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ABSTRACT

The current approach to improve CPU performance is to focus on a higher parallelism,
with multiple core processors. In highly concurrent environments, classical mutual exclu-
sion locks to deal with concurrent access to shared data may present serious limitations
and scalability issues. As an alternative, lock-free synchronization offers robust perfor-
mance and avoids problems related to blocking techniques like deadlock, priority inver-
sion and convoying. Concurrency in a database buffer is an important aspect in terms of
providing processor scalability. This work provides a lock-free buffer implementation for
WattDB using non-blocking synchronization techniques. WattDB is a locally distributed
database system that runs on a cluster of lightweight nodes. It aims to balance power
consumption proportionally to the system’s load by dynamically powering its nodes indi-
vidually up and down.

Keywords: WattDB, database, buffer, non-blocking synchronization, lock-free, replace-
ment policy.





RESUMO

A atual abordagem para melhorar o desempenho de CPU é focar em um alto pa-
ralelismo, com processadores de múltiplos núcleos. Em ambientes altamente concor-
rentes, mecanismos clássicos de exclusão mútua para tratar acesso concorrente a dados
compartilhados podem apresentar sérias limitações e questões de escalabilidade. Como
uma alternativa, sincronização lock-free oferece um desempenho robusto e evita proble-
mas relacionados a técnicas bloqueantes, como deadlocks, inversão de prioridade e con-
voying. Concorrência em uma cache de banco de dados é um importante aspecto em
termos de proporcional escalabilidade no processador. Este trabalho proporciona uma
implementação de uma cache lock-free para WattDB, usando técnicas de sincronização
não-bloqueantes. WattDB é um sistema de banco de dados localmente distribuído. Seu
objetivo é balancear proporcionalmente o consumo de energia com a carga de trabalho do
sistema, dinamicamente ligando e desligando seus nodos individualmente.

Palavras-chave: WattDB, database, buffer, non-blocking synchronization, lock-free, re-
placement policy.





19

1 INTRODUCTION

This chapter provides an introduction for this bachelor’s thesis, which is the design
and implementation of a lock-free database buffer. The motivation of this work will be
discussed. The objectives will be listed and defined. Finally, the organization of the text
will be detailed.

1.1 Motivation

Nowadays, even if CPU manufacturers still deliver microprocessors with an increas-
ing number of transistors, clock rates stabilized somewhere around 3 Ghz. The current
approach to improve performance is to focus on a higher parallelism, i.e, multiple core
processors and multiple threading units. This recent hardware trends toward multithread-
ing have raised critical challenges in software engineering.

In parallel programming, whenever you need to share data, the classic approach is to
serialize access to it. The most common synchronization technique is to use a mutual
exclusion lock. However, since there is no limitation for what can be done while a mutex
is locked, lock-based shared objects tend to suffer significant performance degradation
when faced with the inopportune delay of the thread holding the lock. In such cases, other
active threads that need access to the locked shared object are prevented from making
progress until the lock is released by the delayed thread. In the worst case scenario, the
thread holding the lock might want to access some other piece of shared data and attempt
to lock its mutex. If another thread has already locked that last mutex and wants access to
the first mutex, both of the threads will hang in a “deadlock” situation.

As an alternative to mutual exclusion lock, lock-free objects are inherently immune
to problems like priority inversion, convoying and deadlock. Lock-free synchronization
also offers robust performance, even with indefinite thread delays and failures. These
techniques make use of a precious small set of things that you can do atomically, limitation
that makes lock-free programming way harder.

In this context of parallel programming, the concurrent access to the buffer manager
of a database is major factor that prevents database scalability to processors. Concurrency
in a database buffer should be considered an important aspect in the scenario where the
buffer operations become CPU-bound tasks rather than I/O-bound. In this case, a naive
implementation for handling concurrency may become particularly problematic in mul-
tiprocessor systems. Suppose concurrent requests from multiple users. If one request
provoke a page fault and it holds an exclusive lock, the exclusive lock is going to prevent
the other threads from holding either a shared or an exclusive lock. Since system-wide
mutexes tend to appear for each scan of pages, it would cause “mutex ping-pong” in
multiprocessor and multi threaded environments. Moreover, high traffic access to a lock
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may causes the convoy phenomenon. In order to deal with such problematic scenarios,
lock-free synchronization emerges as an alternative to classical mutual exclusion locking
techniques.

1.2 Objective

This work provides the implementation of a database buffer based on non-blocking
synchronization techniques and lock-free programming for the WattDB project. Since the
fix and unfix operations on a buffer frame are among the most frequent basic operations
of a DBMS, the efficiency of these operations is extremely important in order to build an
efficient database system. Considering that the buffer is a focus of concurrency, the use of
non-blocking techniques for synchronization aims at improving performance scalability
in environments with large-scale multithreaded processors and highly concurrency. To
achieve this behaviour, non-blocking techniques are used to avoid critical sections con-
tentions often caused by priority inversion and convoying, which are typical problems of
high concurrent environments. The lock-free buffer is achieved by combining the use of
a non-blocking replacement policy and lock-free data structures.

1.3 Organization of the Work

The remainder of this work is organized as follows: Chapter 2 discusses the basic
concepts used in this work and required for the full understanding of it. Chapter 3 presents
important aspects, such as algorithms and data structures, that should be considered in the
design of a lock-free buffer. Chapter 4 shows how the buffer is implemented, starting from
a typical locking scheme and introducing changes in order to make achieve a non-blocking
synchronization. Chapter 5 presents the results achieved by the buffer with respect to tests
performed in a simulation environment. Finally, conclusions and remarks are outlined in
Chapter 6.
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2 THE CONCEPTS OF LOCK-FREE BUFFER

This chapter aims to review and define important concepts required for the clear un-
derstanding of the work. At first we are going to give a brief overview of databases and its
hierarchical architecture. We are going to define a database buffer and some of the most
known replacement policies. Later the WattDB project is introduced with a simple mo-
tivational scenario. Finally we are going to present the concepts related to non-blocking
algorithms, its motivation and terminologies.

2.1 Database

In the modern history of computing, data has shown to be more valuable than hard-
ware itself. Be it for business or research purposes, data plays a major role in scientific
experiments, analysis of results and decision making. The concept of databases arrived
with the need to store, analyse and manage all this data in a meaningful way and to fill a
long list of requirements for each different kind of application. During the years it became
a research area inside computation itself, closely related to the industry, where the efforts
were focused on developing new technologies to attend more and different requirements
imposed by the real world problems.

In a simple way, a database can be described as an organized collection of data to
model relevant aspects of reality. A database management system (DBMS) is a specially
designed application that interact with the used, other application, and the database itself
to define, create, query and update databases. In the context of databases there is the con-
cept of transaction, which is a unit of work performed within a DBMS against a database.
Most modern DBMS offer a set of properties defined in (Haerder e Reuter 1983) known
as ACID (atomicity, consistency, isolation, durability) properties. By providing the ACID
properties, a DBMS guarantees the transactions to be processed in a reliable and isolated
way.

Many alternatives were proposed to represent and model a database, being one of the
most popular and widely adopted the one known as relational databases. A relational
DBMS represents a database based on the relational model (Codd 1983), in such way
that data is described and organized as a collection of tables of data items. By using a
query language, it is possible for the user to describe queries into a database and retrieve
meaningful information. With the popularization of relational DBMS there was the need
of a good architectural model to design such a system.

The model described in (Haerder 2005) proposes a hierarchical architecture model
in an attempt to design a DBMS which offers an appropriate application programming
interface (API) to the user and whose architecture is open for permanent evolution. This
model is based on successive data abstractions composing a five-layer model. Each layer,



22

from bottom to top, is responsible to introduce a level of abstraction in a way that basic
objects become more complex allowing more powerful operations and being constrained
by a growing number of integrity rules. The uppermost level enables the user to access
data stored in a meaningful way interpreted by the DBMS. An overview of the five-layer
hierarchical model is shown at Table 2.1.

Level of
abstraction Objects Auxiliary mapping data

L5 Nonprocedural or
algebraic access

Tables, views, tuples Logical schema description

L4 Record-oriented,
navigational access

Records, sets,
hierarchies, networks

Logical and physical
schema description

L3 Record and access
path management

Physical records,
access paths

Free space tables, DB-key
translation tables

L2 Propagation control Segment, pages DB buffer, page tables

L1 File management Files, blocks Directories, VTOCs, etc

Table 2.1: Description of the DBMS mapping hierarchy. Extracted from (Haerder 2005).

2.2 Buffer

As seen in the previous section, the architectural design of a database can be divided
in a hierarchical layered structure. In this work we are not going to get in details of each
layer, its abstractions, purposes or objects. Instead, we are going to focus in an important
concept present in the described model: the buffer. However, if we consider the bottom-
up hierarchy of the model, it is important to give an overview of the layers below the layer
2, in which the buffer is present.

The bottommost layer, File Management, is responsible for handling the bit pattern
stored on external non-volatile storage devices. This task is frequently performed in coop-
eration with the operating system’s file management. Through the File Management layer
and its defined interfaces, it is possible to easily integrate different storage technologies
into the proposed architectural model.

The Propagation Control layer offers an abstraction to the lower layer by introducing
the concept of pages. While a block in the File Management layer is defined as a sequence
of bits or bytes, with a certain length, stored in a storage device, a page is fixed-length
continuous sequence of data that defines the smallest unit of manageable data. To make a
clear distinction between a page and a block, we define that a certain page can be stored
in different blocks during its lifetime in the database. At the Propagation Control layers
it is also introduced the in-memory buffer that holds a fraction of the pages stored in the
database. At this layer the DBMS can locate almost all logical page references in the
buffer, reducing disk accesses related to I/O operations of physical storage devices.

As mentioned, the File Management layer frequently works in cooperation with the
operating system’s file management, the DBMS could also make use of the buffer defined
by the operating system for I/O operations. However, there are certain reasons for the
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DBMS bypass the operating system’s buffer and make its own implementation. A buffer
managed by the operating system do not offer certain features required by a DBMS, such
as forcing a page to disk for transaction management, controlling the order of page writes
to disk for recovery and the ability to control prefetching and the replacement policy based
on predictable access patterns.

2.3 Replacement Policy

In this section we are going to explain the behavior of some replacement policies
important for the understanding of this work.

As mentioned before, the DBMS buffer defines a portion of memory in which data
pages are contained in order to provide faster access when compared to the delay of disk
I/O operations. For the DBMS to operate on a page, this page must be present in the
buffer memory. However, usually the memory is expensive and not big enough to hold
all the pages of a database stored in disk. For this reason, whenever the buffer is full and
there is a request for a page not present in the buffer, the DBMS must pick one of the
buffer pages not in use in the moment and remove it from the buffer to create space for
the requested page to be loaded from disk to memory.

A replacement policy is the algorithm by which the DBMS chooses which page to
remove from the buffer when needed. There is a wide variety of well-known replacement
policies. The choice of the most appropriate policy is important, since it directly affects
performance by having a big impact on the number of disk I/O requests. It is worth noting
that no policy is uniformly appropriate for typical DBMS access patterns, being necessary
a careful analysis of tradeoffs to chose the most suitable policy for a certain situation.

The "First-in, First-out" (FIFO) (Tanenbaum 2007) is one of the most simple, cheap
and intuitive algorithm for page replacement. The idea is to have pages in buffer organized
in a queue in such a way that requested pages are pushed into the back of the queue in
order of arrival. The page at the front of the queue will contain the earliest page requested
and the back of the queue will contain the most recent page requested. When the buffer is
full and a page needs to be removed, the page at the front of the queue is selected.

The "Second Chance" (Tanenbaum 2007) algorithm offers an improvement on the
FIFO algorithm by introducing a reference bit which is set when the page is inserted into
the buffer. When looking the front of the queue for a page to be removed, it first verifies
the reference bit. The page is selected if the reference bit is clear. If the reference bit is
set, it is then cleared and the page is pushed into back of the queue again.

Another version of the FIFO and "Second Chance" algorithm, called "Clock"
(Tanenbaum 2007), keeps a circular list of the pages in buffer memory instead of a queue.
A “hand” iterator indicates the last examined page in the circular list. When a page needs
to be removed from buffer, the reference bit of the page indicated by the “hand” iterator
is examined. If it is not set, the page is selected to be replaced. If the reference bit is
set, it is cleared and the “hand” iterator is moved to the next position following a circular
clock-like order. The process repeats until a page is selected to be removed.

The "Generalized Clock" algorithm (GCLOCK) (Smith 1978) is a variant of "Clock"
that introduces a weight integer value instead of a reference bit. Whenever a page is
requested or referenced in the buffer, the page weight is incremented. The page weight
value is decremented when it is examined and the “hand” iterator pass by to the next page
in the circular list. A page is selected when its weight value is zero. The next steps are
similar to the "Clock" algorithm described above.
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The algorithm known as "Least Recently Used" (LRU), defined in (1), uses a linked-
list data structure to keep track of pages usage over a short period of time. At the back
of the linked-list resides the least recently used page and at the front the most recently
used page. Whenever a page is requested or referenced, it is moved to the front of the list,
causing pages with less access frequencies to move towards the back of the list. When the
buffer is full and a page needs to be removed, the page at the back of the list, at the least
recently used position, is selected.

2.4 The WattDB Project

In todays world, with the growth of modern technology and its increasing presence
in society the concept of energy efficiency is drawing more attention and interest than it
did a few years ago. Energy efficiency can be defined as using less energy to provide the
same service. Investments are made in the research and development of new technologies
focusing on energy efficiency in a way to reduce energy consumption and consequently its
related costs. It is worth noting that such concept is important from a sustainable economy
point of view, making it also present in all the wide range of technology fields.

From database technologies perspective, large servers are composed by powerful
multi-core processors, a great amount of memory and storage disks. These servers con-
sume a considerable amount of energy and because of the need to maintain response and
latency times low, they usually do not employ energy saving mechanisms such as standby
or spin-down idle disks. Even if peak load times require fast and heavyweight hardware to
guarantee performance, most of the energy will be waste during times of low load. With
the energy costs steadily increasing, it is desirable to have low consumption and energy
scalable systems to avoid waste of energy by providing what is called energy proportion-
ality. The energy proportionality paradigm means a server should only consume energy
proportionally to its workload-driven utilization.

The WattDB project (Haerder e Schall 2012) proposes a locally distributed database
system that runs on a cluster of lightweight nodes. By switching the nodes on and off, it is
possible to the server to adapt the cluster to the current workload and to consume almost
no energy when being idle. The system is capable of managing the nodes in a way that
the overall energy consumption will scale proportionally with the given load, making it
energy proportional. An overview of the WattDB logical cluster architecture can be seen
in Figure 2.1.

2.5 Non-blocking Algorithms

When developing a multithreaded application, the most common problem a developer
may face is to manage the access to a shared resource by multiple threads. For years the
traditional approach to solve this problem is to use mechanisms like mutexes, semaphores
and monitors, for example. Such mechanisms define a portion of the code that is not
executed concurrently. This portion of code is called a critical section and all the access
to shared resources should be within it. Whenever a thread needs to execute a critical
section, it should acquire the lock associated with this section, and if the lock is held by
another thread, it should block and wait until the lock is free. All the managements of
locks and threads is done by the operating system.

This technique was created and largely used in times where most of the applications
were developed for a single CPU environment. Even though we had the concept of par-
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Figure 2.1: Logical architecture of WattDB cluster. From (Haerder e Schall 2012).

allelism in a single CPU by using time-sharing, nowadays we have what is called true
parallelism with multicore processors environments becoming more and more common.
In such environments, locking mechanisms may not be the best solution for synchro-
nization issues. Worse than that, locks may even become a problem itself and affect the
performance of a whole system in a negative way. Some alternatives have been suggested
to deal with the problems introduced by locks, and one of them is simply not to use them.

In a simple way, a multithreaded algorithm is considered to be non-blocking if the ex-
ecution of a thread is not indefinitely postponed by mutual exclusion mechanisms. These
algorithms can be classified as:

• Wait-free: each thread completes in a finite number of steps.

• Lock-free: allow individual threads do starve, but the system as a whole make
progress.

• Obstruction-free: a single thread executed in isolation for a bounded number of
steps will complete its operation.

Wait-freedom is the strongest non-blocking property, guaranteeing system-wide
throughput and individual thread progress. This guarantee is very hard to achieve, and
in some cases the performance is even worse than most blocking approaches. It is im-
portant to note that any wait-free algorithm is also lock-free, the same way any lock-free
algorithm is considered obstruction-free. In this work we are going to focus on lock-free
class.

The idea of lock-free programming is not really not having any lock, but to minimize
the number of locks or critical sections, by using some techniques that allow us not to
use locks for most operations. The usual approach is to use hardware-intrinsic atomic
operations. As a matter of fact, even locks themselves must use those atomic operations.
The difference is that a lock-free program can never be stalled entirely by any single
thread. Also this technique allows concurrent update of shared data structures without
resorting to critical sections protected by operating system managed locks.

Atomic operations are ones which manipulate memory in a way that appears indi-
visible: no thread can observe the operation half-complete. On modern processors, lots
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of operations are already atomic. For example, aligned reads and writes of simple types
are usually atomic. Other important atomic operation is the Compare-And-Swap (CAS)
operation and can be seen in Code 2.1.

bool CompareAndSwap (address, expectedValue, newValue)
atomically:
load value_at(address) into oldValue
if oldValue == expectedValue then
store newValue at address
return true

else
return false

Code 2.1: Semantics of Compare-And-Swap.

The semantics of this operation is defined by atomically comparing the value refer-
enced by address with expectedValue, and if they are equal, swap the value referenced by
address by newValue. The call also indicates the result of the comparison. The pattern
typically involves copying a shared variable to a local variable, performing some spec-
ulative work, attempting to publish the changes to the shared variable using CAS, and
retrying if the attempt failed. The following code snippet illustrates an example on how
to use the defined CAS pattern.

do {
// Copy a shared variable to a local.
oldValue = shared_resource;

// Do some speculative work, not yet visible to other threads.
newValue = oldValue;

//Quit if old shared_resource meets a certain condition.
if(oldValue == CONDITION)

break;

//Try to publish changes to the shared_resource.
} while(CAS(shared_resource, oldValue, newValue));

Code 2.2: Compare-And-Swap use pattern.

However, to implement the underlying mechanism to atomic operations, the CPU
usually has to maintain the coherence between the individual caches of each core by
using mechanisms to lock the communication bus. Figure 2.2 illustrates a environment
with multiple processors, P1..Pn, in which each processor has its own cache. The shared
bus works as a broadcast medium in such a way that each cache controller “snoops” the
transaction on the bus. If the transaction is related to a block contained in a certain cache,
its controller considers the transaction as relevant, otherwise it invalidates the transaction
or supply a value in order to ensure coherence. The amount of time the data will be
locked is supposed to be kept to minimum, providing a lock granularity reduced to a
single hardware instruction.

The main advantages of lock-free programming is to avoid problems intrinsic to typi-
cal locks, such as contention, priority inversion and convoying. Lock-free algorithms are
also kill-tolerant, meaning that the whole system will not halt if any thread is suspended
indefinitely. If we consider performance issues, not using locks avoid all the overhead
related to manage such structures, like process context swapping and scheduling.



27

Figure 2.2: Cache coherence scheme.

It is worth noting that we will soon be facing desktop systems with 64, 128 and 256
cores. Parallelism in this domain is unlike our current experience of 2, 4, 8 cores; the
algorithms which run successfully on such small systems will run slower on highly paral-
lel systems due to contention. In this sense, lock-free is important since it is contributes
strongly to solving scalability. In general lock-free programming trades throughput and
mean latency throughput for predictable latency. That is, a lock-free program will usually
get less done than a corresponding locking program if there is not too much contention,
but it guarantees to never produce unpredictably large latencies.

However, lock-free programming is not a magic bullet, and there are some drawbacks
that must be considered when choosing the best technique for a task. First of all, design-
ing a lock-free algorithm is something non-trivial. It must handle all possible interleaving
of instruction streams from contending processors. Also there are many ways to do the
"atomically commit" part. In terms of performance, in a environment with high con-
tention, it performs worse than locks because we are repeatedly doing work that gets dis-
carded/retried. And finally, it is virtually impossible to design a lock-free algorithm that
is both correct and "fair". This means that (under contention) some tasks can be lucky
(and repeatedly commit their work and make progress) and some can be very unlucky
(and repeatedly fail and retry).
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3 DESIGNING A LOCK-FREE BUFFER FOR WATTDB

In this chapter we are going to discuss important aspects that should be considered
when designing the lock-free buffer in the context of WattDB.

3.1 Design Overview

As described in (Gray e Reuter 1992), the buffer works as a mediator between the
basic file system and the tuple-oriented file system. Its basic function is to move pages
between a disk and the main memory. For an improved performance and faster response
time, the buffer minimizes the number of disk accesses by holding and managing pages in
main memory, as well as coordinating the writing of such pages to disk. It is important to
point that a certain page must be present in the buffer memory so the DMBS can access it
through read/write operations. WattDB operates on raw disk devices instead of using the
OS file system, so there is the need of circumvent the OS buffer to minimize management
overhead and also to meet the special needs of a database access patterns.

The buffer manager administers an area of shared virtual memory, which is partitioned
into portions of equal size called frames. Each frame can hold exactly one page. The
basic operation of the buffer manager is illustrated in the flow chart in Figure 3.1 and is
described as follows:

1. A certain page is requested to the buffer manager and it checks if the page is in its
memory.

2. If the page is found, the buffer manager returns the address of the frame which
contains the page and operation ends here.

3. If the page is not found, the buffer manager searchs for a free frame which can hold
the page to be loaded from disk to memory and returns such frame.

4. If there is no free frame, the buffer manager determines a page that can be removed
from the buffer based on a replacement policy.

5. If the page to be replaced has been changed while in the buffer, the buffer manager
writes it back to its block on disk, else the page can be simply overwritten by the
requested page in the frame. The buffer manager returns the address of the frame.

It is important to note two basic differences between a conventional file buffer and the
database buffer. First, the database buffer returns to the caller the memory address of a
requested page rather than a simple copy of it. This is done because multiple transactions
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Figure 3.1: Buffer manager basic operation.

might have to access and modify the same page and if each transaction get a copy of the
page, modify it and try to rewrite the updated version of the page it would generate an
inconsistency because of the difference versions of the page. The second difference is that
the higher modules who interacts with the buffer only have to inform if their page access
resulted in an update of the page, but it is buffer manager who decides by its own criteria
when the modified page is written back to disk.

3.2 Fix-Use-Unfix Protocol

The buffer manager offers its services to the higher-level layers in the hi-
erarchical architecture by using a FIX-USE-UNFIX protocol (Gray e Reuter 1992)
(Effelsberg e Haerder 1984). The interactions happen via an fix/unfix interface imple-
mented by the buffer manager.

A page identifier is represented by the file to which the page belongs and the page
number in the file. Whenever the caller wants to request a certain page, it must inform
the page identifier to the buffer manager through a fix call and expect the address of the
page frame as the result. However, if the caller informs the buffer manager only the page
identifier, when the buffer becomes full and receives a new request for a page not present
in the buffer, it will have to replace one of the pages currently stored in the buffer. This
creates addressing problems by invalidating the address of the page chosen to be replaced.

The FIX-USE-UNFIX protocol defines an order of interactions that a caller should
follow to access a certain page. A fix counter is used to represent if the status of the page
is available or if it is being currently used. When a fix call is made, in addition to return
the address of the frame which contains the page, it also increases the fix counter by 1.
If the buffer memory is full, the request for a new page is made and the buffer manager
must determine a page to be replaced, the replacement policy will not pick a page which
has its fix counter greater than the default initial value. Thus, after the fix call, the caller
is allowed to use the page and it has guarantees that the page frame address in the buffer
memory will remain valid. When the caller is done with the page, it must explicitly make
an unfix call on the page, which decrease the fix counter by 1, in order to inform the buffer
manager that it no longer wants to use that page.

It is worth noting that multiple callers may access the same page at the same time,
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each one making its own fix call to a page. However, the callers must make sure that for
each fix call there is a corresponding unfix call, making it eligible for replacement when no
one is using it anymore. In addition, all callers using the buffer manager interface must
operate strictly using the FIX-USE-UNFIX protocol. In order to avoid the situation in
which the buffer is filled with irreplaceable pages, it is required that the duration between
a fix call and its corresponding unfix call as short as possible. As a consequence, the fix
and unfix operations are among the most frequently used primitives in a database system,
and thus the efficiency of these operations is extremely important.

As we have mentioned in the previous section, the higher module which interacts
directly with the buffer cannot issue write operations, so it is responsible for informing
the buffer manager if the page it has access was updated. The buffer manager offers an
interface for the caller to set a specific flag in the page to indicate if it is dirty, i.e, modified.
When the buffer manager picks a page for replacement, it checks the dirty flag and writes
the page back to disk if necessary.

3.3 Frame Pool Structure

When designing the buffer manager we should consider as the main data structure an
array of frames, called here a frame pool. The frame pool has an initial fixed size, which
can be modified later on for performance tuning purposes. When initializing the buffer,
all frames in the pool must be made consistent by being marked as free, i.e, not holding a
page.

When all frames in the pool are occupied and a request for a new page is made, the
buffer manager acts directly in the pool in order to define a page to be replaced and give
space for the requested new page. A procedure is invoked by the buffer manager to choose
a page that is not being currently used as the victim to be replaced, based on a replacement
policy.

Since the buffer manager can receive different requests from multiple callers, it must
offer consistency guarantees for concurrent access. These guarantees are usually achieved
by serializing access to the frame pool and other buffer structures via locking mechanisms,
such as mutexes and semaphores. However, to design a lock-free buffer it is required the
use of non-blocking synchronization mechanisms instead of acquiring locks. In the con-
text of the frame pool structure, it is desired to have the replacement policy implemented
as an algorithm based on lock-free programming.

3.4 Lookup Structure

When a page request is made it is required from the buffer manager a fast associative
access to the frame pool to determine if the requested page is in the buffer. Since the
request for a page requires that the caller informs only the page identifier, to achieve the
mentioned behavior it is necessary to have an auxiliary structure to the frame pool that
is associatively addressable via the page identifier. This structure usually uses a hash
function and since the main purpose is to verify if the buffer contains a certain page, it is
here referred as a lookup structure.

Similar to the frame pool previously described, multiple callers share the same buffer
lookup structure and thus the operations on this structure must be synchronized to pro-
tected against concurrent page requests from the callers. To maintain a consistent non-
blocking synchronization buffer management scheme, a lock-free data structure should
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be used to implement the lookup structure.
Lock-free data structures implement concurrent objects without the use of lock mech-

anisms. In multithreaded environments with high concurrency, these structures usually
provide a more robust performance and reliability than conventional lock-based imple-
mentations. However, a common problem to lock-free programming, known as the ABA
problem, is usually present in lock-free data structures algorithm and it must be handled.

3.4.1 The ABA Problem

As previously discussed in other sections, the Compare-And-Swap operation is often
used in lock-free programming. Its use pattern consists of making a local copy of a shared
resource, update this copy and attempting to publish the copy using the CAS operation to
verify if the value of the shared resource was not modified by another thread at the same
time. However, to exemplify the ABA problem let’s imagine an environment with two
different threads attempting to modify the same shared resource. The following scheme
shows an execution path that reproduces the error.

1. The current value of the shared resource is A. The first thread is running and it
makes a local copy of the shared data structure.

2. The first thread is preempted and the seconds thread starts to execute. The second
thread updates the value of the shared resource firstly from A to B and then it
updates the value again from B back to A before being preempted.

3. The first thread is now executing again, it attempts to publish the changes to the
shared resource and succeeds because the current value is A, but it does not see the
changes made by the second thread meanwhile.

Even if the first thread will continue to execute normally, it does not notice the hidden
update made by the second thread. Depending on the algorithm being implemented, the
ABA problem can lead to wrong assumptions and inconsistent states. It is also possible
that an algorithm does not care about hidden updates, and thus it can simply ignore the
ABA problem.

A common scenario of the ABA problem in the context of lock-free data structures
is the implementation of a lock-free linked-list as in (Valois 1995). A thread can delete a
certain entry from the list and insert a new one in the same location of the deleted entry.
If we are dealing with pointers, a pointer to this new entry has the same value of a pointer
to the old entry and there is no way to differentiate.

Solutions exist to work around the ABA problem. In the lock-free linked-list example,
one might simply prohibit the re-use of the memory of a deleted node. However this is
not a practical approach, since memory is a finite resource, no matter how big it is.

The use of garbage collection mechanisms would prevent the ABA problem, since
it traces and manages the use of dynamically allocated objects by reference counting.
Yet, garbage collection mechanisms are not universal and are not present and portable to
multiple systems that do not offer support. Also, these mechanisms are usually not lock-
free and, considering the case of failure or delay, they could prevent threads from making
progress indefinitely, violating the lock-freedom property.

The use of a different version of the Compare-And-Swap operation is also a candi-
date for solution, as presented in (Detlefs et al. 2001). The Double-Compare-And-Swap
(DCAS) operation takes two address and compares each one of them with two expected
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values, updating the address values with two pre-supplied expected values if the com-
parison matches. In addition to not being supported in many hardware architectures,
(Doherty et al. 2004) demonstrates that DCAS does not provide more significant pro-
gramming power to solve non-blocking synchronization problem than the simple CAS
operation.

The lock-free safe memory reclamation method presented in (Michael 2004), use haz-
ard pointers to allows the reuse of the memory of deleted nodes and provides a solution
to the ABA problem for pointers to dynamic memory nodes. Each thread keeps a list of
hazard pointers that are pointers to indicate which memory nodes a certain thread is cur-
rently accessing. By checking the hazard pointer list of the other threads, it is possible to
determine if a certain shared resource can be safely modified without provoking the ABA
problem, or not.

There are other different workarounds to the ABA problem, but the focus of this sec-
tion was to present the problem and give an overview of the most known approaches.
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4 IMPLEMENTATION OF THE LOCK-FREE BUFFER

This chapter discusses the implementation of buffer using non-blocking synchroniza-
tion. We are going to start by presenting a typical buffer based on locking synchronization
and then we are going to introduce modifications to the blocking scheme in order to make
it a non-blocking scheme.

4.1 Implementation Overview

First of all it is important to note that the following implementation has some require-
ments. The programming language used is C++ with Gnu Compiler Collection (GCC)
(GNU Project 2013) and the implementation takes place in a Linux system and x86_64 in-
struction set architecture. To implement non-blocking algorithms it is required a hardware
architecture that offers atomic primitives like Test-And-Set and Compare-And-Swap. It
is also highly desirable to have atomic load and store operations for primitive data types.
The x86_64 architecture offers these guarantees. GCC also offers built-in functions for
atomic memory access in order to facilitate the usage of atomic primitives, usually pro-
grammed in assembly code.

In order to demonstrate the steps taken to implement a database lock-free buffer based
on non-blocking synchronization we are going to start by giving an overview of the buffer
main structures, classes and methods considering the usage of classic synchronization
mechanisms, as mutexes. The Figure 4.1 below shows an UML-like diagram of the
classes, its attributes, methods and relations. For now, some aspects like constructors,
destructors, method parameters were omitted in the diagram for simplicity.

Figure 4.1: Overview of buffer diagram.

The Buffer class is the only entry point for a client to request the buffer services. The
Buffer class has as attributes its in bytes, a pointer buffer to the beginning of a reserved
portion of memory space of size size and the mutex bufferLock to synchronize access to
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shared portions of code during concurrent access. The portion of memory pointed by
buffer is where the buffer is going to keep pages loaded from a disk device.

The Buffer class also contains an associative container as the lookup structure, which
is implemented here as a hash map. Access to the lookup structure must be also synchro-
nized, meaning that the Buffer class must lock its mutex when accessing the structure in
the case that the structure does not offer this behaviour intrinsically.

The last Buffer class attribute to be considered is the policy. The policy attribute is here
defined by the BufferPolicy class, which is in fact implemented as an abstract class. In
order to implement a replacement policy, a new class must be define to extend the Buffer-
Policy class and overwrite its virtual methods. Thus, the abstract methods defined by the
BufferPolicy class must be implemented by a concrete class that defines a replacement
policy, since different replacement policies may have different behaviours on operations
like fix, unfix, dirty, etc.

The BufferPolicy class also defines the victim method. This method is called everytime
a new page request is made to the buffer manager, there is no available frame and the
buffer manager must choose a page that is not being used to be removed from the buffer
memory, in order to create space in the memory for the requested page. This method
acts directly on the frame pool structure which must be defined by the class implementing
a replacement policy. As mentioned in the previous chapter, the frame pool is a shared
structure in the sense that multiple concurrent requests may result in a call to the victim
method. To handle the concurrent access, the buffer must synchronize calls to the victim
method using its mutex.

The Frame class has the basic structure to represent important elements of a frame. In
addition to uniquely identify a frame, the frame_id attribute is used to access the portion
of memory in which a page is stored by indexing the buffer attribute of the Buffer class
which points to the beginning of the buffer memory. The page_id attribute is used simply
to identify which page the frame currently holds. The fixCount attribute indicates whether
the page is being used, is eligible for replacement or is being brought into the buffer by
another concurrent thread. The Figure 4.2 shows the possible states of a frame concerning
the fixCount attribute. The dirty and occupied flags are used to indicate if the page was
modified while in the buffer or if the frame is currently free, i.e, not holding a page,
respectively.

Figure 4.2: Frame possible states.

Finally, the buffer manager offers its services to the clients by the fix, unfix and dirty
methods of the Buffer class. A client willing to access a page must make a call to the fix
method passing as arguments the page_id and a pointer which is going to be used for the
output of the requested page address in the buffer memory space. After using the page
via the address returned in the pointer parameter, the client must call the unfix method to
inform it is no long using the page. If the client modified the page, it must call the dirty
method before calling the unfix method in order to let the buffer manager know the page
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was modified and take the required measures.
The diagram in Figure 4.3 shows a more detailed version of the previous diagram,

implementing the policy Least Recently Used.

Figure 4.3: Overview of buffer diagram with LRU replacement policy.

The LRU class defines the framePool attribute as a linked-list of LRUFrame. The
first attribute is a pointer to the head of the list, which has the most recently used frame.
Analogously, the last attribute is a pointer to the tail of the list, which has the least recently
used frame. The LRU class must overwrite the methods of the BufferPolicy class in order
to move a page to the head of the list every time it is accessed. It must also implement
the victim method to determine a page to be replaced, returning its frame. The victim
method has to search the linked-list backwards, checking for eligible frames and return
the first found. If no eligible frame is found, it returns a NULL pointer which should
be interpreted by the caller of the victim method. Since a mutex is used, search and
modification operations to the linked-list can be issued without worrying with further
synchronization problems. Code 4.1 shows the pseudocode for the behaviour of moving
a frame to the head of the list when it is used and Code 4.2 shows the pseudocode for the
victim method.

void LRU::use(Frame *f) {
lock(&bufferLock);
LRUFrame *frame((LRUFrame *) f);
if(frame == first) {
unlock(&bufferLock);
return;

}
if (frame->prev) {
frame->prev->next = frame->next;

}
if (frame->next) {
frame->next->prev = frame->prev;

}
if (last == frame) {
last = last->prev;

}
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frame->next = first;
frame->prev = NULL;
first->prev = frame;
first = frame;

unlock(&bufferLock);
return;

}

Code 4.1: Method for moving the frame to the head of the list.

Frame* LRU::victim() {
lock(bufferLock);
for (LRUFrame *frame = last; frame != 0x0; frame = frame->prev) {
if (frame->fixCount == 0) {
frame->fixCount = -1; /* page is being brought */
unlock(bufferLock);
return frame;

}
}

unlock(bufferLock);
return NULL;

}

Code 4.2: Method victim() to determine a page to be replaced.

4.2 Nb-GCLOCK: A Non-blocking Replacement Policy

The implementation of a lock-free replacement policy is needed in order to provide
concurrent access to the frame pool structure without locking the whole structure. We
are going to implement a replacement policy based on the non-blocking version of the
GCLOCK algorithm (Nb-GCLOCK) introduced by Makoto Yui in (Yui et al. 2010).

Since the BufferPolicy class victim method acts directly on the frame pool structure, it
must handle the frame attributes. As seen in the previous section, the main attribute used
by the replacement policy to determine a victim is the fixCount attribute. Once we do not
want to locks, there is the need of basic non-blocking operations to manage the frame fix-
Count attribute state in an atomic way. We then modify the previously introduced Frame
class to declare the fixCount attribute as volatile. In C++ the volatile keyword in a variable
declaration introduces a guarantee that no reordering will occur between reads and writes
of this variable. The effect is the same of introducing a memory barrier to indicate that no
memory access will be reordered across the barrier point. We also introduce two meth-
ods to modify the fixCount attribute using the CAS operation supported by GCC atomic
builtins. From now on all operations on the fixCount attribute must be through these meth-
ods. Figure 4.4 shows the redefined Frame class. The pin and unpin methods are used
to increment and decrement the fixCount attribute, respectively. Because we are using
the instruction set architecture x86_64, and since the fixCount attribute is represented
as an integer, we assume that load and store operations are also atomic. Furthermore, it
is required a weightCount attribute in the Frame class to store the weight of each frame
needed by the GCLOCK algorithm. The code for the pin and unpin methods can be seen
in Code 4.3.

bool Frame::pin() {
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int x;
do {
x = fixCount;
if(x <= -1)
return false;

}while (!__sync_bool_compare_and_swap(&fixCount, x, x+1));
return true;

}

void Frame::unpin() {
__sync_fetch_and_sub(&fixCount, 1);

}

Code 4.3: Pin and Unpin methods to set fixCount value

Figure 4.4: Redefined Frame class.

The pin method is used to indicate that the corresponding frame is being requested.
It attempts to increment the frame fixCount attribute if its value is equal or greater to
0, meaning that the frame is available or another thread is also using it, respectively. If
the current value of the fixCount attribute is -1 or less, it means that the frame is currently
being set and there is a page being brought to buffer by another thread, so it is not available
for use. Once the method is called, it attempts to atomically increment the frame fixCount
attribute until it succeeds, returning true, or until another thread begin the process of
setting a frame, making it unavailable and returning false.

Since the buffer must follow the FIX-USE-UNFIX protocol, we assume that every
call to the unpin method is made after a corresponding call to the pin method, thus we can
simply atomically decrement the value of the fixCount attribute without worrying with
further guarantees.

By using the previous described structures and primitives, we can modify the Buffer
class victim method to determine an eligible page to be replaced without the need of
blocking synchronization. The frame pool structure here is seen as a circular linked-list.
The replacement policy requires a handIterator attribute to mark the frame from which
the algorithm is going to start to search for victims.

The idea is to iterate through the circular linked-list of frames, starting by the frame
pointed by the handIterator attribute, decrement and check the weightCount attribute of
each frame to verify if it is 0 or less. In this case, the page has been in the buffer memory
long enough and if the page is not being used currently, it sets the fixCount attribute to -1
meaning that this frame is going to be used to load the new request page. Otherwise, if
after decrementing the weightCount attribute the page is still being used, it simply steps
to the next frame in the circular linked-list until it finds a suitable victim. In order to
introduce a less drastic stop condition than simply looping through the circular linked-list
until it finds a victim, we define that each call to the victim method will iterate through all
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the elements only once, returning a NULL pointer if no victim was found. This NULL
return value should be interpreted by the caller of the victim method as there is no eligible
victim at the current time, and it can take actions like thrown an exception or move the
current thread to the end of the execution queue in order to give other threads a chance.

The Code 4.4 illustrates the pseudocode of the non-blocking victim method as well
as the auxiliary moveClockHand method.

Frame* NbGCLOCK::victim() {
unsigned int numpinning = 0;
const int start = this->hand;

for(unsigned int i=start%size;;i=(i+1)%size) {
NbGCLOCKFrame* const frame = &(this->frames[i]);
const int pincount = frame->fixCount;

if(pincount != 0) {
if(++numpinning >= size) {
return 0x0;

}
continue;

}

if(__sync_sub_and_fetch(&(frame->weightCount), 1) <= 0) {
if(__sync_bool_compare_and_swap(&(frame->fixCount), 0, -1)) {
frame->weightCount = 0;
this->moveClockHand(i, start);
return frame;

}
}

}
}

void NbGCLOCK::moveClockHand(int curr, int start) {
int delta;
if(curr < start) {
delta = curr + size - start + 1;
}

else {
delta = curr - start + 1;

}
__sync_fetch_and_add(&(this->hand), delta);

}

Code 4.4: Victim and moveClockHand methods.

By using an algorithm based in GCLOCK, every time a frame is used, all we have
to do is to atomically increment the weightCount attribute of this frame, in contrast with
LRU where it would be necessary to move the frame to the head of the linked-list which
could provoke a reordering of other frames. The Code 4.5 shows the method to be called
everytime a page is accessed.

void NbGCLOCK::use(Frame *f) {
NbGCLOCKFrame *frame((NbGCLOCKFrame *) f);
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__sync_fetch_and_add(&(frame->weighCount), 1);
}

Code 4.5: Method for incrementing the weightCount

The following Figure 4.5 illustrates the buffer diagram with the Frame class modifi-
cations and the NbGCLOCK policy class.

Figure 4.5: Overview of buffer diagram with Nb-GCLOCK replacement policy.

4.3 A Lock-free Hash Map

As mentioned in the previous chapter, the buffer manager needs a lookup structure
with associative access to the frame pool to quickly determine if a requested page is in
the buffer memory space. A good choice is a hash map structure that maps a page_id to
the address of the frame holding this page in the frame pool. By having the address of
the frame it is possible to make any operations necessary by using its pointer. The hash
map is implemented as a container and it should offer the basic operations of searching,
inserting and deleting an entry.

Usually generic containers are already implemented by external sources like the C++
Standard Template Library(STL) or by the GCC compiler itself as part of the __gnu_cxx
Namespace. Even if it is likely that concurrent operations on a hash map will access
disjoint locations, meaning that a situation where multiple threads are competing for the
exactly same node is very rare, there is still need for synchronization. None of these two
mentioned implementations are thread-safe and thus it is responsibility from the external
agent accessing the hash map to synchronize the access.

The Intel Thread Building Blocks library (TBB) (Intel 2013) offers an implementa-
tion of a concurrent_hash_map. However this implementation still uses inner blocking
synchronization mechanisms for each group of one or more hash map entries. Once an
entry is retrieved from the structure by a thread, this thread holds and implicit lock in
order to guarantee synchronized access. When a hash map entry needs to be accessed it
must be specified if the access is going to be for a read-only or write operation. In the case
of a read-only access, multiple threads can access the same entry simultaneously, but if
it is a write access the execution of each thread is serialized. Furthermore, the TBB con-
current_hash_map does not allow the delete of an entry even if the current thread holds
the write-lock of this entry. The delete operation is a “blind operation”, in the sense that
it simply deletes an entry from the structure with no further guarantees. The caller can
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never be certain that erasing an entry from the structure is a good idea, because there is
no guarantee that another thread did not add something important to that same entry in
between the time the caller decided the entry was erasable and the time the caller actually
erased it. Since it is not possible for a thread to erase an entry that it has access to (i.e.
has a write-lock on), there is a race condition between the thread fetching the contents of
the hash map entry and the thread removing that entry from the hash map.

Finally, an indeed lock-free hash map data structure is proposed in (Michael 2002).
The drawback of this algorithm is that it requires a memory management method in order
to avoid the ABA problem when the re-use of dynamic memory nodes is made neces-
sary. Libcds (Khizsinsky 2013) implements this lock-free hash map algorithm and it also
provides as memory management method a safe memory reclamation method based on
hazard pointers. Although it is required that every thread accessing the hash map struc-
ture registers with the safe memory reclamation system, the overhead introduced by this
should not be significant.

4.4 Buffer Fix Method Implementation

Assuming Nb-GCLOCK as replacement policy and the lock-free hash map structure
provided by libcds, we are going to present the pseudocode for the Buffer class fix method.
The code for the unfix method and dirty method are presented at the end as well. Since we
defined that the buffer manager operates on a FIX-USE-UNFIX protocol, the unfix method
and dirty method are trivial because we assume they always happen after a fix call and
then we can safely operate on a frame without worrying so much about consistency of
concurrent operations.

void Buffer::fix(const page_id_t& page_id, Page*& page) {
Frame* frame;
for (;;) {
/* STEP 1: look for page in HashMap */
functor f;
const bool miss = !(HASH_MAP.find(page_id, cds::ref(f)));
frame = miss ? 0x0 : f.value; /* f.value is the Frame* */

/* STEP 2: Check if the page_id was found in the buffer.

* Try to increment fixCount to see if the frame is

* available and to guarantee that the frame wont be

* picked by the victim() method in another thread. */
if (miss || !(frame->pin())) {
/* MISS */

/* STEP 3: Get a free victim from the frame pool. */
Frame* const victim = policy->victim();

/* STEP 4: Verify if a free victim was found. */
if (victim == NULL) {
sched_yield(); /* If not found, yield the current thread */
continue;

}

/* STEP 5: Verify if the victim was previously
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* occupied and if it needs write-back. */
if (victim->occupied) {
if (victim->dirty) {
write page back to disk
victim->dirty = false;

}
victim->occupied = false;

/* If the victim was occupied, remove the previous

* association from the map. */
HASH_MAP.erase(victim->page_id);

}

/* STEP 6: Try to insert the new association into the map. */
const bool inserted = HASH_MAP.insert(page_id, victim);

/* STEP 7: If it was not inserted this means that there was

* a previous association. */
if (!inserted) {
/* Get previous association */
HASH_MAP.find(page_id, cds::ref(f));
Frame* const prevFrame = f.value; /* f.value is the Frame* */

/* I am not going to use this victim.

* So make it available for other threads in the victim()

* method. */
victim->page_id.container = -1;
victim->page_id.page = -1;
victim->occupied = false;
victim->dirty = false;
victim->fixCount = 0; /* Until here victim->fixCount is -1. */

/* Test pin() first to guarantee the prevFrame

* wont be picked by victim(). */
if(prevFrame->pin()) {
/* Test if page_id is the same, in case it

* was modified by another thread. */
if(prevFrame->page_id == page_id) {
frame = prevFrame; //Good, I use prevFrame
page = (Page*) &buffer[frame->frame_id * PAGE_SIZE];
page->getHeader().frame = frame;

}
else { /* page_id was modified meanwhile. */
__sync_fetch_and_sub(&(prevFrame->fixCount), 1); //undo pin()
continue; //Try again

}
} else { //pin() failed
//Try again
continue;

}
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} else { /* Association was successfully inserted!*/
/* I use the victim */
frame = victim;
frame->page_id = page_id;
frame->occupied = true;

page = (Page*)&buffer[frame->frame_id * PAGE_SIZE];
page->getHeader().frame = frame;
page = load page from disk

frame->fixCount = 1; /* until here victim->fixCount is -1 */
}
break;

} /* END if (miss || !(frame->pin())) */
else {
/* Possible HIT */
if(frame->page_id != page_id) {
/* but page_id was modified meanwhile */
__sync_fetch_and_sub(&(frame->fixCount), 1);
continue;

}
else {
/* HIT indeed */
page = (Page*)&buffer[frame->frame_id * PAGE_SIZE];
page->getHeader().frame = frame;
break;

}
}

} /* END for(;;) */

/* Call for policy fix event */
policy->fix(frame);

}

Code 4.6: Buffer non-blocking fix method.

void Buffer::unfix(const page_id_t& page_id, Page*& page) {
/* Page MUST BE in map, because fix() was

* called before. */
Frame* const frame = page->getHeader().frame;
__sync_fetch_and_sub(&(frame->fixCount), 1);
policy->unfix(frame);

}

Code 4.7: Buffer non-blocking unfix method.

void Buffer::dirty(const page_id_t& page_id, Page*& page) {
Frame* const frame = page->getHeader().frame;
frame->dirty = true;
policy->dirty(frame);

}

Code 4.8: Buffer non-blocking dirty method.
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5 LOCK-FREE BUFFER RESULTS

In this chapter, experiments and results achieved by different implementations of the
buffer manager will be compared and discussed.

5.1 Experiments Workloads

At the time of this work, complex query capabilities were not yet completely im-
plemented in WattDB and therefore typical benchmark tools of OLTP queries were not
available. In order to run the experiments, we created artificially workloads generated
to simulate page requests to the buffer manager. These workloads were based on the
access pattern of the TPC-C benchmark (TPCC 2010) , which is used to measure the
performance of online transaction processing (OLTP). The trace of pages requests issued
during the TPC-C benchmark were used to generate the initial workload.

In order to create a more realistic scenario, this initial workload was modified to create
a mixed workload. It was introduced artificial processing to each requested page, as well
as a chance for a page being accessed to be modified, creating the need to write this page
back to disk before it is removed from the buffer memory space. Furthermore, the initial
workload was also modified to include a chance of occasionally start scans of sequential
pages in order to simulate online analytical processing queries (OLAP).

Databases in general make use of indexes for improving the speed performance of data
retrieval operations on tables. An index is a data structure that stores values of columns
of a table, usually sorted, and is used for fast lookup of these values, since it reduces
the number of records/rows in a table that need to be examined. Indexes use additional
storage space, and so it is not advisable to have an index on every column. In order to
provide access to other values of a certain row, an index stores a reference to the page
address where this record is stored, in addition to the value of the selected column to
create the index.

It is important to point that indexes have direct influence on the behaviour of the access
patterns which are simulated by the created workload. Assuming that indexes are created,
most of the queries will make use of them to search for the data page of a record rather
than scanning each row in a table. Since indexes are data structures also stored in the
database, this means that indexes pages tend to have an access frequency much higher
than normal data pages, even if there are a lot less indexes pages when compared to data
pages in a database. The Figure 5.1 illustrates this scenario where the “hot pages” at the
top of the pyramid represent the most accessed pages, i.e, the indexes pages.

Finally, the goal of these experiments is to compare the algorithms and data structures
proposed that use non-blocking synchronization mechanisms with classical approaches.
As previously mentioned in this work, one of the advantages of lock-free programming
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Figure 5.1: A small amount of pages are the most accessed pages.

is the improvement in scalability in multicore and high concurrent environments. To
simulate this and to make the simulation more CPU-bound than I/O-bound, we introduced
a set of threads, each one representing a database client running its own workloads.

5.2 Experiments Environment

The experiments were executed in the environment, which is described in the follow-
ing Table 5.1.

Operating System Ubuntu 10.04 LTS
Kernel Version Linux 3.2.0-38-generic
Cores (#Threads/Core) 2(2)
CPU Frequency 2.13 GHz
Main Memory 4 GB
Disk 7200 RPM
L2 Cache Per Core 256 KB
Database Size 32 GB
Database Page Size 8 KB

Table 5.1: Description of environment used to run experiments.

5.3 Experiments Results

In this section we are going to show, compare and discuss results of experiments
concerning implementations of a database buffer.

5.3.1 Hit Rate

The following experiment was executed to compare the buffer hit ratio of three differ-
ent approaches. On the first one and second approach, the buffer uses LRU and GCLOCK
as replacement policy, respectively. On both of them the lookup structure is a hash map
and the access to it is synchronized by typical mutual exclusion locks. The third approach
has the Nb-GCLOCK algorithm for replacement policy and uses a lock-free hash map
implemented by libcds. The experiment used 32 threads concurrently executing their own
workload. For each approach the experiment was executed 30 times and the average is
compared in the Figure 5.2 below.

When comparing Nb-GCLOCK and the classical GCLOCK algorithm for replace-
ment policy, we notice in the comparison chart that the hit rates show a similar tendency,
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Figure 5.2: Comparison of Hit Rate when buffer size increases.

and this happens basically because Nb-GCLOCK is totally based on GLOCK. The small
discrepancy between the hit rate of LRU and GCLOCK/Nb-GCLOCK at low buffer sizes
happens probably because of the sequential scans that happen casually. Since LRU is
based on the time frequency of pages, when a scan occurs it swaps a considerable amount
of pages from the buffer, starting from the least recently used one, but affecting also pages
that were recently used. GCLOCK and Nb-GCLOCK are tolerant to this behaviour be-
cause the weight counter of each page guarantees that pages being accessed more often
do not get swapped out from buffer by pages that will be accessed only once, i.e, while
LRU respects only recency of pages, the weight counter guarantees that GCLOCK and
Nb-GCLOCK will take frequency into account, as well. However, we can notice that
when the buffer size increases and it has enough capacity, this behaviour is less harmful
to the hit rate and the differences are minimized.

5.3.2 Execution Time

The following experiment compares the execution time when we fix the buffer ca-
pacity and vary the number of threads, i.e, concurrent clients, executing the workloads.
Again we compare the three different versions with LRU and GCLOCK using a hash map
synchronized by mutual exclusion locks and Nb-GCLOCK using the lock-free hash map
implemented by libcds. The buffer size was fixed in 32 Megabytes. For each approach the
experiment was executed 30 times and the average is compared in the Figure 5.3 below.

Comparing LRU and GCLOCK, we can notice that from the beginning, with only
16 threads, there is no big difference in the execution time. As the number of thread
increases, so does the difference between the execution time of LRU and GLOCK.
GCLOCK performs better than LRU because the algorithm has a lower overhead and
provides a lower probability of lock contention. Consequently it is expected to have a
better performance in concurrent environments. Now analyzing Nb-GCLOCK combined
with a lock-free hash map, we can verify that it scales much better than the other two
approaches. Considering that a buffer manager is also I/O dependent, this behaviour is
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Figure 5.3: Comparison of execution time when number of threads increases.

justified because when we increase the concurrency level, it causes problems like priority
inversion and convoying tend to happen more often and this impact directly on perfor-
mance.

Figure 5.4 illustrates the comparison between buffer managers implementations with
different lookup structures: hashmap using mutual exclusions, Intel Thread Building
Blocks concurrent_ hash_ map and HashSet implemented by libcds. Since the goal
is to compare the three data structures alone, all of the three implementations use Nb-
GCLOCK as replacement policy. For the experiment the buffer size is kept constant at
32 Megabytes and the number of threads is increased. For each approach the experiment
was executed 30 times and the average is compared.

Again, all of three implementations present the same behaviour in scenarios with low
to moderate concurrency. It is important to note that in this case, the lock-free structure
is not a dominant factor in terms of the scalability and other alternatives, even if they use
blocking synchronization, can be used instead. This is justified because access to hash
maps are unlikely to happen in the same portion of the structure implying a little need
for synchronization. When the concurrency level is increased from a certain point, the
difference of a lock-free implementation is notable because concurrent access to the same
portion of the structure need to be more frequent. However, even if a lock-free hashmap
is not dominant in terms of scalability, it is important to ensure the lock-freedom property
of the whole buffer.
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Figure 5.4: Comparison of execution time when number of threads increases.
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6 CONCLUSION

This work presented the design and implementation of a lock-free database buffer in
the context of the WattDB project based on non-blocking synchronization. Initially, all
the important concepts required for the full understanding of this work were introduced.
After, important aspects that should be considered when designing a lock-free buffer were
presented and the implementation was discussed. Finally experiments and results were
shown.

Lock-free programming is a very promising concept in the context of highly con-
current environments. Lock-free algorithms offer good properties and advantages over
classical blocking programming, being freed from synchronization problems like dead-
locks, priority inversion and convoying. However, these algorithms tend to be much more
complex to implement and often impose environment restrictions. The design and under-
standing of algorithms using non-blocking synchronization require more time than those
of mutual exclusion and this complexity is the main obstacle for programmers to accept
non-blocking synchronization.

Nevertheless, new lock-free algorithms like concurrent data structures with non-
blocking synchronization are being frequently proposed. These data structures can pro-
vide to programmers basic building blocks for their applications. Also, memory man-
agement schemes for non-blocking synchronization exist and are highly desirable to help
the designing of these algorithms and overcome initial obstacles. These technologies are
crucial and can lower the entry cost of using non-blocking synchronization.

In this work we presented and discussed the aspects and designing of a lock-free
database buffer. We implemented a buffer based on a lock-free hash map structure and
a non-blocking replacement algorithm for the buffer’s frame pool. Since database buffer
operations are the most frequent operations called in a database, the goal was to improve
the performance of such operations in highly concurrent environments and CPU-bound
scenarios.
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