate our VAD and SSL approaches, we have recorded a total of 24 multimodal
sequences ranging from 40 to 60 seconds of duration each. Eight of them were randomly
picked for the training processes of the SVM and HMM parameters, and 16 used for
testing. Of the 16 used for testing, six have one speaker in the scene, and are named
One1 to One6. Other six contain two speakers, and are named Two1 to Two6, and four
having three speakers, named Three1 to Three4. In all recordings the users randomly
chat in Portuguese, alternating between speech and silence moments, and for the Two and
Three ones, they intentionally overlap their voices at times. Furthermore, all recordings
have some sort of natural noise, such as people talking in background, air-conditioning
functioning, door slams, and fan from other computers.

For measuring the VAD accuracy, we have manually labeled each speaker at each
frame as active or inactive, and run three experiments for each sequence. One testing the
precision of the video modality alone, by using Eq. (5.14), the audio modality, by us-
ing P (Okt ;λsp) (without the fusion), and the combined modalities, by using P (Ōkt ;λsp).
Table 5.1 shows the obtained results, from which we may observe that the MVAD outper-
forms the unimodal classifiers in all experiments, suggesting our fusion technique indeed
promotes improvements over the audio or video alone. It is also important to note that
accuracy rates for the multimodal version were over 90% for all video sequences.

Another key point to be observed is that most existing approaches that use video
information for VAD work under a close capture range (GURBAN; THIRAN, 2006;
AUBREY; HICKS; CHAMBERS, 2010; PETSATODIS; PNEVMATIKAKIS; BOUKIS,
2009; TIAWONGSOMBAT et al., 2012), which makes the scenario unrealistic for mul-
tiple user HCI applications. In our recorded sequences, however, speakers stand at dis-
tances between 0.9m and 1.4m from the camera, which is enough to accommodate up
to three side-by-side participants more realistically. As a consequence, such large dis-
tances from the camera, as previously mentioned, may considerably degrade any video
based technique. Our video weighting approach, however, is able to balance such effect,
increasing the overall accuracy of the final MVAD. Table 5.2 shows the VAD results for
our two sequences with the highest capture range, with and without Eq. (5.15), the video
weighting. We may observe that proper weigthing of the video modality is required so
it does not corrupt the final multimodal algorithm. This also suggests that the exsiting
video-only/multimodal techniques (as the ones just mentioned) would likely fail on our
dataset.

For assessing our SSL approach, a different labeling process had to be performed,
since it is rather complex to manually define the precise 3D position of each speaker in
each frame. One could stipulate the locations of each user before the recordings, but

2Some sequences use a different color camera. More details on the setup may be found in http://
www.inf.ufrgs.br/~crjung/MVAD-data/mvadsimult.htm, where the multimodal record-
ings (with the ground truths) are also made available.

http://www.inf.ufrgs.br/~crjung/MVAD-data/mvadsimult.htm
http://www.inf.ufrgs.br/~crjung/MVAD-data/mvadsimult.htm
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Table 5.1: VAD accuracy for all recorded sequences, using our proposed algorithms.
Sequence Audio Video Multimodal

One1 94.55% 89.72% 97.55%
One2 91.12% 79.91% 96.74%
One3 82.24% 81.62% 92.83%
One4 92.52% 81.78% 96.42%
One5 87.23% 85.83% 93.79%
Two1 93.67% 86.30% 96.72%
Two2 94.03% 91.10% 98.32%
Two3 90.40% 89.93% 96.00%
Two4 92.49% 87.47% 96.60%
Two5 87.47% 81.15% 93.04%
Three1 81.58% 84.07% 93.13%
Three2 82.51% 83.14% 92.28%
Three3 82.44% 89.51% 95.76%
Three4 83.96% 84.01% 92.26%
Three5 88.21% 87.74% 94.48%
Average 88.29% 85.55% 95.06%

Table 5.2: VAD accuracy for two distant capture sequences with and without the video
weighting approach.

MVAD w/o weighting MVAD w/ weighting

Three6 77.06% 93.23%
Three7 76.45% 91.26%
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movements would not be allowed, making the scenario unrealistic. For this reason, some
sort of automatic labeling had to be employed. We ended up using an RGB-D camera
(namely, Microsoft’s Kinect sensor) for finding the actual position of the speakers. While
this approach may also present some imprecision, it shows to be accurate enough to the
point our algorithms may be compared to. Another detail is that not all our multimodal
sequences have SSL ground truth, given the Kinect device was not present in all of the
recordings. For this reason, so we only assess the SSL accuracy for a portion of our
sequences.

To evaluate the SSL performance of our algorithm, we have computed the Euclidean
distance between the found locations and the labeled locations, as an error measure (re-
sults are shown in Table 5.3). We repeated this process for the video and audio modalities
alone as well as for of our multimodal SSL approach. For the video modality, we have
used Eq. (5.16). For the audio modality, Eq. (5.18) was applied, with the difference that
a cuboid-like ROI was used instead of Qk (such 3D search was used only for performing
the localization comparisons). For our multimodal HMM approach we used q̂k, which
is estimated by Eq. (5.32). By observing the SSL results, our multimodal SSL approach
demonstrates an accuracy gain over the audio and video modalities alone. An average er-
ror of 10.9 cm is present when estimating the speakers’ 3D position using the multimodal
approach, which is about twice the length of human mouth, in average. This means that
even if such relatively low error is present, no speaker is confused as being another one.

Table 5.3: Average Euclidean distance, in meters, between the speakers’ locations found
by our SSL algorithms and the true location found by the Kinect’s depths stream.

Sequence Audio Video Multimodal

Two1 0.1479 0.1826 0.1275
Two2 0.1365 0.0963 0.0950
Two3 0.1422 0.1358 0.0998
Two4 0.2033 0.1522 0.1020
Two5 0.1381 0.1278 0.1148
Two6 0.1577 0.1784 0.1157
Three1 0.2007 0.1643 0.1096
Three2 0.1887 0.1311 0.1172
Three3 0.2040 0.1218 0.1022
Average 0.1688 0.1434 0.1093

5.5 Conclusions

We have presented a multimodal VAD and SSL algorithm for simultaneous speaker
scenarios. The proposed approach fuses the video and audio modalities through an HMM
competition scheme. An SVM-based classifier is first used to extract a visual voice-
activity score from the optical-flow algorithm run on the users’ mouths, and the SRP-
PHAT is separately computed for each speaker, to extract their location estimate. A mid-
fusion technique is proposed by combining the output of the video-based score with the
audio-based feature, that is later evaluated by the HMMs to make a final VAD decision.
The final position of the users that are found as active are later estimated by reutilizing
the HMMs outputs. Results showed an average 95.06% accuracy for VAD in scenarios
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with up to three simultaneous speakers, and our SSL approach present an average error
of 10.9 cm when localizing such speakers (using a microphone array and a color camera
only). Our approach also works for relatively long capture distances (1.4m was the longest
tested one) and using a compact microphone array (56cm linear aperture), whereas most
works use close capture scenes and/or large-aperture arrays. Additionally, our method
presents a higher accuracy than the ones reported in Section 5.2.1, which run on a con-
trolled/simulated environment.
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RITHM
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Abstract

In most microphone array applications, it is necessary to localize sound sources in
a noisy and reverberant environment. For that purpose, many different Sound Source
Localization (SSL) algorithms have been proposed, where the SRP-PHAT (Steered Re-
sponse Power using the Phase Transform) has been known as one of the state-of-the-art
methods. Its original formulation allows two different practical implementations, one that
is computed in the frequency-domain (FDSP), and another in the time-domain (TDSP),
which can be enhanced by interpolation. However, the main problem of this algorithm
is its high computational cost due to intensive grid scan in search for the sound source.
Considering the power of GPUs (Graphics Processing Units) for working with massively
parallelizable compute-intensive algorithms, we present two highly scalable GPU-based
versions of the SRP-PHAT, one for each formulation, and also an implementation of the
cubic splines interpolation in the GPU. These approaches exploit the parallel aspects of
the SRP-PHAT, allowing real-time execution for large search grids. Comparing our GPU
approaches against traditional multithreaded CPU approaches, results show a speed up of
275× for the FDSP, and 70× for the TDSP with interpolation, when comparing high-end
GPUs to high-end CPUs.

6.1 Introduction

Sound source localization (SSL) is an important topic in microphone array sig-
nal processing applications, such as beamforming for speech capture in teleconfer-
encing (BRANDSTEIN; WARD, 2001), distant speech recognition (WÖLFEL; MC-
DONOUGH, 2009), or human computer interaction (DEY; SELVARAJ; LEE, 2011),
most of which require real-time processing of the signals. With two microphones, we can
find the time difference of arrival (TDOA) using the generalized cross-correlation (GCC)
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method, which typically involves a frequency weighting function (KNAPP; CARTER,
1976). Given a single TDOA estimate determined by two microphone signals, we can
then find a hyperboloid in a three-dimensional space of points that share the same TDOA.

For systems with more than two microphones, we can find the source location from
a set of TDOA’s from different microphone pairs by finding the optimal intersection of
the hyperboloids using the maximum-likelihood (BRANDSTEIN; ADCOCK; SILVER-
MAN, 1995) or least-squares (BRANDSTEIN; ADCOCK; SILVERMAN, 1997) crite-
ria. These methods rely on the assumption that the individual TDOA estimates are ac-
curate enough to determine the sound source location. Unfortunately, in typical acous-
tic environments with reverberation, background noise, and interfering sound sources,
TDOA estimates can become unreliable making the TDOA-based SSL methods inaccu-
rate (BRANDSTEIN; WARD, 2001).

Alternatively, we can use the Steered Response Power (SRP) method (DIBIASE,
2000; OMOLOGO; SVAIZER, 1997) as an extension of the GCC method to multiple
microphones. The main idea of the SRP is to steer the microphone array to all possible
candidate source locations to find the one with the maximum power, typically using some
frequency weighting. In particular, the SRP method with the PHAT frequency weight-
ing (SRP-PHAT) has been popular for its robustness against background noise and re-
verberation (BRANDSTEIN; WARD, 2001; DIBIASE, 2000; DO; SILVERMAN; YU,
2007). The SRP-PHAT can be computed either in the time domain (DIBIASE, 2000;
OMOLOGO; SVAIZER, 1997) (TDSP) or in the frequency domain (ZHANG; ZHANG;
FLORENCIO, 2007) (FDSP).

The SRP-based methods belong to the category of the search space-based meth-
ods such as Maximum-Likelihood approaches (ZHANG; ZHANG; FLORENCIO, 2007;
LEE; KALKER; SCHAFER, 2008) and wideband MUSIC algorithm (TUNG et al.,
1999). In general, search space-based techniques have a computational complexity pro-
portional to the number of microphones in the array, and mainly the number of candidate
source locations in the discretized search space, making them almost impracticable for
real-time speech processing applications.

Solutions to this problem have been proposed by some authors. Lee and Kalker (LEE;
KALKER, 2010), showed that by using Intel’s Integrated Performance Primitives (IPP,
a multi-threaded library) to couple common operations of the FDSP together, one can
reduce the CPU usage from 39.2% to 14.4%. Alternatively, Do and Silverman (DO; SIL-
VERMAN, 2007) proposed an iterative hierarchical method called Coarse-to-Fine Region
Contraction (CFRC) to reduce the effective number of candidate locations for the SRP-
PHAT. Their approach may achieve a runtime reduction up to three orders of magnitude
for low signal-to-noise ratio (SNR) scenario, but the speedup decreases as the SNR in-
creases. Furthermore, the sound source is assumed to be stationary. In our previous
work (SILVEIRA et al., 2010) we proposed a GPU implementation of the FDSP which
exploited a level of parallelism of the algorithm.

Using GPUs for audio signal processing has been a growing practice since the advent
of general purpose programmable devices. As an example, many works have been de-
voted to the one-dimensional Discrete Fourier Transform (DFT) (GOVINDARAJU et al.,
2008; CUDA CUFFT LIBRARY, 2011), audio synthesis and Finite Impulse Response
(FIR) filtering (SAVIOJA LAURI; VÃd’LIMÃd’KI, 2011), and audio rendering (TSIN-
GOS, 2009). In this chapter we present two approaches for sound source localization
by computing the SRP-PHAT using CUDA (CUDA PROGRAMMING GUIDE, 2011):
the TDSP with interpolation (TDISP) and the FDSP, which is an improved version of
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the work in (SILVEIRA et al., 2010). When comparing our GPU-based approaches to
CPU-based multithreaded implementations using OpenMP, the FDSP shows a speed-up
of 275×, and the TDISP shows a speed-up of 70×. Additionally, our implementations
also provide the advantage of leaving the CPU available for any other kind of processes,
and the advantage of achieving the speed-ups without modifying the algorithms formu-
lations, which could allow further speed improvements using methods for search space
reduction (DO; SILVERMAN, 2007).

The remainder of this chapter is organized as follows. Section 6.2 reviews the mathe-
matical foundations of the SRP-PHAT algorithm and the interpolation that can be applied
to the time domain version. A theoretical analysis of the computational cost of both
versions is presented in Section 6.3. Section 6.4 describes the main concepts of program-
ming GPUs using NVIDIA’s CUDA model. In Section 6.5 we present our approach for
computing the SRP-PHATs using the GPU. Finally, Section 6.6 shows the experimental
evaluation that demonstrates the efficiency of our GPU algorithms and Section 6.7 draws
some conclusions about the presented work.

6.2 Sound Source Localization

For an array of M microphones, the signal xm(t) captured at the mth microphone can
be modeled as

xm(t) = αms(t− tqm) + vm(t), (6.1)

where s(t) is the source signal, vm(t) represents the combination of reverberation, in-
terferences, and background noise, and αm and tqm respectively denote the propagation
attenuation and delay of the signal s(t) from a source location q to the mth microphone.
Equivalently, Eq. (6.1) can be represented in the frequency domain as

Xm(ω) = αmS(ω)e−jωτ
q
m + Vm(ω), (6.2)

where ω = 2πfT is the normalized frequency in radians corresponding to the frequency
in f Hz of the continuous-time signal xm(t) that is sampled with the sampling period of T
seconds, i.e., xm[n] = xm(nT ) and τqm = tqm

T
. We assume that the signal is sampled above

the Nyquist rate, i.e., T < 1
2fmax

where fmax is the maximum frequency of the signal.
Given a vector of Fourier transforms of observed signals, {X1(ω), X2(ω), · · · , XM(ω)},

SSL therefore may be seen as the problem of finding a source location q that satisfies
some optimality criteria such as Maximum-Likelihood (ZHANG; ZHANG; FLOREN-
CIO, 2007; LEE; KALKER, 2010) or maximum power of the filter-and-sum beamformer
like the SRP-PHAT method (DIBIASE, 2000).

Next we present the two different versions of the SRP-PHAT that, although being
mathematically equivalent, differ in practice. Section 6.2.1 presents the frequency-domain
version adapted by Zhang et al. in (ZHANG; ZHANG; FLORENCIO, 2007). Sec-
tion 6.2.2 shows the time domain version, which was first introduced as the Global Co-
herence Field (GCF) by Omologo et al. in (OMOLOGO; SVAIZER, 1997).

6.2.1 Frequency Domain SRP-PHAT

The SRP-PHAT method finds a source location by comparing the output powers of
PHAT-weighted filter-and-sum beamformers of different potential sound source locations
in a search region. In the frequency domain (DIBIASE, 2000), the SRP-PHAT of a point
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q in space is defined as

P (q) =
M∑
m=1

M∑
l=1

∫ 2π

0

Xm(ω)X∗l (ω)

|Xm(ω)X∗l (ω)|
ejωτ

q
mldω, (6.3)

where τqml = τqm − τ
q
l is the term representing the TDOA between microphones m and l

and point q.
By interchanging the order of integration and summation and using its symmetry,

Zhang et al. (ZHANG; ZHANG; FLORENCIO, 2007) showed that Eq. (6.3) is mathe-
matically equivalent to

P (q) =

∫ 2π

0

∣∣∣∣∣
M∑
m=1

Xm(ω)

|Xm(ω)|
ejωτ

q
m

∣∣∣∣∣
2

dω, (6.4)

which reduces the number of computations of the SRP-PHAT by a factor of M . After
P (q) has been computed for all candidate positions using either Eq. (6.3) or Eq. (6.4), we
can estimate the sound source location as

q̂ = argmax
q∈Q

P (q), (6.5)

where Q denotes a set of points in space that represent all candidate locations.

6.2.2 Time Domain SRP-PHAT

According to the original proposal in (DIBIASE, 2000), the SRP-PHAT can also be
computed by summing the PHAT-weighted Generalized Cross Correlations (GCC-PHAT)
of all possible pairs of the set of microphones. The GCC-PHAT (KNAPP; CARTER,
1976) between two microphones m and l may be defined as

Rml(τ) =
1

2π

∫ 2π

0

Xm(ω)X∗l (ω)

|Xk(ω)X∗l (ω)|
ejωτdω, (6.6)

We can notice that the SRP-PHAT in Eq. (6.3) is equivalent to the summation of Eq. (6.6)
over all microphone pairs except for the scale factor. This allows us to represent the
SRP-PHAT in terms of Eq. (6.6)

P (q) =
M∑
m=1

M∑
l=m+1

Rml(τ
q
ml), (6.7)

where the number of summations has been further reduced from M2 to M(M − 1)/2,
without affecting the SSL results, due to the symmetry of the GCC-PHAT in Eq. (6.6)

Although Eqs. (6.3), (6.4), and (6.7) are mathematically equivalent, the computational
complexity of a discrete implementation of Eq. (6.7) costs less than the corresponding
discrete versions of Eqs. (6.3) or (6.4). This is due to the fact that the GCC-PHAT in
Eq. (6.6) is independent of the source location q. Thus, for the double summation in
Eq. (6.7), all we need is to access memory positions of Rml(τ) corresponding to the
TDOA τqml for a proposed source location q once Rml(τ) is computed for all microphone
pairs. In contrast, the frequency-domain representations in Eqs. (6.3) and (6.4) require
complex multiplications and evaluation of an integral for each source location q. The
computational complexity for each of these methods will be described in more detail in
Section 6.3.
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6.2.3 Cubic Spline Interpolation for TDSP

Although the computational complexity of the TDSP algorithm is much less than
that of the FDSP, it suffers the loss of its accuracy caused by a quantization process in
the TDOAs, i.e., τ in Eq. (6.6) should be an integer as a sample index for the discrete-
time domain signal whereas τqm in Eq. (6.3) can have any precision that the computing
environment allows. Therefore, it is often interesting to use some kind of interpolation
technique to increase its accuracy. For instance, Tervo and Lokki (TERVO; LOKKI,
2008) compared Parabolic Fitting, Exponential Fitting and Fourier-interpolation methods,
concluding that the Exponential Fitting was the best among the three. In (SILVERMAN
et al., 2005), Silverman et al. claimed that using 64:1 FIR filter interpolation, the precision
loss in the TDSP becomes negligible according to their experiments. However, they did
not provide any mathematical proof or analysis for satisfying this condition. Furthermore,
in (DO; SILVERMAN, 2007), Do and Silverman used the Cubic Splines Interpolation
(CSI) algorithm, which is shown to be as precise as the FIR filter interpolation but faster.
In this work we have also chosen the CSI for interpolating the SRP-PHAT for two reasons:
it provides reasonably accurate results and is well suited for GPU implementation due to
already existing fast GPU-based tridiagonal system solvers, which is a crucial step of the
CSI and is detailed next.

First, one may choose among some variations of the CSI, depending on the boundary
conditions. We found that varying these conditions has negligible impact on the final
result of the TDISP, so we chose the Natural Splines conditions, since it simplifies the
GPU implementation as it will shown next. Additionally, from this point on, we treat the
GCC-PHAT Rml as a discrete-time vector instead of a continuous variable.

For the CSI implementation, despite the fact that it is a simple process itself, there are
some details when it comes to applying interpolation to the SRP-PHAT algorithm. Since
the delay is quantized through the sampling of the continuous signal prior to accessing the
vector Rml, the GCC-PHAT values are the candidates for the interpolation. Furthermore,
we may notice that when summing the GCC-PHATs using Eq. (6.7), the range of TDOAs
that will actually be used to access Rml is smaller than range of values it represents. In
addition, if we compute the GCC-PHAT using the Discrete Fourier Transform (DFT) as in
Eq. (6.6), then the values for negative TDOAs are wrapped around and appear at the end
of the vector Rml. Therefore, we may chose only a set of its values for the interpolation
and properly adjust the values for the negative TDOAs, that is

R′ml[i] = Rml[j], where

{
j = i, if 0 ≤ i ≤ V

j = N + i, if − V ≤ i ≤ −1
(6.8)

for i = −V,−V + 1, . . . , 0, . . . , 1, . . . , V − 1, V , where V is set to the largest possible
absolute value of TDOA given the microphone positions and search grid coordinates and
N denotes the DFT length.

In particular, it can be noticed that the largest possible TDOA value occurs for the
points at the so-called “end-fire” configuration where the points are located on the line that
connects the microphone pair with the largest spacing, and that are also not in between
them. In this case, the largest possible TDOA can be calculated as

Vmax =
‖x1 − x2‖

CT
, (6.9)

where x1 and x2 are the positions of microphones with the largest spacing, ‖ · ‖ denotes
the Euclidean distance and C is the speed of sound. Given this, V = Vmax is a plausible
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choice especially when the search region is not static along the entire application. Notice,
however, that setting V = Vmax requires higher computational cost of the interpolation
process especially when the range of the actual TDOA values for the given microphone
configuration and search space are much smaller than Vmax. Considering this we can
further decrease the value of V by selecting

V =

⌈
max

(∣∣∣∣τqmlT
∣∣∣∣)⌉

q∈Q
1≤m≤M

m+1≤l≤M

, (6.10)

which can be computed pre-runtime. However, since it depends on the search region Q,
it must be re-computed if the search region is changed dynamically.

Once R′ml has been computed, it is then possible to interpolate between its values
using a CSI algorithm in order to obtain RCSI

ml , a length (2V −1)E+1 interpolated GCC-
PHAT for each pair of microphones with E being the interpolation factor. This can be
done by solving a (2V − 2) by (2V − 2) tridiagonal system, as in Eq. (6.11) and doing
some algebraic operations.

4 1 0 · · · 0 0 0
1 4 1 · · · 0 0 0
0 1 4 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 4 1 0
0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 4


×



Φ[1]
Φ[2]
Φ[3]

...
Φ[V − 3]
Φ[V − 2]
Φ[V − 1]


=



Y [0]
Y [1]
Y [2]

...
Y [V − 4]
Y [V − 3]
Y [V − 2]


(6.11)

The right-hand side vector Y can be determined through some operations on R′ml,
and the unknown vector Φ is used to compute the splines coefficients through other oper-
ations. Both proccess involving these vectors are explained in Subsection 6.5.4. Once the
interpolation is done, we may use RCSI

ml instead of Rml in Eq.(6.7) to compute the TDISP.

6.3 Computational Complexity Analysis

With a fixed microphone array and search region, we can compute some parts of the
algorithm pre-runtime (LEE; KALKER, 2010). In particular, given the search region Q
and the position of all M microphones, we can precompute all the TDOAs τqml that will
be used along the entire application, in Eq. (6.4) or Eq. (6.7). For this reason, we only
consider runtime computations in computational complexity analysis. Additionally, we
assume the use of the Fast Fourier Transform (FFT) for the DFT computation, and denote
N as the initial number of audio samples used for computing a single frame of the SRP-
PHAT, and K as the number of frequency bins for computing the integrals in Eq.(6.4) or
in Eq.(6.6), where K ≤ N/2 + 1 as a result of the FFT.

6.3.1 FDSP Cost

Recalling that the algorithm depends on N (the FFT size), K, Q (the number of SSL
candidates) and the M (the number microphones), we may define the asymptotic compu-
tational complexity of the FDSP as being O(NQM). This usually implies a very large
computational cost mostly due to Q because Q � N,K,M in typical scenarios. In
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a detailed analysis, a discrete-time implementation of the SRP-PHAT requires the fol-
lowing number of arithmetic operations (additions and multiplications) at runtime (LEE;
KALKER, 2010).

• FFT: 5
2
MN log2N operations

• PHAT: 10MK operations ((DO; SILVERMAN; YU, 2007))

• SRP: 8MKQ+ 4KQ operations.

For example, if search grid points are in a two-dimensional space of 2 m × 2 m with a
uniform grid spacing of 0.02 m, we have the total number of Q = 10000 candidate loca-
tions. With this search space, for a system with M = 8 microphones with an equidistant
spacing of 0.08 m, (N = 2048)-point FFT, andK = 1024, the FDSP requires 6.968×108

operations per frame.

6.3.2 TDISP Cost

Remembering that for the TDSP the computation of Rml in Eq.(6.6) is done prior
to P (q) in Eq.(6.7), the asymptotic computational cost of the TDSP may be seen as
O(M2(K+Q)), and of the TDISP as O(M2(K+Q+V )). Now for a practical example,
we first recall that Rlm[n] = R∗ml[N − n], and thus, most M2 terms become M(M−1)

2
.

Additionally, we first analyze separately the TDSP and the CSI. For the TDSP, we have
the following.

• FFT: 5
2
MN log2N operations;

• PHAT: 5NM(M − 1) operations ((DO; SILVERMAN; YU, 2007));

• IFFT: M(M−1)
2
· 5

2
N log2N operations;

• SRP: M(M−1)
2
·Q operations.

For the NCSI algorithm, we have to find the splines coefficients for all the M(M−1)
2

GCC-PHATs, and compute the new points using those coefficients. This is done in three
separate processes, with the following computational costs:

• Thomas Tridiagonal Solver: M(M−1)
2

(8V − 23) operations;

• Find Splines Coefficients: M(M−1)
2

(16V − 8) operations;

• Generate Interpolated points: M(M−1)
2

(12V − 6)E operations.

Using E = 10 (10:1 interpolation), T = 1
44100Hz , V = Vmax, and the same parameters

as those in Subsection 6.3.1, the TDSP needs a total of 2, 88 × 106 operations, and the
TDISP a total of 3.168 × 106 operations. Notice that even though the TDSP costs about
two orders of magnitudes less than the FDSP, it may still be impracticable for real-time
applications if large values for Q and/or M are used. Furthermore, as mentioned before,
this gain in computational complexity has the trade-off of reducing the algorithm’s ac-
curacy (SILVERMAN et al., 2005), and therefore, using the TDISP helps alleviate this
effect.
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6.4 GPGPU using CUDA

In the last years, the increasing processing power of GPUs led the scientific com-
munity to explore non-graphic related computations onto these highly parallel archi-
tectures, firstly through vertex and fragment shaders, and more recently programming
the device. This practice became even more feasible when NVIDIA released in 2006
their G80 chipset series (CORPORATION, 2006). This new architecture leveraged the
first dedicated GPUs in the market that could be used for general purpose comput-
ing through NVIDIA’s also newly created CUDA programming model (KIRK; HWU,
2010; LINDHOLM et al., 2008). Later in 2010, NVIDIA launched their Fermi family
cards (GLASKOWSKY, 2009; CORPORATION, 2011), a successor of the GT200 series
GPUs, that brought many advantages over its predecessors and now represent NVIDIA’s
most powerful cards. For this reason, we will use the Fermi architecture for the explana-
tions in this section.

However, it is important to mention that ATI/AMD also has their programming model,
the Stream SDK (SSDK). Furthermore, there is also the OpenCL, an open industry stan-
dard that abstracts both CUDA and the SSDK, facilitating heterogeneous computing due
to portability and vendor-independence. Given these options, we chose CUDA over
SSDK due to implementation practicality and over OpenCL due to performance reasons.
Nevertheless, our algorithm could be easily ported to either programming models. Addi-
tionally it may be compiled and run in any CUDA-enabled device thanks to the forward
and backward compatibility introduced by NVIDIA’s Parallel Thread Execution (PTX)
(CUDA PROGRAMMING GUIDE, 2011; FERMI COMPATIBILITY GUIDE, 2011),
a pseudo-assembly language that acts as a virtual machine between CUDA code and
hardware-specific binary code.

From the point of view of hardware models, the NVIDIA GPU architecture has in-
crementally changed from different series and families in their basic concept. Currently,
Fermi cards consist of two-level of hierarchy for the processors and three-level for the
memory, starting by the Streaming Multiprocessors (SM) and Global Memory, respec-
tively. As Figure 6.1 abstractedly illustrates, each SM consists of 32 Scalar Processors
(SP - also commonly called CUDA cores), a hybrid on-chip region of configurable shared
and L1 cache memories, and also texture and constant memories caches. Furthermore, all
SMs share an area of DRAM that is cached by a L2 memory. While data in global mem-
ory (DRAM) can be accessed by any SP in any SM, data in shared memory is accessible
only from within the SPs in a same SM. Since shared memory is on-chip, it is designed to
be much faster than global memory, but also being limited to 48kB out of the total 64kB
in the hybrid area. The remaining 16kB is used as L1 cache. Notice, however, that this
region may be oppositely configured as 16kB of shared memory and 48kB of cache.

As GPU data must come from the computer’s global RAM, the PCI-Express (PCI-E)
bus is used for the transference. Its current theoretical maximum throughput is 8 GB/s
for the 2.0 versions (used by GPUs). Since this bandwidth is much lower than the peak
bandwidth between the GPU’s global memory and its processors (192GBps theoretical
for NVIDIA most recent non-dual cards), data transfers between CPU and GPU should be
minimized in size and frequency (CUDA BEST PRACTICES GUIDE, 2011). This allows
for the GPU’s fast access rate to be exploited and no transfer overheads to be created.
Another feature that must be exploited in a GPU software is the fast thread switching.
While a thread switch is very costly on the CPU, the GPU can handle this task with
more ease. It is therefore encouraged to create more threads than the number of physical
processors available. Such overload promotes high concurrency among all threads, and
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Figure 6.1: Abstracted architecture of a NVIDIA’s Fermi GPU.

occupancy of the hardware, which is good, since some threads can be scheduled while
others wait for memory transfers (CUDA BEST PRACTICES GUIDE, 2011). Both of
these best practices are well exploited by the developed GPU algorithm, and will be better
highlighted in later sections.

Now from the point of view of software model, CUDA is a minor extension of the C
and C++ languages that allows the writing of heterogeneous software, that is, programs
that use both the CPU and GPU for its execution. This is done by designing GPU-turned
functions called kernels, which executes in parallel across a set of threads. As repre-
sented in Figure 6.2, each thread has a private local memory, which resides in the devices
global memory. These threads are organized into a hierarchy by the programmer. A
group of threads is called a block, and a group of blocks is called a grid. Thread blocks
are sets of concurrent threads that may cooperate among themselves through barrier syn-
chronization and access to the shared memory. The management of the threads (creating,
scheduling and termination) is done automatically by the hardware at runtime. However,
the programmer has to specify, for every kernel invocation, the size of the grid that will be
executed by the kernel, and the size of its blocks. Also, only one grid may be designated
to a kernel, and multiple kernels may be executed in parallel (new feature in the Fermi
cards).

These abstractions done by the CUDA programming model easily allow a two-level
hierarchical indexing of all threads (similar to nested parallelism), multidimensional data
manipulation and sharing, without making the programmer worry about functional cor-
rectness. However, some good practices should be adopted since there is some relation-
ship between the software-level thread organization and the way the hardware handle the
threads (CUDA BEST PRACTICES GUIDE, 2011). More precisely, each thread block is
scheduled to a SM, and then split into groups of 32 threads called warps. Pairs of warps
are then scheduled to the SPs by two Warp Scheduler units, and then successively run
concurrently, in SIMT (single-instruction multiple-thread) fashion, until the whole block
is executed. Given this process, the creation of potential divergent code flow between
threads should be avoided, since it is something that is handled automatically by the hard-
ware by serializing their execution. This may happen, e.g., when an if condition evaluates
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Figure 6.2: CUDA abstraction of threads and memory.

true within a thread and false in another one.
Furthermore, some other recommended practices should be prioritized (CUDA BEST

PRACTICES GUIDE, 2011), such as creating blocks multiples of 32, so that no warp
with less than 32 threads is scheduled, helping increase the occupancy of the GPU. How-
ever, the most important practice is to perform coalesced memory access in the GPU’s
global memory, that is, all of the threads in a half-warp should access global memory at
the same time, which is achieved by some coding patterns described in (CUDA BEST
PRACTICES GUIDE, 2011), and may have some variations between different devices.
In short, the simplest and most efficient way of achieving coalesced access is by making
adjacent threads in warp access adjacent words in the global memory, without offsetting
the accesses.

6.5 GPU-based SRP-PHAT

The implementation of GPU-based algorithms should focus mainly on exploiting as
much parallelism as possible (CUDA BEST PRACTICES GUIDE, 2011). Based on the
CUDA’s abstraction of the GPU, it is possible to easily exploit two levels of parallelism
in GPU-based routines (i.e., parallelize two nested loops). For FDSP and TDSP, this was
done in a similar way. While the first level of parallelism is equal in both versions, the
second one is different. Therefore, Subsection 6.5.1 presents the first parallelization both
versions share, and Subsections 6.5.2 and 6.5.3 present the individual second level of
parallelization of each version.

6.5.1 Common Parallelization

As described in Section 6.2.1, the SRP-PHAT must be evaluated once for every point
in a search spaceQ, containingQ points. In CPU-based implementations, this is done in a
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serial manner, or at most, parallelized among the cores of the CPU. In our application, we
parallelize the search space scanning as illustrated in Figure 6.3. At a programming level
this is the first parallelization in the software’s flow, thus implying in distributing each
candidate point to a single block of the kernel’s grid. More precisely, this is done before
the kernel invocation by specifying its grid size as the same size of the search space.

........................
Block 1Single CPU

thread

... ...
Block 2

..

...

Parallel scanSerial scan
CPU b d h

Block n

.

Our GPU based approachCPU based common approach

Figure 6.3: Serial scan vs. our proposed parallel scan (first level of parallelization).

In this approach, each block will be scheduled to an SM of the GPU, which is an
expected behavior, as described in Section 6.4. This makes the algorithm scalable to the
GPU being used. The more SMs available, more parallelism will be achievable, while
fewer SMs imply in more concurrency (and less parallelism).

It is important to note that this parallel grid search approach can be applied to any
search space-based SSL methods in general (including (ZHANG; ZHANG; FLOREN-
CIO, 2007; LEE; KALKER; SCHAFER, 2008; TUNG et al., 1999)) only with the dif-
ference in the actual implementation of the computation at each grid. In the next two
sections, the case for the SRP-PHAT will be presented.

6.5.2 Parallelization Approach for FDSP

Since the first level of parallelism is done at a grid-to-block level for the parallel
space scanning, the second one is done by splitting each block into groups of threads for
computing each point’s SRP-PHAT. Following the formulation of the SRP-PHAT, given
by Eq. (6.4), it can be noticed that its outermost iteration process is the integral (which
in practice is a summation), and therefore it is the main candidate to be parallelized at a
block-to-thread level. Figure 6.4 illustrates how the parallelization was done.

Each block responsible for a point q is split into S new threads, each of which com-
puting a portion of the FDSP’s integral (summation in practice). This implies in a to-
tal of K/S iterations in order to calculate the whole integral (instead of K, as in the
serial version). More precisely, in each iteration b, each s-indexed thread computes

Z(ω) =
∣∣∣∑M

m=1
Xm(ω)
|Xm(ω)|e

jωτqm

∣∣∣2, for ω = s + (b − 1)S, treating Xm(ω) as a discrete-
time vector (for simplicity) and using one-based indexing as in the picture. Dividing
each thread’s work like this allows them to access adjacent positions of theXm(ω) vector,
leveraging from coalesced global memory accesses. For incrementing the computed value
Z(ω) between successive iterations (process represented by the C++ operator + =), we
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Figure 6.4: Serial integral vs. our proposed parallel integral (second level of paralleliza-
tion).

use, for each thread, one position of a shared memory array with length S. By the end of
the last iteration, each position of the array will hold a partial result of the FDSP, which
than have to be summed into one, so that the block finishes computing the SRP-PHAT
of the point it represents. Notice, however, that this summation has to be synchronized
among the threads so that no wrong data is read/written, and for that, we use the parallel
sum reduction algorithm described by Mark Harris in the documentation of the “reduc-
tion” example that comes with NVIDIA’s GPU Computing SDK (HARRIS, 2011). This
is a very efficient reduction algorithm, especially when reducing shared memory arrays,
which is our case.

Aside from our parallelization approach, notice that the innermost iterations (the sum-
mation) could be the one to be parallelized, but this would obviously imply poorer per-
formance, once it iterates only M times. That is, the number of microphones is generally
small (BRANDSTEIN; WARD, 2001) compared to K, and thus less threads would be
created. Another issue is that the number of threads hardly would be multiple of 32,
what is something necessary to cope with the warp size recommendation mentioned in
Section 6.4. For this reason, we chose S = 64, which is the multiple of 32 that has
experimentally shown to be the best choice among all possible multiples.

6.5.3 Parallelization Approach for TDSP

The TDSP, different from the FDSP, can be divided into two separate stages. The
first part is where the GCC-PHATs are precomputed using Eq. (6.6), and the second is
the evaluation of the SRP-PHAT for each candidate source location, using Eq. (6.7). For
each stage, a separate kernel is developed, since their grid and block sizes must be differ-
ent in order to achieve higher performance. Figure 6.5 illustrates how this first stage is
processed.

For this parallel computation of Eq.(6.6), we also exploit two levels of parallelism.
Each GCC-PHAT is assigned to a block, resulting in a grid of M(M−1)

2
blocks. Each
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Figure 6.5: Parallel computation of the GCC-PHATS.

block of threads is then divided into groups of S threads, each of which does a portion
of the frequency domain computations (S = 64, same as for the FDSP). These frequency
domain computations are the PHAT-weighted Cross Power Spectrum (CPS) of the pair of
microphones the block represents. Here, the division of each block’s work is given in the
same way as described in Section 6.5.2, except that the starting grid has M(M−1)

2
threads

instead of Q, and the final results are not reduced in the end. Finally, to finish calculating
the GCC-PHAT of each block, we do the Inverse Fast Fourier Transform (IFFT) of the
corresponding CPS. This is done using NVIDIA’s CUFFT library, which provides faster
FFT/IFFT algorithms than other known CPU-based libraries (CUDA CUFFT LIBRARY,
2011).

For the next step of the algorithm, first note that after launching the kernel of Fig-
ure 6.5, a synchronization barrier is unavoidable due to the data dependency nature of the
algorithm (to perform the TDSP, the GCC-PHATs computation must finish first). Given
that, once the GCC-PHATs have been computed, it is then possible to compute the SRP-
PHAT of each point starting with the grid search parallelization described in Section 6.5.1
(recalling it is used for both the FDSP and TDSP). For each candidate source, located at
q, we need to sum an element of all M(M−1)

2
GCC-PHATs, where each element’s in-

dex corresponds to the TDOA τqml between the pair of microphones ml and the location
q. This step is suited for the second level of parallelism of the TDSP and is illustrated
in Figure 6.6. It is done similarly to the parallelization of the FDSP: each thread of the
block is responsible for a portion of the SRP-PHAT, which will be summed together at the
end. However, each thread’s task in this case is to retrieve values from the precomputed
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GCC-PHATs, based on the microphone pairs they represent.
One thing to notice is that, for TDSP, the block size is M(M−1)

2
instead of S = 64.

This is a drawback that degrades the algorithm performance since the warp size recom-
mendation previously described is not satisfied (M(M−1)

2
will hardly be multiple of 32).

Additionally, when accessing the memory in Rml through the process in Figure 6.6, co-
alesced access to the global memory is not fulfiled. That is, reading R12,R13, ...,Rml is
not done sequentially, and therefore, does not leverage from the fact that when accessing
memory positions that are coalesced, the GPU may read one whole sequential region with
only one transaction. In our approach, the GPU issues one transaction per read. One way
we alleviate this problem is by mapping Rml into texture memory. While texture memory
is also mapped in the DRAM, it has a separate on-chip texture cache (recall Figure 6.1)
that may provide fast access to frequently read values in Rml.
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Figure 6.6: General GCC-PHATs summation approach vs. our proposed parallel one
(second level of parallelization).

6.5.4 Parallelization of the Cubic Splines Interpolation

The critical point in parallelizing the CSI in the GPU is solving the Tridiagonal Sys-
tem (created from the values in R′ml), since there are dependencies between adjacent loop
iterations of the algorithm. Other steps are easier to implement, once they summarize
to mathematical operations and vector manipulations. In view of that, we use a recently
developed GPU-based tridiagonal solver that is available in the CUDPP library, a hy-
bridization of Cyclic Reduction and Parallel Cyclic Reduction (CR+PCR), which is fully
described in (ZHANG; COHEN; OWENS, 2010). This algorithm solves many large dif-
ferent tridiagonal systems in parallel, which is exactly the case of the TDISP: we have
M(M−1)

2
different systems of order V − 2 to solve.

However, before we can apply the CR+PCR algorithm, the tridiagonal system must be
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prepared by firstly extracting R′ml from Rml, as in Eq. (6.8). This is done using CUDA’s
built in asynchronous memory copies from GPU memory to GPU memory, and thus is fast
process (CUDA BEST PRACTICES GUIDE, 2011). After that, we do some algebraic
manipulations in R′ml to create the right-hand vector Y of the system, as illustrated in
Figure 6.7. The creation of Y is done by a kernel composed by a grid of M(M−1)

2
blocks,

since each tridiagonal system is related to one pair of microphones. Each block is divided
into 2V − 2 threads that will each compute an element of Y. Notice that for each element
of Y, we must have three memory accesses into R′ml which may be slow. For this reason,
during the kernel’s initiation, the entire R′ml array is loaded into the shared memory.
Finally, for the creation of the coefficient matrix in Eq. (6.11), we allocate the values
pre-runtime, since they do not change over different systems.
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Figure 6.7: Parallel preparation of all tridiagonal systems.

After the preparation of the tridiagonal system, the CUDPP’s CR+PCR algorithm is
executed in order to obtain the unknowns Φ vector from Eq. (6.11). Using Φ we may
determine the four coefficients, ai, bi, ci, di of the 2V − 2 splines of each GCC-PHAT
(i = 0, 1, · · · , 2V − 2). This is something needed before R′ml may be interpolated into
RCSI
ml . In our approach these coefficients are determined in the same kernel used for

the interpolation. Figure 6.8 illustrates this process. Finally, after the execution of this
routine, we may use RCSI

ml instead of R′ml in the approach described in Figure 6.6 to
compute the TDISP.

In an overview of our whole GPU-based NCSI approach, it is important to note that
even though there are many accesses to the GPU’s global memory, they are all performed
in a coalesced fashion, which is the optimal way to do it. Furthermore, an advantage
of having the NCSI implemented in the GPU is that there is no need to transfer data
between the CPU and the GPU after the process in Figure 6.5, what would be highly time
consuming. This means that even if we get no speed-up using this approach, it is still
better than having to transfer data through the PCI-E and computing it on the CPU.
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6.6 Experimental Evaluation

In order to evaluate the performance of our GPU SRP-PHATs we have planned a set
of experiments. We used CUDA/C++ implementations for both versions of the algorithm
in order to make comparisons of their execution time while running on different devices:
a Intel Core I7-950 CPU, a GeForce GTS 360M GPU, and a GeForce GTX 570 GPU.
The used CPU is equipped with 4 cores that run on a frequency range of 3.06 - 3.33 GHz,
support 8 threads via hyperthreading, and is nowadays considered a high-end processor.
The GTS 360M is a mobile GPU equipped with 96 cores, each running on a frequency
of 575 MHz, and is nowadays classified as mid-range. Finally, the GTX 570 is a more
powerful high-end GPU of the Fermi family and it is equipped with 480 cores, each at
a 732 MHz frequency. For the CPU implementation, we have parallelized it using the
OpenMP API (CHAPMAN; JOST; PAS, 2007) and, although not explicitly vectorized
the implementation, we have set the compiler to automatically generate intrinsic SSE
functions when possible. Moreover, for sake of simplicity, we named the experiments run
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on the GTS 360M as GPU1, on the GTX 570 as GPU2 and on the Core I7 as CPU.
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Figure 6.9: Execution time for the FDSP algorithm varying parameters Q (left) and M
(right).
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Figure 6.10: Execution time for the TDSP algorithm varying parameters Q (left) and M
(right).

Figures 6.9, 6.10 and 6.11 illustrates the execution times for the FDSP, TDSP and
TDISP algorithms, all run for CPU, GPU1 and GPU2. The plots on the left illustrates the
growing behavior of the runtime as the number of search points increase from Q = 1000
to Q = 360000 and with a constant M = 8. The plots on the right present the same
idea, but related to the variation of the number of microphones, M = 8, ..., 120 and fixing
Q = 3600. For the measurements, the average execution time of 100 consecutive runs
was taken for each parametrization. For the remaining parameters, we set, N = 4096,
K = 2048, S = 64, E = 10 (same as (DO; SILVERMAN, 2007)) and V = Vmax = 72
(due to M = 8, an equidistant spacing of 0.08 m and a sampling frequency of 44100Hz).
Furthermore, the plots’ vertical axes use logarithmic scale for better visualization of the
time differences.

We may observe that for all the presented experiments, and for the three algorithms,
the GPU versions outperform the CPU one. We achieved runtime reductions around to
275× for the FDSP algorithm, and reductions around 70× for the TDSP and TDISP al-
gorithm. For more detailed comparison, Tables 6.1 and 6.2 show the exact measured
speedups of the experiments GPU1 and GPU2 compared to CPU, for the same parame-
terizations as those of the plots.

Analyzing the speed gains, we first notice that they are higher for the FDSP. This may
be explained mainly by two reasons. First, the TDSP (TDISP too) inevitably requires a
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Figure 6.11: Execution time for the TDISP algorithm varying parameters Q (left) and M
(right).

Search Space Size (Q)
1000 40000 160000 360000

FDSP
GPU1 61.24× 60.61× 59.27× 60.66×
GPU2 276.01× 276.04× 275.7× 276.43×

TDSP
GPU1 7.72× 9.88× 9.67× 10.8×
GPU2 41.79× 51.33× 49.62× 55.24×

TDISP
GPU1 6.94× 8.54× 8.73× 9.31×
GPU2 29.41× 37.89× 48.11× 49.68×

Table 6.1: Speedups of GPU1 and GPU2 compared to CPU for different search spaces.

high amount of memory accesses to the GPU’s global memory in a non-sequential fash-
ion (recall this is related to the TDOAs τqml). This ends up violating the very important
performance pattern previously described in Section 6.4: coalesced memory accesses.
Secondly, the block size of the TDSP kernel (recall Fig. 6.6) is not multiple of 32, which
is also not encouraged due to the warp size restriction also mentioned before. Neverthe-
less, the GPU TDSP and TDISP still benefit a lot from aspects such as the GPU-based
FFT/IFFT algorithms and the parallel computation of each point’s SRP-PHAT, still pro-
viding a significant speedup over a CPU version.

Additionally, for the TDSP and TDISP, the speedups are higher when varying the
parameter M than when varying the parameter Q. This may be explained by the fact that
when a high number of microphones is used, the TDSP and the interpolation routines
benefit from more GPU power, which mainly happens during the computation of the

Number of Microphones (M )
8 40 60 80 100 120

FDSP
GPU1 62.81× 59.34× 61.93× 62.43× 59.50× 61.42×
GPU2 268.88× 269.89× 267.17× 268.27× 269.01× 270.46×

TDSP
GPU1 13.93× 18.72× 18.39× 19.52× 19.40× 19.98×
GPU2 44.50× 67.59× 66.38× 70.47× 70.03× 69.97×

TDISP
GPU1 12.26× 17.53× 17.64× 17.37× 18.44× 18.88×
GPU2 42.21× 51.27× 62.59× 61.97× 61.14× 56.03×

Table 6.2: Speedups of GPU1 and GPU2 compared to CPU for increasing number of
microphones.
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GCC-PHATs (Figure 6.5) and during the CSI kernel (Figure 6.8). When M = 8, for
example, the grid size will be 28 for those routines, which provides a low occupancy of
the GPU, specially the GTX 570, that has 480 cores. Oppositely, when M = 120, the
grid size will be 7140, providing more occupancy of the GPU.

An additional observation is that the speedups, for the TDSP, are higher when inter-
polation is not being used. This happens because the GPU-based CSI does not provide
a high speedup itself, causing the overall TDISP speedups to drop. Figure 6.12 shows
a comparison of GPU1, GPU2 and CPU for the CSI alone as well as how much of the
TDISP is occupied by the CSI. In the figure, we may notice that, although the CSI alone
indeed provides a speedup, it represents higher proportion of the TDISP in the GPU than
it does in the CPU. This explained by the fact that the speedup of the TDSP is much
higher than the CSI (70x against 11x in the best scenario). In fact, the CSI algorithm is
not very favorable for a GPU implementation. Solving a tridiagonal system requires di-
rect dependency between adjacent loop iterations, making it hard to be parallelized. This
reflects directly into the CR+PCR algorithm we use (ZHANG; COHEN; OWENS, 2010),
to which it is reported speedups around 12× over CPU versions. Moreover all kernels
related to the CSI also have block sizes not multiple of 32 and do not perfectly achieve
the recommended memory access patterns. Nevertheless, it is important to mention that
it is still highly beneficial to perform the CSI in the GPU, for the reason that transferring
all the GCC-PHATs back to CPU would be much more time-consuming.

0 20 40 60 80 100 120
10

−1

10
0

10
1

10
2

10
3

Number of Microphones (M)

tim
e(

s)

CSI varying microphones

 

 

CPU
GPU1
GPU2

0 20 40 60 80 100 120
10

−2

10
−1

10
0

Number of Microphones (M)

R
at

io
 b

et
w

ee
n 

C
S

I’s
 a

nd
 T

D
IS

P
’s

 r
un

tim
es

Proportion of TDISP occupied by CSI

 

 

CPU
GPU1
GPU2

Figure 6.12: Execution time for the CSI algorithm (left) and proportion of the TDISP that
is occupied by the CSI (right). Both graphs are for varying number of microphones.

In an overview of our algorithm, its main advantage may be seen as the high speed
gains over its CPU version, but we highlight that another benefit of using the GPU for the
heavy processing is that the CPU is left free for any other tasks that might be run parallel
to the SRP-PHATs. An example would be multimodal speaker localization using audio
and video information, in which the CPU could be used for processing video data. Fur-
thermore, we may observe that our algorithms are highly scalable to the GPU’s available
power, once the runtimes were higher for the GTX 570. This implies that one can always
appeal to better devices when faster executions are needed, i.e., when higher values of Q
and/or M are used. However, it is interesting to notice that even the GTS 360M runs the
SRP-PHATs faster than the Core I7-950, which is a high-end CPU.
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6.7 Conclusions

In this chapter we presented efficient GPU approaches for both the frequency-domain
and time-domain versions of the SRP-PHAT. These formulations of the algorithm in prac-
tice differ in their computational complexity and precision, making them individually
preferable in different situations. Although the accuracy of the time-domain version is
lower, it is a common practice to enhance it using interpolation techniques. For that rea-
son, we also presented here a GPU approach for computing the one-dimensional cubic
splines interpolation algorithm. When comparing our algorithms using a GTX 570 and
a Core I7-950, our experimental results indicate that the TD version reaches speedups
up to 70×, the FD up to 275× and the interpolation up to 11×. Furthermore, using our
proposed implementations gives the additional advantages of leaving the CPU free to pro-
cess any other task parallel to the GPU, and also allow for any further modifications of
the algorithm that may improve its speed, once their original formulations were not yet
altered. Finally, future work will aim at alternatives for improving the TD version, for it
is a memory problematic algorithm for the GPU.

References

See the unified bibliography of the dissertation.
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7 CONSIDERATIONS AND FUTURE WORK

Voice Activity Detection and Sound Source Localization play an important role in
speech-based HCI systems. Taking the applicability of this field of research and its re-
lated open problems, this dissertation proposed different ways of performing single and
multiple speakers VAD and SSL. Our work was presented as a compilation of already pro-
duced articles. We started by describing a proposed HMM-based unimodal single speaker
joint VAD and SSL approach (BLAUTH; MINOTTO et al., 2012), which chronologically
evolved to a multimodal approach (MINOTTO et al., 2013), and later to a multiple speaker
one (Chapter 5). Additionally, we have also presented a GPU implementation of the SRP-
PHAT algorithm (MINOTTO et al., 2012), given the requirement for real-time processing
of HCI systems.

Our techniques focused on realistic environments, which were exposed to high levels
of noise. All the presented experiments were performed in a very active laboratory, with
people talking in background, entering/leaving the room, other computers functioning,
etc. The cases where simultaneous speech was produced were also naturally generated,
opposed some works that approach it using simulated data. For this reason, as a contri-
bution of our work, the multimodal datasets used in all experiments were made available
online (Sections 3.4, 4.4 and 5.4).

The next step to further improve our simultaneous speaker multimodal approach is
to include other modalities of data. Experiments using information from a RGB-D cam-
era (namely, the Kinect sensor) have already been conducted. We have been applying
a feature fusion approach with an SVM classifier and already achieved VAD accuracies
above 95%. The depth information allows 3D tracking of facial features through Active
Shape Models, thus providing robust visual information for the fusion approach, and also
benefits the SSL part of the algorithm, enabling a better 3D localization of the speak-
ers. Nevertheless, this method is still undergoing improvements, and requires a feature
selection step as future work.
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