
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RODRIGO POSSAMAI BASTOS

Design of a
Soft-Error Robust Microprocessor

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Prof. Dr. Ricardo Augusto da Luz Reis
Advisor

Porto Alegre, August 2006.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Bastos, Rodrigo Possamai

Design of a Soft-Error Robust Microprocessor / Rodrigo
Possamai Bastos – Porto Alegre: Programa de Pós-Graduação em
Computação, 2006.

120 f.:il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2006. Advisor: Ricardo Augusto da Luz Reis.

1. Fault-tolerant microprocessor. 2. Soft Errors. 3. SET. 4. SEU.
5. Integrated circuit design. I. Reis, Ricardo Augusto da Luz. II.
Título.

CONTENTS

LIST OF ABBREVIATIONS... 7

LIST OF FIGURES... 9

LIST OF TABLES .. 11

ABSTRACT.. 13

RESUMO.. 15

1 INTRODUCTION .. 17

2 A RADIATION-INDUCED FAULT MODEL .. 21

2.1 The Basic Radiation-Induced Effects on Integrated Circuits 21
2.1.1 Occurrence Rate of Radiation-Induced Effects .. 23
2.1.2 Modeling of Radiation-Induced Effects ... 24

3 SOFT ERROR MITIGATION TECHNIQUES.. 31

3.1 Triple Modular Redundancy (TMR)... 32
3.1.1 Area and Performance Analysis ... 33
3.2 Time Redundancy (TR) + Code Word State Preserving (CWSP) 33
3.2.1 Area Analysis ... 35
3.2.2 Performance Analysis... 37

4 DESIGN OF A ROBUST MICROPROCESSOR... 39

4.1 The Target Microprocessor .. 40
4.2 Fault-Tolerant Circuit Design .. 43
4.3 Integrated Circuit Design Flow.. 45
4.3.1 The Developed Design Flow .. 46
4.4 Front-End Logical Design... 48
4.4.1 Non-Protected Version or Susceptible to Direct and Indirect SEUs 48
4.4.2 TMR Version or Robust to Direct SEUs.. 52
4.4.3 TMR+TR+CWSP Version or Robust to Direct and Indirect SEUs 54
4.5 Back-End Physical Design .. 58
4.6 Some Fault-Tolerant Circuit Characteristics ... 64
4.6.1 The Maximum Width of SETs ... 64
4.6.2 Multiple SEUs .. 65
4.6.3 SETs on the Elements of the Fault-Tolerance Mechanisms............................... 66
4.6.4 Other Remarks.. 66

5 DESIGN VERIFICATION SIMULATION OF A ROBUST
MICROPROCESSOR .. 69

5.1 Types of Design Verification Simulation... 70
5.1.1 The Developed Types of Design Verification Simulations................................ 71
5.2 Modeling of System for Simulation.. 72
5.2.1 Functional Behavior of the Modeled System ... 73
5.3 Functional Testing by Simulation .. 74
5.3.1 Benchmark Design ... 74
5.3.2 Benchmark Analysis... 75
5.3.3 Benchmark Simulation Characteristics .. 76
5.3.4 Required Processing Time.. 76
5.3.5 Verification of Functional Testing Results... 76
5.4 Fault Injection by Simulation... 78
5.4.1 Instants of the SET Injection .. 79
5.4.2 Widths of Injected SETs... 79
5.4.3 Target Circuit Nodes for the SET Injection.. 80
5.4.4 Verification of Fault Injection Results ... 82
5.4.5 Some Remarks about Fault Coverage of On-Line Self-Checkers...................... 84

6 DESIGN RESULTS OF A ROBUST MICROPROCESSOR....................... 85

6.1 Area Analysis ... 85
6.1.1 Floorplan Characteristics.. 85
6.1.2 About Standard Logic Cells and Other Types of Cells 88
6.1.3 Costs in Area against Robustness... 91
6.1.4 Clock-Tree Elements .. 93
6.1.5 Routing Issues .. 94
6.2 Performance Analysis ... 97
6.2.1 Costs in Performance against Robustness .. 99
6.3 Power Analysis... 99
6.3.1 Costs in Power against Robustness .. 102

7 CONCLUSIONS AND FINAL REMARKS .. 105

REFERENCES... 109

APPENDIX PROJETO DE UM MICROPROCESSADOR ROBUSTO A SOFT
ERRORS.. 117

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

BIST Built-in Self-Test

CAD Computer-Aided Design

CIF Caltech Intermediate Form

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processor Unit

CTLF Compiled Timing Library Format

CWSP Code Word State Preserving

DD Displacement Damage

DEF Design Exchange Format

DRC Design Rule Check

EDA Electronic Design Automation

EDAC Error Detection and Correction

FPGA Field Programmable Gate Array

GDSII Graphical Design System II

HC Hamming Code

HCMOS High-density Complementary Metal-Oxide-Semiconductor

HDL Hardware Description Language

IC Integrated Circuit

IP Intellectual Property

LEF Library Exchange Format

LVS Layout Versus Schematic

MBU Multiple Bit Upset

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

PKS Cadence Physically Knowledgeable Synthesis

PPGC Programa de Pós-Graduação em Computação

PWM Pulse Width Modulation

RAM Random Access Memory

ROM Read Only Memory

RSPF Reduced Standard Parasitic Format

RT Register Transfer

SDF Standard Delay Format

SE Soft Error

SE P&R Cadence Silicon Ensemble Place-and-Route

SEB Single Event Burnout

SEE Single Event Effect

SEGR Single Event Gate Rupture

SEL Single Event Latchup

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SHE Single Hard Error

SOC System-on-Chip

SOI Silicon-on-Insulator

SRAM Static Random Access Memory

TCL Tool Command Language

TID Total Ionizing Dose

TLF Timing Library Format

TCF Toggle Count Format

VCD Value Change Dump

TR Time Redundancy

TMR Triple Modular Redundancy

UFRGS Universidade Federal do Rio Grande do Sul

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

LIST OF FIGURES

Figure 1.1: A TR+CWSP mitigation scheme by standard gates (a) and by non-standard
gates (b). In (c), the TMR+TR+CWSP mitigation scheme that was used 20
Figure 2.1: Main radiation-induced effects on integrated circuits.................................. 22
Figure 2.2: The timing behavior of a memory cell without SE (a) and with SE (b) 26
Figure 2.3: A combinational circuit without SETs (a) and with a SET (b).................... 27
Figure 3.1: Block diagram of the TMR scheme for a 1-bit register 33
Figure 3.2: Block diagram of the TR+CWSP scheme for a 1-bit register 34
Figure 3.3: Timing behavior of a system without the TR+CWSP protection 34
Figure 3.4: Timing behavior of a system with the TR+CWSP protection 35
Figure 3.5: CWSP logic elements (NICOLAIDIS, 1999) .. 36
Figure 3.6: CWSP logic gates (NICOLAIDIS, 1999) .. 36
Figure 3.7: Block diagram of the TR+CWSP scheme using a non-standard gate 36
Figure 3.8: Functional characteristics of the TR+CWSP scheme 37
Figure 4.1: Illustration of a typical microcontrolled system .. 41
Figure 4.2: CPU registers visible to the programmer (FREESCALE, 2003)................. 42
Figure 4.3: Main functional blocks of the M68HC11 architecture 43
Figure 4.4: A typical IC design flow (SMITH, 1997) .. 45
Figure 4.5: The developed design flow .. 47
Figure 4.6: A process from the original VHDL description... 49
Figure 4.7: Combinational and Register blocks in the Non-Protected version 49
Figure 4.8: A VHDL process purely sequential ... 50
Figure 4.9: VHDL process purely sequential with the new interconnection signal 50
Figure 4.10: A VHDL process purely combinational... 50
Figure 4.11: The unique reusable parameterized VHDL component for all registers ... 51
Figure 4.12: Combinational and Register blocks in the TMR version........................... 52
Figure 4.13: Voter component.. 52
Figure 4.14: Package of the fault-tolerance mechanisms (1) ... 53
Figure 4.15: TMR parameterized component for each one of the registers (part 1) 53
Figure 4.16: TMR parameterized component for each one of the registers (part 2) 54
Figure 4.17: Combinational and Register blocks in the TMR+TR+CWSP version 55
Figure 4.18: CWSP block component .. 55
Figure 4.19: Delay block component ... 56
Figure 4.20: Package of the fault-tolerance mechanisms (2) (part 1) 56
Figure 4.21: Package of the fault-tolerance mechanisms (2) (part 2) 57
Figure 4.22: TMR+TR+CWSP component for each one of the registers (part 1) 57
Figure 4.23: TMR+TR+CWSP component for each one of the registers (part 2) 58
Figure 4.24: Initial floorplan parameters for the three microprocessor versions 61
Figure 5.1: Diagram of the system modeled as a testbench in VHDL 73

Figure 5.2: Execution of the JSR instruction by simulation... 74
Figure 5.3: Verification process of functional testing simulation results....................... 77
Figure 5.4: Target circuit nodes in the Non-Protected version....................................... 80
Figure 5.5: SET injected on the Non-Protected microprocessor version 80
Figure 5.6: Target circuit nodes in the TMR version ... 81
Figure 5.7: SET injected on the TMR microprocessor version...................................... 81
Figure 5.8: Target circuit nodes in the TMR+TR+CWSP version................................. 82
Figure 5.9: SET injected on the TMR+TR+CWSP microprocessor version 82
Figure 5.10: Verification process of fault injection simulation results 83
Figure 6.1: Core and chip areas .. 86
Figure 6.2: Non-Protected IC version: preliminary view (left) and final layout (right). 87
Figure 6.3: TMR IC version: preliminary view (left) and final layout (right) 87
Figure 6.4: TMR+TR+CWSP IC version: preliminary view (left) and final layout (right)
.. 87
Figure 6.5: Core utilization... 89
Figure 6.6: Chip area utilization... 90
Figure 6.7: Percent increase in number of cells at chip areas (1)................................... 91
Figure 6.8: Percent increase in chip areas (1)... 91
Figure 6.9: Percent increase in number of cells at chip areas (2)................................... 92
Figure 6.10: Percent increase in chip areas (2)... 92
Figure 6.11: Clock-tree element ratios to total combinational, core or chip elements... 94
Figure 6.12: Percent increase in clock-tree elements ... 94
Figure 6.13: Total wire length through the regular and special wires............................ 96
Figure 6.14: Total wire length through the layers .. 96
Figure 6.15: Percent increase in wire lengths... 97
Figure 6.16: Percent increase in vias and segments ... 97
Figure 6.17: Circuit-extraction information contribution at the worst arrival time........ 98
Figure 6.18: Timing degradation .. 99
Figure 6.19: Total power through its components.. 102
Figure 6.20: Percent increase in static power ... 102
Figure 6.21: Percent increase in dynamic power.. 103
Figure 6.22: Percent increase in total power .. 103
Figure 7.1: Correlation among design results... 106

LIST OF TABLES

Table 4.1: The developed design flow (part 1)... 59
Table 4.2: The developed design flow (part 2)... 62
Table 4.3: The developed design flow (part 3)... 64
Table 5.1: Toggle coverage of the benchmarks on the microprocessor versions........... 75
Table 5.2: Clock cycles of the benchmarks.. 76
Table 5.3: All functional testing simulation approaches .. 78
Table 5.4: All fault injection simulation approaches.. 84
Table 6.1: Floorplan characteristics.. 86
Table 6.2: About standard logic cells and other types of cells (1) 88
Table 6.3: About standard logic cells and other types of cells (2) 89
Table 6.4: Clock-tree elements... 93
Table 6.5: Routing issues ... 95
Table 6.6: Timing analysis results.. 98
Table 6.7: Power results ... 101

ABSTRACT

The advance of the IC technologies raises important issues related to the reliability
and robustness of electronic systems. The transistor scale by shrinking its geometry, the
voltage reduction, the lesser capacitances and therefore smaller currents and charges to
supply the circuits, besides the higher clock frequencies, have made the IC more
vulnerable to faults, especially those faults caused by electrical noise or radiation-
induced effects.

The radiation-induced effects known as Soft Single Event Effects (Soft SEEs) can
be classified into: direct Single Event Upsets (SEUs) at nodes of storage elements that
result in bit flips; and Single Event Transient (SET) pulses at any circuit node.
Especially SETs on combinational circuits might propagate itself up to the storage
elements and might be captured. These erroneous storages can be also called indirect
SEUs. Faults like SETs and SEUs can provoke errors in functional operations of an IC.
The known Soft Errors (SEs) are characterized by values stored wrongly on memory
elements during the use of the IC. They can make serious consequences in IC
applications due to their non-permanent and non-recurring nature. By these reasons,
protection mechanisms to avoid SEs by using fault-tolerance techniques, at least in one
abstraction level of the design, are currently fundamental to improve the reliability of
systems.

In this dissertation work, a fault-tolerant IC version of a mass-produced 8-bit
microprocessor from the M68HC11 family was designed. It is able to tolerate SETs and
SEUs. Based on the Triple Modular Redundancy (TMR) and Time Redundancy (TR)
fault-tolerance techniques, a protection scheme was designed and implemented at high
level in the target microprocessor by using only standard logic gates. The designed
scheme preserves the standard-architecture characteristics in such way that the
reusability of microprocessor applications is guaranteed. A typical IC design flow was
developed by means of commercial CAD tools. Functional testing and fault injection
simulations through benchmark executions were performed as a design verification
testing. Furthermore, fault-tolerant IC design issues and results in area, performance and
power were compared with a non-protected microprocessor version. The core area
increased by 102.64 % to protect the target circuit against SETs and SEUs. The
performance was degraded in 12.73 % and the power consumption grew around 49 %
for a set of benchmarks. The resulting area of the robust chip was approximately 5.707
mm2.

Keywords: fault-tolerant microprocessor, Soft Errors, SET, SEU, integrated circuit
design.

Projeto de um Microprocessador Robusto a Soft Errors

RESUMO

O avanço das tecnologias de circuitos integrados (CIs) levanta importantes questões
relacionadas à confiabilidade e à robustez de sistemas eletrônicos. A diminuição da
geometria dos transistores, a redução dos níveis de tensão, as menores capacitâncias e
portanto menores correntes e cargas para alimentar os circuitos, além das freqüências de
relógio elevadas, têm tornado os CIs mais vulneráveis a falhas, especialmente àquelas
causadas por ruído elétrico ou por efeitos induzidos pela radiação.

Os efeitos induzidos pela radiação conhecidos como Soft Single Event Effects (Soft
SEEs) podem ser classificados em: Single Event Upsets (SEUs) diretos em nós de
elementos de armazenagem que resultam em inversões de bits; e pulsos transientes
Single Event Transients (SETs) em qualquer nó do circuito. Especialmente SETs em
circuitos combinacionais podem se propagar até os elementos de armazenagem e podem
ser capturados. Estas errôneas armazenagens podem também serem chamadas de SEUs
indiretos. Falhas como SETs e SEUs podem provocar erros em operações funcionais de
um CI. Os conhecidos Soft Errors (SEs) são caracterizados por valores armazenados
erradamente em elementos de memória durante o uso do CI. SEs podem produzir sérias
conseqüências em aplicações de CIs devido à sua natureza não permanente e não
recorrente. Por essas razões, mecanismos de proteção para evitar SEs através de técnicas
de tolerância a falhas, no mínimo em um nível de abstração do projeto, são atualmente
fundamentais para melhorar a confiabilidade de sistemas.

Neste trabalho de dissertação, uma versão tolerante a falhas de um microprocessador
8-bits de produção em massa da família M68HC11 foi projetada. A arquitetura é capaz
de tolerar SETs e SEUs. Baseado nas técnicas de Redundância Modular Tripla (TMR) e
Redundância no Tempo (TR), um esquema de proteção foi projetado e implementado
em alto nível no microprocessador alvo usando apenas portas lógicas padrões. O
esquema projetado preserva as características da arquitetura padrão de tal forma que a
reusabilidade das aplicações do microprocessador é garantida. Um típico fluxo de
projeto de circuitos integrados foi desenvolvido através de ferramentas de CAD
comerciais. Testes funcionais e injeções de falhas através da simulação de execuções de
benchmarks foram realizados como um teste de verificação do projeto. Além disto,
detalhes do projeto do circuito integrado tolerante a falhas e resultados em área,
performance e potência foram comparados com uma versão não protegida do
microprocessador. A área do core aumentou 102,64 % para proteger o circuito alvo
contra SETs e SEUs. A performance foi degrada em 12,73 % e o consumo de potência
cresceu cerca de 49 % para um conjunto de benchmarks. A área resultante do chip
robusto foi aproximadamente 5,707 mm2.

Palavras-Chave: microprocessador tolerante a falhas, Soft Errors, SET, SEU,
projeto de circuito integrado.

1 INTRODUCTION

The constant technology evolution on the electronic circuitry has already been
allowing the manufacture of integrated circuits (ICs) using semiconductors built with
nanometer-scale features that near of the physics limits. Indeed, nowadays some popular
microchips can be already called nanochips (HUTCHESON, 2004).

If on one hand, the evolutions allow expressive innovations on the engineering of
designs optimized in area, performance and power and thus enabling the building of
more sophisticated and complex electronic systems. On the other hand, the increasing
importance, which ICs have been placing in many spheres of life activities, obliges
them to perform their functional tasks within higher levels of safety and correctness. It
is even more required in perturbed environments, where ICs are potentially more
susceptible to errors.

In fact, the advance of the IC technologies has raised important issues related to the
reliability and robustness of the electronic systems. The transistor scale by shrinking its
geometry, the voltage reduction, the lesser capacitances and therefore smaller currents
and charges to supply the circuits, besides the greater clock frequencies, have made the
ICs more vulnerable to faults, especially those faults caused by electrical noise or
radiation-induced effects. These scaling and technology issues of the Very Deep
Submicron (VDSM) ICs reduce significantly their noise margins and thus their
reliabilities regarding various internal or external sources of upset (LIMA, 2003-b;
KASTENSMIDT; CARRO; REIS, 2006).

About radiation, the physics explains as the process of emitting radiant energy in the
form of waves or particles. The Soft Single Event Effects (Soft SEEs) are caused
specially by alpha particles (released by radioactive impurities) and, more importantly,
cosmic rays (neutrons) hitting on the silicon chips and transferring charge to the circuit
nodes with enough energy able to perturb its storage elements (BORKAR, 2005). These
effects are classified in accord to the localization of the attacked node on the IC: direct
upsets at nodes of storage elements causing alteration in their information as bit flips
can be called direct Single Event Upsets (SEUs) (MASSENGILL et al, 2000);
transient voltage fluctuations at any circuit node due to radiation-induced particles as
well electrical noise are characterized as Single Event Transients (SETs)
(KRISHNAMOHAN, MAHAPATRA, 2004). Especially SETs on combinational
circuits are modeled like transient pulses that might propagate up to the storage
elements and might be captured. It basically depends on the delays of the combinational
network gates, on the widths of the created pulses and if these pulses meet the set-up
and hold time requirements of the memory elements at a clock transition for storing.
These erroneous storages can be also called indirect SEUs.

18

Faults like SETs and SEUs may provoke errors in functional operations of an IC.
The known Soft Errors (SEs) are characterized by values stored wrongly on memory
elements during the use of the IC and not due to design errors, fabrication defects or
permanent physical failures. They can make serious consequences in IC applications as
a result of their non-permanent and non-recurring nature (SHIVAKUMAR et al, 2002;
KARNIK; HAZUCHA; PATEL, 2004). The increase in Soft Error Rates (SERs) on ICs
has been a great source of concern for researchers in the last years. Some techniques
have been developed to decrease the SER on ICs. Alpha particle flux has been gradually
reduced by the use of purified materials. Fabrication process improvements in the 0.18
µm technology generation made the low-energy (lesser than 1 MeV) neutron SER
negligible. Even though such techniques have reduced the SER, the high-energy (1
MeV to 1000 MeV) neutrons often dominate it in advanced CMOS logic (TOSAKA et
al, 1998). Experiments, which replicate the sea level conditions for energies from 10 to
500 MeV, showed that the SER per bit of SRAMs in 0.25 µm, 0.18 µm, 0.13 µm and 90
nm technologies increases by 8% per generation (HAZUCHA et al, 2003). In addition,
the situation is worse for ICs operating at flight altitudes or in space due to the even
higher energies of the particles from there (LIMA, 2003-b). Years ago, studies related to
the fault tolerance in semiconductor devices had larger developments especially for
space and physics applications. Unlike today at which the concern is also focused at the
debilities of circuits on terrestrial applications like servers and many embedded systems
that usually have a large amount of embedded memory elements. By all these reasons,
protection mechanisms to avoid SEs by using fault-tolerance techniques, at least in one
abstraction level of the design, are currently fundamental. It improves the reliability and
guarantees the correct operation of the systems. Several commercial microprocessors
from AMD, Freescale, IBM, Intel and Sun are real implementations of robust systems
by using detection and recovery techniques (IYER et al, 2005).

The current system complexities, the usual time-to-market and the project budget
constraints have led designers to investigate fault-tolerance techniques and design flows
more versatile. Reusable Intellectual Property (IP) cores developed at the higher
abstraction levels of design, like the Register Transfer (RT) level, support engineers to
faster cope with even more complex requirements such as System-On-Chips (SOCs).
The reusability of hardware IPs and also software applications avoids redesigning and
redeveloping the same features repeatedly and thus saves effort (i.e., development cost)
and design time (HERRERA et al, 1999). Furthermore, the industry of EDA tools or
CAD environments in the last years has been making easier and quicker the
development of IC designs. Starting from higher design levels, EDA tools are able to
provide very accurate estimated results of the IC design for a preliminary evaluation. On
the other hand, making robust a system by using any fault-tolerance mechanism
inherently involves additional overheads. There are many fault-tolerance techniques
with different characteristics aiming different design levels, each one can be better
adapted to a distinct design purpose. Therefore, a carefully preliminary analysis of the
robustness features applied to the target system is mandatory before starting the design
of the robust system. Moreover, a preliminary evaluation of the design costs before the
IC manufacture is also fundamental through estimated IC design results such as in area,
performance and power consumption.

Some requirements for the fault-tolerance implementation may implicate undesired
modifications at standard characteristics of a system, especially when the target is the
reusability of systems based on standard architectures like commercial microprocessors.

19

For instance, some typical fault-tolerance techniques require additional clock networks
for fault detection and extra clock cycles for fault correction. In addition to the inherent
cost of the fault-tolerance mechanisms, some consequences, which may be undesired,
are the necessity for other clock signals and extra clock-tree implementations besides
unexpected overheads at the execution time of its software applications. To save design
time and development cost in a robust IC design, the chosen fault-tolerance techniques
usually are desired not only to guarantee the reliability and reusability of their existing
hardware and software applications. They are also desired to be easily or at least
applicable at the target design level (for example, at the RT level) and that they adapt
themselves to commercial standard cores.

Commercial microcontrollers like Freescale M68HC11, Intel 8051 and Microchip
PIC are commonly mass-produced for electronic systems or embedded systems. Such
systems have a wide range of applications in instrumentation, automation, control,
telecommunication or even domestic appliances. These microcontrollers and their
microprocessors are also largely used as cores or parts of SOCs. As these commercial
circuits are consolidated in the market because they are simple and cheap, there are
many systems and applications based on them. The utilization of these circuits allows
the reusability of those already existing systems and applications. Consequently, design
time and development costs can be saved. Typically, these commercial circuits are not
prepared to operate under hostile environments. On the other hand, as circuits based on
the new technology generations are more vulnerable to SEs. Thus, in the new
manufactures, such commercial circuits trend to require some embedded fault-tolerance
mechanism to guarantee their functionalities (i.e., to ensure the circuit reliability).

Another issue is that many commercial microprocessor systems such as some AMD,
IBM and Intel architectures (LIMA et al, 2000-a, 2000-b; COTA et al, 2001; IYER et
al, 2005) generally are protected against direct SEUs but not usually against indirect
SEUs. The most commonly used mechanisms against SEs in modern processor are
based on parity and Error Detection and Correction (EDAC) codes (IYER et al, 2005).
Such techniques are essentially focused on protecting memory arrays and they usually
do not mitigate indirect SEUs. Nevertheless, the scaling and technology issues tend to
require protections against such faults too (SHIVAKUMAR et al, 2002). By this reason,
many fault-tolerance techniques dedicated to mitigate indirect SEUs have been currently
developed like those in (NICOLAIDIS, 1999; ANGHEL; NICOLAIDIS, 2000-a;
KRISHNAMOHAN, MAHAPATRA, 2004; ZHANG; SHANBHAG, 2005).

The purpose of this dissertation work is to make robust to Soft SEEs or Soft Errors a
commercial digital circuit, such as the 8-bit microprocessor from the microcontroller
family M68HC11 (FREESCALE, 2002), for a future IC manufacture. In order to save
design time, some initial design constraints were established. The fault-tolerant circuit
design should be developed at high level like the RT level. The implemented fault-
tolerance techniques should not use multiple clock networks. For any application, the
techniques should preserve the total number of clock cycles, even so under a fault
occurrence. Such initial constraints keep the standard-architecture characteristics and
thus the reusability of microprocessor applications. In addition, they save development
cost.

SETs on combinational circuits of the microprocessor, which can potentially cause
indirect SEUs, are mitigated by using a Time Redundancy (TR) technique. The work in
(NICOLAIDIS, 1999) suggests but does not implement a TR approach based on a
special element called Code Word State Preserving (CWSP) like that from Figure 1.1

20

(a). Another work (ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000-b) evaluates
this approach in area and performance by using simple test circuits, like adders and
multipliers, and non-standard gates, such as that from Figure 1.1 (b), to implement the
CWSP elements. In (LAZZARI; ANGHEL; REIS, 2005), the same evaluation is made
for two microprocessors, MIPS and 8051, but a special automatic layout generator
implements the non-standard gates that characterize the CWSP elements. In order to
mitigate direct SEUs, in (LAZZARI; ANGHEL; REIS, 2005) a Triple Modular
Redundancy (TMR) version that requires three clock signals was also implemented. In
the present dissertation work was implemented a simpler and faster alternative to design
by using only standard gates, like that from Figure 1.1 (a), and without an extra layout
tool like that presented in (LAZZARI; ANGHEL; REIS, 2005). The defined initial
design constraints are met through this alternative. The goal was to evaluate the costs in
area, performance and also power and other design results of this fault-tolerance
approach in the target microprocessor. In addition, the TR+CWSP elements and
microprocessor registers were protected in accord to Figure 1.1 (c) by using a TMR
version that require just one clock signal for mitigating direct SEUs.

Figure 1.1: A TR+CWSP mitigation scheme by standard gates (a) and by non-standard

gates (b). In (c), the TMR+TR+CWSP mitigation scheme that was used

The present dissertation is organized by chapters in the following way. Chapter 2
characterizes the target faults on integrated circuits by means of a radiation-induced
fault model. Chapter 3 presents an overview about usual soft error mitigation techniques
and details concerning the techniques implemented in the target microprocessor of this
work. Chapter 4 introduces the target microprocessor to be protected and emphasizes
the strategies applied in the robust microprocessor design. Furthermore, it shows the
design steps from the microprocessor RT-level descriptions up to the GDSII stream files
that are used to specify the physical design characteristics in an IC manufacture process.
Chapter 5 presents the design verification simulation methods performed with the
implemented microprocessor models in order to avoid design errors. In chapter 6,
microprocessor design results by means of the circuit area, performance, power and
other resulting information are analyzed. Some final remarks, conclusions and future
works are discussed in chapter 7.

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

CWSP

D
el

ay

Identity

(a)

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

CWSP

D
el

ay

Inverter

(b)

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

CWSP

R
eg

is
te

r

D
el

ay

R
eg

is
te

r
R

eg
is

te
r

CWSP

CWSP

Voter D
el

ay

D
el

ay

(c)

2 A RADIATION-INDUCED FAULT MODEL

Noxious effects on integrated circuits caused by internal or external sources of upset
have been increasing due to the current scaling and technology trends. The direct
consequences of these trends are smaller noise margins and thus circuits more
vulnerable to external effects, like charged particles from different sources of radiation,
as well to internal or external electrical noise. If a charge disturbance on a circuit node
is smaller than the noise margin, the circuit will continue to operate properly.
Otherwise, the disturbed voltage may be interpreted as the opposite logic state and the
circuit will malfunction (KARNIK; HAZUCHA; PATEL, 2004).

Many different sorts of particles are found in environments where integrated circuits
usually work. In space, particles from cosmic rays consist mostly of protons, but also of
helium, oxygen and other ions (TOSAKA et al, 1998). At atmospheric and ground
levels, alpha particles released by radioactive impurities in the device materials and
mainly terrestrial cosmic rays in the form of high-energy neutrons are the major
contributors for perturbations on circuit nodes (TOSAKA et al, 1998; BAUMANN;
SMITH, 2000; BAUMANN, 2001; LERAY et al, 2004; BORKAR, 2005). Even so
neutrons do not have electrical charges, their effects occur through nuclear collisions
that give rise to charged particles. When such particles interact with the silicon atoms,
they create a direct ionization in the semiconductor device causing transient currents
that are able to make faults on the circuits. The amount of ionization and the current
surge in a given semiconductor device are directly proportional to the energy lost by the
radiation particles (KARNIK; HAZUCHA; PATEL, 2004; LIMA, 2003-b).

The type and the flux of hadrons like neutrons, protons and pions exhibit strong
altitude and latitude dependence (NORMAND, 1996-a; CONSTANTINESCU, 2005).
At sea level, the neutron flux is several hundred times lower than at aircraft altitudes.
For instance, the neutron flux at 12 km (~40000 ft) altitude is around 300 times higher
than at sea level and at 20 km (~60000 ft) it has its maximum peak. For this reason,
integrated circuits operating at aircraft altitudes are more susceptible to faults induced
by such particles than at ground level (NORMAND, 1996-b; GRANLUND;
GRANBOM; OLSSON, 2003).

2.1 The Basic Radiation-Induced Effects on Integrated Circuits
The radiation-induced effects by means of their charged particles can cause different

serious consequences on semiconductor circuits. Energetic particles incident on a solid
lose their energy to ionizing and non-ionizing processes as they travel through a given
material. The result of this energy loss is the production of electron-hole pairs
(ionization) and displaced atoms (displacement damage) (SROUR; MARSHALL;
MARSHALL, 2003). Especially three classes of these effects (Figure 2.1) are deeply

22

explored by researchers due to their random natures and occurrence rates: Total Ionizing
Dose (TID), Displacement Damage (DD) and Single Event Effects (SEEs).

Figure 2.1: Main radiation-induced effects on integrated circuits

Total Ionizing Dose (TID) is due to long-term degradation of electronic circuits as
a result of the cumulative energy deposited in some materials used by ICs. In space
environment, significant sources of TID include trapped electrons, trapped protons and
solar protons. Its effects include parametric failures or variations in device parameters
like leakage current, threshold voltage, timing changes, etc (LABEL et al, 2000). These
effects usually take a long time to occur, but they are permanent and can induce
functional failures to ICs as putting out of use some of their functional blocks.

Displacement Damage (DD) is non-ionizing radiation effect that often has similar
long-term degradation characteristics like TID. This effect leads to the degradation of
material and device properties and is a consequence of the incident particles that
displace atoms. The resulting defects give rise to new energy levels that alter the
materials and devices in their electrical and optical properties. The effectiveness of
radiation-induced DD depends basically on the defect rate and on the time exposure.
Prime sources of DD include trapped protons, solar protons, neutrons, and in a lesser
extent, trapped electrons (LABEL et al, 2000; SROUR; MARSHALL; MARSHALL,
2003).

Single Event Effects (SEEs) are due to transient physical faults such as single ions
that impact on the circuit sensitive area. Sometimes, these events can deposit sufficient
energy in the device that give rise to current pulses able to disturb the correct
functionality of the system. Significant sources of SEEs include trapped protons, solar
protons, neutrons and heavy ions from galactic cosmic rays. SEEs faults are composed
by three distinct categories, depending on the consequences of the involved current
pulse (LIMA, 2000-c; O’BRYAN et al, 1998):

• Soft SEE: during the operation of a device, a transient current pulse or a bit flip
in its circuit can cause errors in its functionalities. Due to their non-permanent

Single Event Gate Rupture (SEGR)

Displacement Damage
(DD)

Single Event Effect
(SEE)

Single Event Upset (SEU)

Single Event Latchup (SEL)

Single Event Transient (SET)
Soft SEE

Hard SEE

Destructive SEE Single Event Burnout (SEB)

Single Hard Error (SHE)

R
ad

ia
tio

n-
In

du
ce

d
E

ff
ec

ts

Total Ionizing Dose
(TID)

23

and non-recurring nature, these physical failures were called Soft Errors (SEs)
(KARNIK; HAZUCHA; PATEL, 2004). They disappear when the system is
reset or a data is rewritten in the memory. By this reason they can also be
considered as intermittent events. Such errors are entirely device specific and are
better categorized by their impacts on the device (LABEL et al, 2000). When a
radiation-induced particle hits a node of a circuit, a Single Event Transient
(SET) pulse can be created with enough energy to switch the node to a different
voltage level. Indeed, SETs are characterized as transient voltage fluctuations on
circuit nodes. They can be caused by radiation-induced particles as well
electrical noise like noisy power supply, crosstalk noise, electromagnetic
interference (EMI), radiation from lightning, etc (ZIEGLER et al, 1996; CALIN;
VARGAS; NICOLAIDIS, 1995; MAHESHWARI; KOREN; BURLESON,
2003; KRISHNAMOHAN, MAHAPATRA, 2004). In a digital device, a direct
Single Event Upset (SEU) occur when a storage element is directly affected by
a SET in such way that it causes an undesired change on the memorized
information as a bit flip (MASSENGILL et al, 2000). A SET pulse can be
generated on a combinational logic circuit. Depending on the delay of the
combinational gates and on the width of the pulse, it also can propagate up to the
output of the combinational logic block. If the storage element succeeds to
capture this undesired pulse, an indirect SEU is characterized;

• Hard SEE: hard errors are permanent functional effects to the device. An event
of Single Hard Error (SHE) causes an undesired permanent change to a circuit
node. A common example would be a stuck bit in a memory element (LABEL et
al, 2000);

• Destructive SEE: events that can cause permanent physical destruction of the
circuit. A Single Event Latchup (SEL) is the most common Destructive SEE. It
is a potential destructive condition involving parasitic transistors on which
currents might exceed their maximums specified. These parasitic transistors in
the circuit can be activated by spurious currents, like those from radiation-
induced effects. It would create a short between internal circuit nodes that may
destroy the device by thermal effect, unless the power supply is removed. A
Single Event Burnout (SEB) is a highly localized destructive burnout of the
drain-source in a MOSFET. On the other hand, a Single Event Gate Rupture
(SEGR) is the destructive burnout of a gate insulator in a MOSFET (LABEL et
al, 2000).

2.1.1 Occurrence Rate of Radiation-Induced Effects

The SEE rates are not described as Mean-Time-To-Failure (MTTF). If an SEE rate
is one per five years, it may happen at any time during that five year period with nearly
equal probability. Otherwise, cumulative effects, such as TID or DD, the MTTF
numbers are useful. The time-to-failure is the amount of operation time until the device
has encountered enough degradation to cause failure (LABEL et al, 1996).

The high relevance of such effects can be supported by recent and frequent
researches. At least since 1998, NASA’s researchers have annually published at IEEE
conference experimental results about the susceptibility of commercial and emerging
technology devices to TID, DD and SEEs (O’BRYAN et al, 1998; COCHRAN et al,
2005; O’BRYAN et al, 2005).

24

This large concern, especially with the Soft Error (SE) occurrences on ICs, has
resulted in a lot of researches for measuring, estimating and evaluating the Soft Error
Rate (SER) of semiconductor devices. Many works characterize and evaluate the SE
effects on ICs like those in (HARBOE-SORENSEN; SUND, 1992; VELAZCO;
KAROUI; CHAPUIS, 1992; NORMAND et al, 1994; TOSAKA et al, 1998; ZIEGLER
et al, 1998; BAUMANN, 2001; HOWARD et al, 2001; LIMA et al, 2001-a, 2001-b,
2002-a, 2002-b; DODD et al, 2002; MAIZ et al, 2003; KARNIK; HAZUCHA; PATEL,
2004; LERAY et al, 2004; LAMBERT et al, 2004; CONSTANTINESCU, 2005;
SAGGESE et al, 2005).

Some real examples about SE evidence on ICs at ground level were discussed in
(NORMAND, 1996-b). The computer system ACPMAPS at Fermilab is a very large
system of individual computers, which when joined together, it contains about 160
Gbits of DRAM memory. This system is protected only by parity mechanisms. In a
monitorial experiment, it had 2.5 upsets per day or a SER of 0.7·10-12 upset/(bit·hour).
Another case, 58 off-the-shelf Nite Hawk computers were monitored. Each computer is
constituted by 1 Gbits of DRAM protected by EDAC codes. On the average, each
machine showed around one upset per month (assigned as 624 hours), which was
equivalent to a SER of 1.6·10-12 upset/(bit·hour).

Additionally, there is a set of other works related to the SE effects on ICs at ground,
atmospheric and space levels (NORMAND; BAKER, 1993; LABEL et al, 1996;
NORMAND, 1996-a; BARTH, 1997; LABEL et al, 2000; NORMAND, 2001). Others
show the SER increase in the new technology generations of ICs due to the scaling and
technology trends (HAZUCHA el al, 2003; GRANLUND; GRANBOM; OLSSON,
2003; BORKAR, 2005).

2.1.2 Modeling of Radiation-Induced Effects

The radiation-induced effects on an integrated circuit can be modeled at different
abstraction levels of the circuit design. In accord to (ABRAMOVICI; BREUER;
FRIEDMAN, 1990; SMITH, 1997; WAGNER, 2004), the usual design levels from the
lowest to the highest are classified into:

• Real circuit level, the circuit prototypes or the circuit fabricated by physical
materials from a fabrication technology;

• Electrical level, the circuit layout mask at a geometric axis or the circuit models
based on transistors, resistors, capacitors and inductors at a structural axis. Some
authors consider the layout mask issues as part of the labeled physical level,
even so such label is also used for the real circuit level. In addition, others define
switch level as transistors modeled discretely and transistor level as transistors
characterized by non-linear models;

• Logical level, the circuit models at a structural axis based on flip-flops, latches
and logic gates, besides library cells at a geometric axis. EDA tools usually label
the model of logic gates as gate level;

• Micro-architectural level or the well-known Register Transfer (RT) level, the
circuit models at a structural axis based on registers, multiplexers, operators like
adders, subtracters, multipliers and dividers, besides macro cells at a geometric
axis. Some authors label this level as behavioral level or even functional level
in accord to the delay model that is used;

25

• Algorithmic level, circuit models at a structural axis based on hardware
modules. Modules, cores, plans of power, ground and clock at a geometric axis;

• Systemic level, circuit models at a structural axis based on processors, memories
and other peripherals. Components and boards at a geometric axis.

As defined in chapter 1, the goal in this work is to make robust against radiation-
induced effects a digital system such as a Central Processor Unit (CPU). A digital
system denotes a complex digital circuit. The complexity of a circuit is related to the
abstraction level required to describe its operation in a meaningful way
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). Typically, highest abstraction levels
are used to design complex circuits because they provide a better management for
designers. In this way, digital system designs usually require high-level abstraction
resources like the VHDL, in which the lowest abstraction level that designers can deal
with is the logical level.

At the abstraction logical level of a digital circuit, a further distinction can be made
between combinational and sequential circuits. Unlike a combinational circuit, whose
output logic values depend only on its present input values, a sequential circuit can also
remember past values and hence it processes sequences of logic values
(ABRAMOVICI; BREUER; FRIEDMAN, 1990).

In such circuit design abstraction, the radiation-induced effects feasible to be treated
are those in which their tolerance mechanisms are able to be implemented at least at the
logical level. The Soft and Hard SEEs are feasible. However, Destructive SEEs, TI and
DD are typically treated at lower abstraction levels.

As emphasized in chapter 1, this work focuses on the Soft SEE on ICs. The serious
effect of such physical fault can be modeled at the logical level as a bit flip. As seen in
the last sections, it is an undesired change on the memorized information of storage
elements or in other words a Soft Error (SE). At the logical level of an IC, storage
elements are sequential circuits or memory cells such as flip-flops or latches.

This problem of Soft SEEs on ICs can be summarized based on the traditional
definitions of fault, error and failure for a computer system (LAPRIE, 1998). The
transient current pulse caused by a source of upset on a combinational or sequential
circuit is a system fault, the bit flip on the memory cell is a system error and the
reading of wrong values stored in the register is a system failure.

From the Soft SEEs, the sequential elements (memory cells) can be affected by
direct or indirect Single Event Upsets (SEUs). In following sections, such effects and
their characteristics are modeled and discussed.

2.1.2.1 Direct SEUs

A direct SEU is modeled as a logic perturbation or a direct logic inversion on a bit
memorized by a sequential element. To illustrate such fault at the logical level, firstly
the ideal timing behavior of a memory cell such as a positive edge-triggered flip-flop is
shown in Figure 2.2 (a). After, Figure 2.2 (b) shows the timing behavior of the memory
under a direct SEU.

Note in Figure 2.2 (a) that the memory input is switched from 0 to 1 at an instant
before the clock event. This instant need respect the set-up time, thus such switch can
not occur within a set-up time before the clock event. In the same way, the memory

26

input need be kept on that value (value 1) at least a hold time after the clock event.
Thus, the memory output switches logically from 0 to 1 and such value 1 is kept in the
memory.

On the other hand, in Figure 2.2 (b), a direct SEU makes an inversion from 1 to 0 at
the memory output (i.e., a SE) without any input or clock event. Note that the SE might
be transient if new events occur. The memory output will be kept on 0 until new input
switch (respecting the set-up and hold time requirements) or even until new SEU.

Figure 2.2: The timing behavior of a memory cell without SE (a) and with SE (b)

2.1.2.2 Indirect SEUs

An indirect SEU is due to a Single Event Transient (SET) modeled as a rectangular
transient pulse that occurs on a combinational circuit and propagates itself up to a
sequential element.

To illustrate such fault at the logical level, initially the ideal behavior of a sequential
element (flip-flop) and a combinational circuit by means of its logic gates are presented
in Figure 2.3 (a). After in Figure 2.3 (b), the fault is characterized.

Observe in Figure 2.3 (a) that the combinational circuit processes properly the
values 0 at its three inputs. In addition, the sequential element memorizes appropriately
the value 0 from the resulting combinational circuit output.

On the other hand, in Figure 2.3 (b), a SET occurs on a gate of the combinational
circuit. The SET succeeds in propagating up to the output of the combinational circuit
that is temporarily switched to 1. It hypothetically occurs at an instant and lasts enough
time to meet the requirements of the set-up and hold times. Thus the undesired value 1
is memorized as an indirect SEU and a SE is characterized.

Memory

Clock

Input

Output

Input

Output

Input

Output

Clock

Clock Clock

Memory

Input

Output

(a)

(b)

27

Figure 2.3: A combinational circuit without SETs (a) and with a SET (b)

2.1.2.3 SET Issues

A SET on a combinational circuit does not always give rise to an indirect SEU, it
may not cause any unfavorable consequence to the IC. Such masking effect can be due
to one of the following factors (SHIVAKUMAR et al, 2002):

• Logical Masking: a SET does not propagate up to output of the combinational
circuit because makes some combinational logical operation that masks it;

• Electrical Masking: a SET is sufficiently attenuated due to the electrical
properties of gates in the propagation path. In fact, if the duration of a SET pulse
is larger than the propagation time (logic transition time) of a gate, it typically
should not be attenuated. However, when a SET width is lesser than the
propagation time of a gate, it starts to be slight attenuated and usually when it is
lesser than half of the propagation time, it is sufficiently attenuated
(NICOLAIDIS, 1999);

• Latching-Window Masking: a SET reaches the input of a sequential element,
however does not meet the time window such as the set-up and hold times,
which is required for the circuit latching a value at the clock event.

Such three masking phenomena provide the combinational circuits a form of natural
resistance to SEs (SHIVAKUMAR et al, 2002). Past research has shown that
combinational logic is much less susceptible to allow SEs than memory elements
(LIDÉN et al, 1994; GAISLER, 1997). The memories always were considered most
vulnerable to SEs due to their spatial density and the amount of information that they
store (MAHESHWARI; KOREN; BURLESON, 2003). However, in the current decade
as a result of the current nanometer technologies and the consequent high complexity of
the integrated circuits, the SER arisen in combinational circuits shall become as relevant
as the SER in sequential elements. In the work (SHIVAKUMAR et al, 2002) were
analyzed the trends in the SER for SRAM cells, latches and combinational circuits. It

0

0

0 1

Output 1
1

1

0

0

0 1

Memory

Input
Output 0

0

0

Input

Clock

Memory

(a)

(b)

 Clock

28

predicts that by 2011 the SER arisen in combinational circuits will be comparable to
that of unprotected memory elements.

The timing nature of a SET pulse generated on a circuit, especially on the
combinational parts, depends on the energy of the perturbation event, on the employed
physical technology and on the design topology of the circuit. The work (ANGHEL;
NICOLAIDIS, 2000-a) generically presumes the duration of a typical SET pulse at few
hundreds of picoseconds. Currently, such order of SET width is common for
micrometer (channel length above 0.1 µm) nearly nanometer (below 0.1 µm)
technologies. It can be easily found in many related experiments and works discussed in
dedicated conferences such as the (SEE SYMPOSIUM, 2006).

Since pulses wider than the logic transition time of a gate usually can propagate
itself without attenuation. For circuits based on micrometer technologies in which
typical delays of basic standard logic gates can be around 10 ps, a SET of width around
100 ps can diffuse itself through gates, reach sequential elements and make SEs. On the
other hand, in nanometer technologies, the propagation time of gates can be even
smaller than the SET duration. In this way, even SET pulses due to perturbations of
lower energy, therefore smaller SET widths, might not be attenuated. Furthermore, as
the clock frequencies have increased significantly, the probability of latching a SET
have also increased. In fact, as more frequent are the latching edges of the clock, higher
is the probability to have a SET coinciding with a latching edge (ANGHEL;
NICOLAIDIS, 2000-a).

Another critical characteristic of a SET pulse is when it occurs on an internal node
of a combinational circuit with a certain width. After propagating through some
combinational circuit paths, it can result wider at the output of the combinational circuit
(input of a sequential element). Such occurrences make difficult the prevision of the
maximum width for a fault-tolerance implementation. This phenomenon is essentially
due to reconvergent fan-outs with different delays (ANGHEL; ALEXANDRESCU;
NICOLAIDIS, 2000-b). The original pulse can propagate itself through several paths
which reconverge and concatenate several pulses into a single one. This pulse can be
larger than the original one due to the different delays of the propagation paths
(ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000-b). In the work (NICOLAIDIS;
PEREZ, 2003) is proposed a circuit that can measure experimentally the SET widths.

A unique SET pulse arisen in a combinational circuit can sometimes also generate
multiple pulses at the output of this circuit as a result of the delay differences among its
paths. Nevertheless, by considering a balanced circuit, such multiple events are rare. It
is because those delay differences must not exceed the width of the original pulse arisen
in the combinational circuit. Modern logic synthesis tools and architectural solutions
trend to generate balanced circuits. This kind of circuit has the delays of its paths close
to the delay of its largest path (NICOLAIDIS, 1999; ANGHEL; ALEXANDRESCU;
NICOLAIDIS, 2000-b).

In addition, depending on the topology of the circuit, a unique SET can also cause a
unique or several indirect SEUs. Several SETs can also occur at the same time on any
bit of a combinational or sequential circuit, at any moment during the use of the IC.

By reason of all these behaviors of the SET pulses, their evaluations become very
complex in circuits composed by many paths. Some works dedicate special attention to
analyze the probability of a SET becoming an indirect SEU (HASS et al, 1998; HASS,
1999; MASSENGILL et al, 2000; ALEXANDRESCU; ANGHEL; NICOLAIDIS,

29

2002). Other approaches like a SET propagation method based on topological timing
analysis (NEVES et al, 2006-a, 2006-b) could be used to evaluate such probability too.

2.1.2.4 Multiple SEUs

When multiple indirect or direct SEUs happen at the same time on bits of memories,
it is traditionally called of Multiple Bit Upsets (MBUs). According to the number of
upsets that occur at the same time in the circuit, bit upsets can be classified in first,
second and third order effects. A single bit upset (SEU) is classified as a first order
effect, while multiple bit upsets (MBUs) are classified as second or third order effects
(LIMA, 2003-b). MBUs can occur when:

• A single particle hits two adjacent nodes, located in two distinct memory cells.
This event is classified as a second-order effect and can be avoided by specific
placement design;

• A single particle strikes two adjacent nodes located in the same memory cell.
This event is classified as a third-order effect and can be avoided by physical
layout constraints for separating critical nodes;

• Multiple particles strike the circuit causing upsets in multiple nodes. These
events can be considered as a group of direct SEUs;

• A unique SET from a combinational circuit result in multiple indirect SEUs;

• Several SETs from a combinational circuit result in multiple indirect SEUs.

30

3 SOFT ERROR MITIGATION TECHNIQUES

The evolution of scaling down technology has raised relevant issues related to the
reliability and robustness of circuits. Reliability is normally defined as the immunity of
a circuit to faults like, for instance, those that cause Soft Errors (SEs). Design
robustness is defined as the ability of a circuit to operate correctly under varying
process, temperature, voltage, and noise conditions (KRISHNAMOHAN,
MAHAPATRA, 2004).

In order to improve the reliability and guarantee the correct operation of systems,
robustness mechanisms to mitigate SEs through fault-tolerance techniques, at least in
one abstraction level of the IC design, are currently much used at the industry. Several
commercial microprocessors from AMD, Intel, IBM, Freescale and Sun are real
implementations of robust systems. As examples, there are processors from the families:
Intel P6, AMD Hammer, Intel Itanium, IBM G5 and IBM Power 4. These
microprocessors use typically Error Detection and Correction (EDAC) codes and parity
focused on protecting memory arrays (IYER et al, 2005).

Many other fault-tolerance techniques were already proposed for protecting ICs. The
inherent cost of the robustness can vary depending on the chosen technique. The extra
cost can be evident as in area and power as in performance. The manufacture cost of the
IC might also be higher when a specific robust technology is used. Each technique due
to its different characteristics might attend to many design objectives, therefore a
detailed selection of that fault-tolerance technique to be implemented on the target
system should always be done before starting the design of a robust IC.

There are fault-tolerance techniques for all design levels. They can be classified into
low-level and high-level techniques.

The low-level techniques involve specially those techniques applicable or
developed at the physical, electrical, switch or transistor levels. Such techniques usually
are based on a specific technological process like Silicon-On-Insulator (SOI) or the
package shielding; transistor sizing; robust memory cells; or a combination of them.

Otherwise, high-level techniques are those able to be used at the logical or gate; RT
or micro-architectural; algorithmic; or systemic levels. They are typically based on
hardware or software redundancy like Triple Modular Redundancy (TMR); Time
Redundancy (TR) in hardware or software; self-checking circuits; parity; EDAC codes
like Hamming Code or Reed-Solomon Code; or even a combination of them.

Robust memory cells are suggested in (CALIN; NICOLAIDIS; VELAZCO, 1996;
ZHANG; SHANBHAG, 2005) and many other works. A version of TR is proposed in
(KRISHNAMOHAN, MAHAPATRA, 2004) modifying only the CMOS flip-flop in
such way that it samples and latches its data input at different instants within a clock

32

cycle. A fault-tolerance technique dedicated to FPGAs is presented in (LIMA; CARRO;
REIS, 2003-a). Many concurrent checking schemes (self-checking circuits), as
presented in (ANGHEL; NICOLAIDIS, 2000-a), combined with a retry procedure had
already been discussed. The tolerance to SE can be achieved by a retry operation after
the detection of an error. Several other design solutions for tolerating SE were proposed
in (NICOLAIDIS, 1999), in which the idea is taking advantage of the temporal nature of
transient faults and mitigating them by using TR.

Techniques based on TR avoid the large hardware overheads of hardware
redundancy, since the same operation is computed multiple times on the same hardware
(IYER et al, 2005). Nevertheless, they usually incur high performance overhead and
also require additional blocks for collecting and comparing the multiple execution
results.

Techniques based on any type of redundancy can fail in case of multiple faults affect
the redundant parts at the same instant. However, these multiple faults usually have
lower probability of occurrence. Triple or higher redundancy usually obtains a correct a
correct answer through a majority-voting scheme (IYER et al, 2005). For double
redundancy, the computation must restart to recover from an error.

Fault-tolerance techniques implemented in software often determine relatively high
performance overheads and high error-detection latency (IYER et al, 2005). Otherwise,
techniques implemented in hardware result in lower latency. Furthermore, software-
implemented techniques generally are not able to observe a large part of hardware-level
errors. It occurs due to masking effects as detailed in section 2.1.2.3 or even because
some specific microprocessor registers usually cannot be accessed by software
applications.

Many fault-tolerance techniques are designed to protect the system against faults
arisen in sequential elements, i.e., to mitigate direct SEUs. However, currently as a
result of the scaling and technology issues, the techniques are also developed to protect
the system against faults arisen in combinational circuits, i.e., to mitigate indirect SEUs.
They are particularly based on hardware and time redundancy due to the nature of the
target faults.

Especially, two fault-tolerance techniques are functionally detailed in the next
sections due to their closed characteristics to the purposes of this work. They are
applicable at the RT level and they do not use multiple clock networks. In addition, for
any application, they preserve the total number of clock cycles, even so under a fault
occurrence. The TMR scheme is able to mitigate only the direct SEUs and the
TR+CWSP scheme is able to mitigate SET and therefore possible indirect SEUs.

3.1 Triple Modular Redundancy (TMR)
The TMR scheme is the most traditional fault-tolerance technique due to its good

efficiency on error detection and its simple principle. Such scheme can be considered as
a high-level technique because it can be implemented on high-level modules. However,
it can be modeled at lower levels.

As shown in Figure 3.1, the TMR technique consists on the triplication of the target
component to protect, in this case a 1-bit register. The three resulting outputs from
triplication are connected to a voter block that compares the three received data and
elects that of majority. If one of the three components fails or suffers a direct SEU, in

33

the case of a register, the error will not be reflected in the voter output (HENTSCHKE
et al, 2002).

Figure 3.1: Block diagram of the TMR scheme for a 1-bit register

Observe that, in case of the register triplication, the voter block requires at least two
registers without errors to elect a correct output. Therefore for the TMR mechanism
working appropriately, direct SEUs, for example, cannot occur at the same time on two
or three registers of the triplicated target register.

Another weakness of this technique is when a SET pulse occurs on the
combinational block. The SET pulse might propagate itself up to the three registers of
the TMR scheme and cause three indirect SEUs at the same time. Thus the voter block
will not provide a correct output. By this reason, another technique which mitigates
such faults is mandatory, as that presented in section 3.2.

3.1.1 Area and Performance Analysis

TMR technique implies in more than an increase of 200 % in area due to the
component triplication. In case of the register triplication, the area related to registers is
increased by 200 %. Furthermore, there is the voter that is implemented just with some
OR and AND gates for each bit of the triplicated component.

In accord to Figure 3.1 and by considering only delays of the components (i.e.,
routing and parasitic issues are negligible), the Delay of the Critical Path of a Non-
Protected Circuit (DC_P_Non-Prot_Circ) is basically affected by the Delay of the Voter
(DVoter) when a TMR-based robustness is applied. It results in a Delay of the Critical
Path of the Robust Circuit (DC_P_Rob_Circ):

VoterCirc_otPrNon_P_CCirc_Rob_P_C DDD +> − (3.1)

3.2 Time Redundancy (TR) + Code Word State Preserving (CWSP)
Such approach was proposed by (NICOLAIDIS, 1999) and evaluated in (ANGHEL;

ALEXANDRESCU; NICOLAIDIS, 2000-b; LAZZARI; ANGHEL; REIS, 2005). It
exploits the pure TR principle, in which the output of the combinational circuit is
duplicated at the time domain generally by using the delay of buffers or inverters. The

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

Voter

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r

34

two different instants of time are evaluated at two inputs of a peculiar element called
Code Word State Preserving (CWSP). A block diagram of this scheme for a 1-bit
register is shown in Figure 3.2.

Figure 3.2: Block diagram of the TR+CWSP scheme for a 1-bit register

The CWSP element is an asynchronous sequential circuit able to mitigate SET pulse.
It compares the values at its two inputs. When they are identical, the value at its output
will be updated with the value of its inputs. On the other hand, when its inputs are not
identical, the value at its output will be preserved.

Supposing a SET, which potentially causes an indirect SEU, occurs on a
combinational block of a system. This SET arises at the output of the combinational
block like that presented in Figure 3.4. The pulse shape meets the requirements of the
set-up and hold times, i.e., the latching-window of the memory element as the vertical
dotted lines in Figure 3.4. For a system without the TR+CWSP protection, such pulse
gives rise to an indirect SEU at the output of the register.

Figure 3.3: Timing behavior of a system without the TR+CWSP protection

In contrast, for a robust system with the TR+CWSP protection, this indirect SEU at
the output of the register does not occur. As Figure 3.2 and Figure 3.4 illustrate, the
CWSP element compares, by means of its two inputs, the output of the combinational
block with the delayed output of the same block. The output of the CWSP element

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

CWSP

D
el

ay

Identity

Output of a
Combinational Block

Clock

Output of a Register without
the TR+CWSP protection

Indirect SEU

S
E

T

35

during the latching-window is preserved because the logic values at its two inputs are
not equal. Thus the output of the register is not affected.

Figure 3.4: Timing behavior of a system with the TR+CWSP protection

3.2.1 Area Analysis

Making robust a system by this TR+CWSP approach, the additional cost in area will
be due to the buffers or inverters for implementing the delay blocks besides the CWSP
elements.

The circuit of the CWSP element illustrated in Figure 3.2 uses standard
combinational logic gates. This kind of CWSP element is an identity element. In other
words, it does not make logic operation with its two data inputs such as NOT, NOR or
NAND gates, but just transfers the data inputs to its output mitigating eventual SETs. In
fact, the work proposed by (NICOLAIDIS, 1999) also suggests CWSP logic elements
like NOT, NOR and NAND gates, as shown in Figure 3.5. The designs of these circuits
are improved at the transistor level by reducing its overall number of transistors. Figure
3.6 illustrates these improved non-standard logic gates that keep on the same
functionality of those from Figure 3.5.

Implementing a TR+CWSP scheme like that of Figure 3.7 characterizes this fault-
tolerance mechanism as a low-level technique, since a peculiar non-standard gate is
created at the transistor level to implement the CWSP element. Otherwise, a TR+CWSP
scheme like that of Figure 3.2 can be considered as a high-level technique because only
standard gates from any conventional library are used. In this case, the CWSP element
is implemented at the gate level and it can be seen as a block at the RT level.

Output of a
Combinational Block

Clock

S
E

T

S
E

T
Output of a Register with
the TR+CWSP protection

Delayed Output of a
Combinational Block

Output of a
CWSP Element

36

Figure 3.5: CWSP logic elements (NICOLAIDIS, 1999)

Figure 3.6: CWSP logic gates (NICOLAIDIS, 1999)

Figure 3.7: Block diagram of the TR+CWSP scheme using a non-standard gate

NOT NOR NAND

a

a*

a

a*
b*

b
a

a*
b*

b

a*

a

a

a*

b

b*

a

a*

b

b*
a

a*

b

b*

a

a*

b

b*

NOT NOR NAND

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

CWSP

D
el

ay

Inverter

37

3.2.2 Performance Analysis

From the TR+CWSP scheme illustrated in Figure 3.2 or Figure 3.7, two
characteristics can be observed:

• By reason of the TR principle, the delayed input of the CWSP block will be with
the same value of its non-delayed input (i.e., the output of the Combinational
Block) only after a given period DDelay_Block (propagation time of the Delay
Block).

• Based on the logic function of the CWSP block, explained in section 3.2, only if
the values at its two inputs are identical, the value at its output will be updated
with the value of its inputs. It would take a time interval DCWSP (propagation
time of the CWSP block) to be completed. Otherwise, the value at its output will
be preserved.

Therefore, as Figure 3.8 illustrates, the value at the output of the CWSP block (i.e.,
the register input) will only modify whether the value at its non-delayed input is equal
to the value at its delayed input by at least a period DCWSP. It usually occurs after the
non-delayed input to reach its steady state within a clock cycle plus at least a time
interval DDelay_Block.

Figure 3.8: Functional characteristics of the TR+CWSP scheme

Such characteristics guarantee that any SET-pulse occurrence on the Combinational
Block, in which the pulse reaches its output (i.e., the non-delayed input of the CWSP
block) with a width lesser than DDelay_Block − DCWSP, will be mitigated by the TR+CWSP
scheme. Therefore, SET pulses will not arrive at the output of the CWSP block. Thus,
the Width of the Maximum SET pulse (WMax_SET) at the output of the Combinational
Block that is able to be mitigated is defined by:

Non-Delayed Input
of the CWSP Block

Clock

Output of the Register

Delayed Input of the
CWSP Block

Output of the CWSP Block

DDelay_Block

WSET DCWSP

DCWSP WSET

38

CWSPBlock_DelaySET_Max DDW −< (3.2)

In accord to Figure 3.2 or Figure 3.7 and by not taking into account routing and
parasitic issues, the Delay of the Critical Path of a Non-Protected Circuit (DC_P_Non-

Prot_Circ) is basically degraded by the delays of the components DDelay_Block, DCWSP and
by an extra slack time WMax_SET + DCWSP required by the TR+CWSP scheme. It results
in a Delay of the Critical Path of the Robust Circuit (DC_P_Rob_Circ):

CWSPSET_MaxCWSPBlock_DelayCirc_otPrNon_P_CCirc_Rob_P_C DWDDDD ++++> − (3.3)

Reorganizing the DC_P_Rob_Circ by using WMax_SET:

CWSPBlock_DelayCirc_otPrNon_P_CCirc_Rob_P_C DD2DD +⋅+> − (3.4)

The extra slack DDelay_Block required by such protection scheme can be explained by
considering some issues. The non-delayed output of the Combinational Block reaches
its steady state within a clock cycle after a stabilization period defined by DC_P_Non-

Prot_Circ – Tset-up, where Tset-up is the set-up time of the memory element or register.
On the other hand, the delayed output of the Combinational Block reaches its steady
state after DC_P_Non-Prot_Circ – Tset-up + DDelay_Block. In hypothesis of a SET arising at the
non-delayed output after DC_P_Non-Prot_Circ – Tset-up + DDelay_Block + a time period slightly
lesser than DCWSP, in such way that both outputs of the Combinational Block do not
achieve the same value by at least DCWSP. Even so, there will be enough time, i.e.,
DDelay_Block or around WMax_SET + DCWSP, to allow a correct updating of the CWSP output
before the latching-window.

The TR+CWSP scheme allows also mitigating the called timing fault as a result of
such extra slack established. Timing faults are due to fabrication process variations that
can escape from the detection of production tests. They cause an enlargement of the
delays of circuit paths (ANGHEL; NICOLAIDIS, 2000-a). By using the TR+CWSP
scheme, timing faults will be mitigated whether they provoke enlargements of the
delays of circuit paths at a maximum time variation up to DDelay_Block. On the other hand,
if there is a timing fault, the mechanisms to mitigate SETs may not work any more,
since there will not be enough time slack to mitigate them.

4 DESIGN OF A ROBUST MICROPROCESSOR

As emphasized in chapter 3, commercial microprocessors typically use protection
mechanisms such as parity and EDAC codes in order to mitigate SEs (IYER et al,
2005). These techniques are essentially focused on protecting memory arrays. As a
result of this, some commercial systems can have their individual registers vulnerable to
SEs. Former works (LIMA et al, 2000-a, 2000-b; COTA et al, 2001) dedicated special
attention to implement an EDAC technique, the Hamming Code, on memory arrays and
also on individual microprocessor registers of a microcontroller version from the Intel
8051 family. EDAC codes are relatively efficient for groups of memory elements or
memory arrays like caches and perhaps register files. It is because the cost of the coding
circuit can be amortized over the array. However, applying such codes to individual
microprocessor registers could require a significant amount of overheads
(HENTSCHKE et al, 2002; IYER et al, 2005) and thus other fault-tolerance
mechanisms are necessary.

Another issue is that due to the current technology trends, protection mechanisms
against indirect SEUs should be soon considered in IC designs (SHIVAKUMAR et al,
2002). The usual techniques like parity and EDAC codes are generally dedicated to
mitigate direct SEUs, thus most commercial architectures result susceptible to indirect
SEUs and other fault-tolerance techniques become mandatory.

Recently, two commercial microprocessors, MIPS and 8051, were protected in the
work (LAZZARI; ANGHEL; REIS, 2005) with the aim of avoiding direct and indirect
SEUs. The architectures were developed by using a commercial IC design flow through
EDA tools. An extra special layout tool was used to implement non-standard gates
similar to those CWSP gates from Figure 3.6 in section 3.2.1 for indirect SEU
mitigation. In order to mitigate direct SEUs a TMR version that requires three clock
signals was implemented. Such TMR version becomes the IC design flow more
complex due to the extra networks of clock trees. The main goal of the work
(LAZZARI; ANGHEL; REIS, 2005) is to evaluate the special tool of automatic layout
generation. By this reason, few results in area and performance of the microprocessor
implementations are presented. Furthermore, the fault-tolerant systems were not
functionally verified.

The purpose of this present design is to follow activities and steps of an IC design
that speed up the time-to-market and save development cost. In this way, some initial
design constraints and final goals were established:

• Making robust to Soft SEEs or SEs, i.e., direct SEUs and also indirect SEUs, a
commercial 8-bit microprocessor from the M68HC11 microcontroller family
(FREESCALE, 2002);

40

• Using a IC design flow through conventional steps of commercial EDA tools;

• Starting from a high-level design language such as VHDL, creating functional
blocks at the RT level, implementing through standard cells of any library and
achieving a GDSII stream file for a future IC manufacture;

• Guaranteeing the functionality of such microprocessor by applying fault-
tolerance techniques that ensure the reliability and reusability of their many
system applications (hardware or software);

• The fault-tolerant mechanisms should be developed at high level as blocks at the
RT level by using only standard gates, i.e., not adding in the design flow non-
standard gates developed by full-custom layout tools;

• The implemented fault-tolerance techniques should require just one clock signal;

• For any application, the techniques should preserve the total number of clock
cycles, even so under a fault occurrence;

• Previous cost evaluation of the robustness in the target microprocessor before the
IC manufacture by means of estimated results in area, performance and also
power.

An overview of the target microprocessor to be protected is shown in section 4.1.
Design details of the developed fault-tolerant architecture are discussed in section 4.2.
The design steps performed through a typical IC design flow are presented in section
4.3. The front-end design of microprocessor versions is detailed in section 4.4 and the
back-end design is shown in 4.5. Finally, in section 4.6 some characteristics of the
designed fault-tolerant architecture are emphasized.

4.1 The Target Microprocessor
Popular commercial microcontrollers are commonly mass-produced for electronic

systems or embedded systems. Such systems have a wide range of applications in
instrumentation, automation, control, telecommunication or even domestic appliances.
Mass-produced ICs cost very little per unit due to the amortization of engineering costs
over large number of volumes, high yields from many production runs and other
economy-of-scale factors (VAHID; GORDON-ROSS, 2001). The most known mass-
produced microcontrollers at the industry are from Freescale M68HC11, Intel 8051 and
Microchip PIC families. These microcontrollers and their microprocessors are also
largely used as cores or parts of SOCs.

In a microcontrolled system, as illustrated in Figure 4.1, there is a microprocessor or
a Central Processor Unit (CPU), generally, an on-chip volatile memory just for data
(stack, context or variables) and a non-volatile program memory accessed directly by
the microprocessor, i.e., without another memory level. This kind of system typically
has simple architectures and generally exclude features like multipliers, floating-point
units, caches, deep pipelines and branch predictors (VAHID; GORDON-ROSS, 2001).

In the present work, the target is to make robust a Motorola or today Freescale
M68HC11 microprocessor. It is a CISC architecture with 8 data bits and 16 address bits.
All software instructions are executed in their programmed sequence, i.e., instructions
are analyzed and data are processed in a sequential nature. The M68HC11 CPU can
execute all M6800 and M6801 instructions (source and object-code compatible) and

41

more than 90 new instruction opcodes. Since more than 256 instruction opcodes exist, a
multiple-page opcode map is used in which some new instructions are specified by a
page-select prebyte before the opcode byte (FREESCALE, 2002). Actually, this
microprocessor can execute up to 308 different instructions.

Figure 4.1: Illustration of a typical microcontrolled system

The architecture of the M68HC11 CPU considers all peripherals, on-chip devices,
input/output (I/O) and memory locations to be treated identically as locations or
addresses in the 64-Kbyte memory map (16-bit address bus). Thus, there are no special
instructions for I/O that are separate from those used for memory. In addition, there is
no execution-time penalty for accessing an operand from an external memory location
comparing to a location within the microcontroller (FREESCALE, 2002). Such kind of
CPU sometimes is called von Neumann architecture. The CPU can be either reading an
instruction or reading/writing data from/to addresses of the memory map. Both
operations cannot occur at the same time, since the instructions and data use the same
signal pathways and memory map. It is different from Harvard architectures, in which
the CPU can read both an instruction and data from the memory at the same time. In
Harvard architectures, data and program memories are located separately by using
different signal pathways and memory maps.

The main innovations of the M68HC11 CPU compared to the earlier M6801 and
M6800 CPUs (FREESCALE, 2002) are:

• The inclusion of a second index register (Y);

• New instructions of bit manipulations that allow accessing bits in some memory
localizations in the 64-Kbytes address space;

• Two new instructions that do a division 16 by 16 bits;

• Transfer instructions from the indexation register to the 16 bit double
accumulator;

• Updated instructions for easier complete arithmetic operations.

The M68HC11 CPU support four data types: bit data; 8 bits and 16 bits signed and
unsigned integers; 16 bits unsigned fractions and 16 bits addresses (FREESCALE,

On-Chip

Data
Memory

Peripheral
Program
Memory

Other
Peripherals

Microprocessor

42

2003). Six addressing modes can be used to access the memory: immediate, direct,
extended, indexed, inherent and relative.

Seven CPU registers are visible for the programmer or software designer
(FREESCALE, 2003). Figure 4.2 shows such registers and in the following paragraphs
they are briefly described:

• Accumulators A and B: are general-purpose 8-bit accumulators used to hold
operands and results of arithmetic calculations or data manipulations. Some
instructions treat the combination of these two 8-bit accumulators as a 16-bit
double accumulator (accumulator D);

• Index Registers X and Y: are 16-bit index registers used for indexed addressing
mode. In the indexed addressing mode, the contents of a 16-bit index register are
added to an 8-bit offset, which is included as part of the instruction, to form the
effective address of the operand to be used in the instruction;

• Stack Pointer SP: is the pointer of a program stack supported automatically by
the CPU. This stack may be located anywhere in the 64-Kbyte address space and
may have any size up to the amount of data memory available in the system. At
any given time, the stack pointer register holds the 16-bit address of the next free
location on the stack;

• Program Counter PC: is a 16-bit register that holds the address of the next
instruction to be executed;

• Condition Code Register CCR: contains five status indicators, two interrupt
masking bits and a STOP disable bit. The five status flags reflect the results of
arithmetic and other operations of the CPU as it performs instructions. The five
flags are half carry (H), negative (N), zero (Z), overflow (V) and carry/borrow
(C). The interrupt request (IRQ) mask (I bit) is a global mask that disables all
maskable interrupt sources. The XIRQ mask (X bit) is used to disable interrupts
from a certain pin. The STOP disable (S) bit is used to allow or disallow the
STOP instruction.

Figure 4.2: CPU registers visible to the programmer (FREESCALE, 2003)

43

Figure 4.3 shows a simplified diagram with the main functional blocks in a version
of the M68HC11 architecture. Such CPU is basically organized into 6 blocks:

• Branch Coder: codes the next address for branch;

• Control Unit: generates the next values to State, Address and PC registers based
on the current instruction code and state;

• Interruption Decoder: decodes an interruption;

• Operation Coder: codes an operation to Registers and ALU based on the
current instruction code and state;

• ALU (the Arithmetic Logic Unit): executes the arithmetic and logic operations;

• Registers: include all 18 internal registers or sets of flip-flops dispersed on the
CPU area. They totalize 187 1-bit flip-flops. The registers are: 8-bit A, 16-bit
Address, 16-bit ALU, 8-bit B, 8-bit CCR, 4-bit Counter4, 1-bit D_Prefix, 8-bit
Datain, 16-bit Load_Addr, 8-bit Opcode, 16-bit PC, 8-bit Prev_Data, 16-bit
Reg_Addr, 16-bit SP, 5-bit State, 16-bit X, 1-bit Y_Prefix, 16-bit Y.

Figure 4.3: Main functional blocks of the M68HC11 architecture

4.2 Fault-Tolerant Circuit Design
In the architecture of a M68HC11 microprocessor core, the unique existing

sequential or memory elements, which can potentially store wrong values due to a fault

Address
Generation

Opcode

Control
Unit

A

Y

SP

Write Data

Branch
Coder

Address

PC

State

Interruption
Decoder

Data
In

B

ALU

CCR

Operation
Coder

X

44

event, are the 18 individual registers dispersed on the core area. The remaining area
corresponds to the combinational blocks.

The fault-tolerant version design of the M68HC11 microprocessor is based on
applying fault-tolerance techniques on its vulnerable elements to Soft SEEs. Since the
objective is the IC manufacture not a FPGA implementation, the overall microprocessor
circuit would be potentially susceptible to direct SEUs on its sequential elements and to
indirect SEUs through SETs on its combinational blocks, as discussed in 2.1.2. The
implemented fault-tolerance techniques must be able to mitigate such faults.

There are fault-tolerance techniques based on detection circuits like those presented
in (ANGHEL; NICOLAIDIS, 2000-a) that require retry procedures for correction.
Applying on susceptible IC elements such techniques can be disadvantageous at the
cycle-timing aspect of microprocessor software applications. Typically, in a clock cycle,
a functional operation of the circuit is performed. The same clock cycle is generally also
used to monitor an eventual fault and to process the detection hardware task. In the next
clock cycle, based on the result of the detection, it is performed a decision hardware
task. If a fault is detected, extra clock cycles are generated in order to execute the error
correction task, or in other words to retry the functional procedure of the previous clock
cycle. A fault-tolerance technique that maintains, even under an eventual fault, the
number of cycles of a software execution is quite desirable. It is to avoid unexpected
overheads in performance and to guarantee the reusability of the system design.
Furthermore, the fault-tolerance technique implementation in the circuit would be
simplified and less arduous due to the absence of retry procedures and unexpected extra
cycles that need not be predicted.

Another issue is that some fault-tolerance techniques like those proposed in
(NICOLAIDIS, 1999; ANGHEL; NICOLAIDIS, 2000-a; KRISHNAMOHAN;
MAHAPATRA, 2004) require more than one clock to evaluate the data signal at
different time instants. In this way, these TR versions also require building trees for
multiple clocks in order to avoid eventual clock skew. Thus, an extra cost in area and
power to allocate the additional clock networks is inherent. Moreover, the design
complexity increases and the compatibility with standard systems can be affected as a
result of the exigency of support and supply circuits for multiple clocks.

In order to avoid direct SEU, a traditional fault-tolerance technique due to its
efficient error detection is the TMR approach presented in section 3.1. It might be costly
in area and power. However, it can sometimes provide better results in area than EDAC
techniques like Hamming Code. In the work (HENTSCHKE et al, 2002) both
techniques were compared by using arithmetic circuits with pipeline and register files.
Results indicate that TMR is more appropriated to protect single registers like those in
pipelines, control and data-path circuits. On the other hand, as already emphasized at the
beginning of this chapter, Hamming Code is more suitable to protect groups of storage
cells like RAMs. Another valorous detail of the TMR technique is that it protects
against errors on all bits of a register. Furthermore, the circuit critical path is only
affected by the delay of the voter, no unexpected extra clock cycles can occur and just
one clock is necessary. The TMR implementation at the RT level makes simple, since
descriptions of systems at this level usually have their sequential elements in modular
components.

Applying TMR is enough just to mitigate direct SEUs on sequential elements,
nevertheless covering indirect SEUs due to SETs on combinational blocks is necessary

45

another fault-tolerance technique. A TR version presented in section 3.2 can be an
adequate alternative to mitigate indirect SEUs. It uses the special CWSP element
proposed by (NICOLAIDIS, 1999) to tolerant SET pulses. Such approach has as main
virtue to work with only one clock. Additionally, it does not require retry procedures
that could result in unexpected extra clock cycles. This technique can also be developed
at the RT level by using standard combinational logic gates to build the CWSP element
as a component. Figure 3.2 illustrates this approach.

4.3 Integrated Circuit Design Flow
Typical integrated circuit design flows developed at semiconductor companies are

discussed in (SMITH, 1997; DAVIS et al, 2000; BRÜNING, 2006). Such design flows
show the sequence of usual steps to design a complex IC such as a microprocessor.
They are based on circuit models at high-level of abstraction and standard cells of a
technology to cope with the current high complexity of the circuits. Otherwise, low-
level models and full-custom designs are more accurate but they are more onerous and a
large number of engineers or a lot of time would be required to design an IC.

Two major design parts can be considered in the design flows presented in (SMITH,
1997; DAVIS et al, 2000; BRÜNING, 2006): front-end design which is the logical
design; and back-end design which is the physical design. Normally, different engineers
handle the front-end and back-end design, even so there is some overlap between these
two design parts. The front-end and back-end parts can be well defined by Figure 4.4
published in (SMITH, 1997). The steps of this typical design flow are briefly presented
below:

Figure 4.4: A typical IC design flow (SMITH, 1997)

46

• Design entry: the initial entry into the design flow, either using a hardware
description language (HDL) or schematic entry;

• Logic synthesis: by using an HDL (VHDL or Verilog) and a logic synthesis
tool to produce a description of the logic cells and their connections known as
netlist;

• System partitioning: divide a large system into IC-sized pieces. This step is
especially important for even more complex systems composed of many
functional units or blocks. If a functional block is too large to fit in one piece, a
partition of the function into pieces may have to be done. Common or standard
parts are allocated into different IC-sized pieces;

• Pre-layout simulation: check to see if the design functions correctly;

• Floorplannig: arrange the blocks of the netlist on the chip;

• Placement: decide the locations of cells in a block or unit of the IC;

• Routing: make the connections among cells, blocks or units;

• Extraction: determine the resistance and capacitance of the interconnect;

• Post-layout simulation: check to see if the design still works with the added
loads of interconnects.

Typically, the steps 1 to 4 in Figure 4.4 are tasks of the front-end design and steps 5
to 9 of the back-end design. However, there might be some overlaps. The system
partitioning, for instance, is usually performed by considering both logical and physical
factors.

4.3.1 The Developed Design Flow

Based on the design flows (SMITH, 1997; DAVIS et al, 2000; BRÜNING, 2006)
and fundamentally on that suggested by the EDA tools (CADENCE, 2002), in the
present work, a design flow illustrated briefly in Figure 4.5 was developed. Nowadays,
these commercial EDA tools for simulation, synthesis, partitioning, floorplanning,
placement, routing, extraction, verification and analysis are amply used by
semiconductor industries essentially because they support engineers to faster design
even more complex systems. In addition to EDA tools from (CADENCE, 2002), a logic
simulator from (MENTOR, 2004) was also used in this work.

By means of several different steps, this IC design flow starts from a VHDL
description of the target circuit at RT level and achieves an equivalent representation at
the physical level. This physical representation used by foundries in an IC manufacture
process is a stream file known as Graphical Design System II (GDSII). It contains the
geometry information of the IC physical design. An equivalent file format known as the
Caltech Intermediate Form (CIF) is also usual.

In the present work, the design flow in Figure 4.5 starts from a VHDL description of
the target architecture (step 1) presented in section 4.1. As the front-end logical design
discussed in section 4.4, this description was worked at the RT level in order to make
robust the architecture.

At step 2 of this design flow, an initial verification by a behavioral simulation,
detailed in chapter 5, was performed based only on the VHDL code worked at the RT

47

level without a logic synthesis. Thus, this code characterizes the behavior of a system
with circuits logically non-simplified and with no physical information. It requires a
single logic simulator tool able to check VHDL code syntax, compile VHDL code and
simulate data streams on the system. As the circuit information evaluated by this tool is
simple, it requires very little execution time. Furthermore, this step 2 occurs ahead of
running EDA tools that demand a larger processing and design time. It allows speeding
up the correction of eventual design errors detectable at the RT level.

Figure 4.5: The developed design flow

At step 3, it was done a logic synthesis of the circuits described in the worked
VHDL code. Depending on the complexity of the target circuit, some design steps can
be simplified. The step relating to the system partitioning from Figure 4.4 was not worth
performing because the target system of this work is composed of few functional blocks
that are not too large. By this reason and due to step 2 from Figure 4.5, unlike the design
flow from Figure 4.4, another verification simulation was not performed thereupon the
logic synthesis. On the other hand, a new verification simulation was worth performing
after step 4 from Figure 4.5, since the available EDA tool platform allows easily
arranging the logic synthesizer tool together with this step 4.

Then, at step 4 from Figure 4.5, the back-end physical design discussed in section
4.5 starts by using standard cells from the AMS 0.35 µm CMOS technology
(AUSTRIAMICROSYSTEM, 2003). This target technology uses 4 layers of metal and
allows a power supply (vdd) of 3.3 V. At this step 4, various design steps could be
assigned due to the practical software resources provided by the EDA tools. The step 4
arranges the technological mapping, floorplanning, timing analysis, placement, clock-

VHDL
Description of the

Target Circuit
Logic Synthesis

Technological Mapping
Placement

Global Routing

Behavioral Simulation

AMS
0.35µm
CMOS

Technology

Cell
Library

Rules
Library

Final
Routing Circuit

Extraction

Gate-Level
Simulation (2)

Standard
Cell Layout
GDSII File

Results in
Performance,

Area and
Power (2)

Results in
Performance,

Area and
Power (1)

Gate-Level
Simulation (1)

Front-End Logical Design

Back-End Physical Design

DRC

1

2 3

4

6

5

7

8

11

12

9

10

48

tree generation and global routing. At step 5, a first set of preliminary estimated results
in area, performance and power could be analyzed before the final routing. It can be
useful to evaluate quickly but superficially the IC design viability for a manufacture.

The arrangement done at step 4 makes easy to run another verification experiment
(step 6) as a pre-layout simulation, since it is before the detailed or final routing step
(step 7). This verification allows the correction of eventual design errors occurred up to
this step. Details about step 6 are presented in chapter 5.

Afterwards, at step 8, a circuit extraction by taking parasitic elements was
performed. At step 9, the GDSII file was created from the generated final standard cell
layout. At step 10, a Design-Rule Check (DRC) was performed. It is the major check
that is typically used before a fabrication. Finally, at steps 11 and 12, a more accurate
verification and analysis of the post-layout design could be done due to the extracted
parasitic information.

During the development of an IC design, it is quite common the front-end and back-
end designers do not succeed at the phases of verifications or checks. It usually occurs
due to design errors such as logical errors, timing or geometry violations. By this
reason, every design step can loop to every other step in order to fix design details or to
adjust new sets of constraints.

4.4 Front-End Logical Design
In the IC design of this work, fault-tolerance mechanisms were implemented in the

target microprocessor at the RT level. In accord to section 4.2, the TR+CWSP technique
was used to protect the combinational blocks of the microprocessor. The TMR makes
robust the microprocessor registers and elements of the TR+CWSP scheme.

In order to obtain the costs of the robustness in the target architecture, three
microprocessor versions were developed:

• The Non-Protected version which is the reorganized architecture of the CPU
without any fault-tolerance mechanism;

• The TMR version that is just protected by applying TMR on the registers and
thus it mitigates only direct SEUs;

• The TMR+TR+CWSP version that is the robust version to direct and indirect
SEUs by using TMR and the TR+CWSP scheme.

4.4.1 Non-Protected Version or Susceptible to Direct and Indirect SEUs

In this design, a VHDL description (THIBAULT, 2000) of the M68HC11 CPU was
initially used. It differs from the standard CPU (FREESCALE, 2002) only by not
implementing two instructions of division 16 by 16 bits (fractional and integer).

Such M68HC11 VHDL description (THIBAULT, 2000) was developed by using
high-level resources of the VHDL. It presents a quite behavioral characteristic, i.e.,
there is a unique VHDL architecture with many concurrent processes. As Figure 4.6
illustrates, in which E_i is the clock signal of the system, combinational and sequential
logics are not described in individual processes. Furthermore, the typical separation of a
digital system between operative and control parts is not clearly organized.

49

process (E_i, tsc_i, state, address_i)
begin
 if (E_i'event and E_i = '1') then
 if (tsc_i = '0') then
 if (state = LOAD1) then
 load_addr <= address_i;
 end if;
 end if;
 end if;
end process;

Figure 4.6: A process from the original VHDL description

Before starting the implementation of the fault-tolerance techniques, the target
system description need be adapted in a practical way. It must allow that designers
know identifying combinational and sequential elements easier and thus applying
uniformly the fault-tolerance techniques. Such practice in principle should be a usual
rule in any description of digital system. However, digital systems can be developed by
designers with different backgrounds. Occasionally, hardware descriptions are worked
by using excessive high-level resources of the languages in which synthesis tools do not
succeed in implementing. Furthermore, basic rules of structure and indentation of the
description frequently are not considered.

In the present design, the microprocessor description (THIBAULT, 2000) was
adequately reorganized in such way that each one of its sequential elements (18
registers) was individually separated from its combinational blocks in accord to Figure
4.7. The description was also structured by transforming the main functional blocks
such as those from Figure 4.3 into VHDL components.

Figure 4.7: Combinational and Register blocks in the Non-Protected version

Some tips, which were developed in this present design with the intention of making
easy the fault-tolerance implementation in the CPU, are presented below:

4.4.1.1 Analysis of Sequential Logics and Attached Combinational Logics

The identification of sequential logics and the separation of eventual attached
combinational logics in VHDL processes as that from Figure 4.6 can be summarized
into the following steps:

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

50

• Identifying all probable sequential logics in the original VHDL description by
searching for sensitive processes to the clock signal(s) of the system. An
example is shown in Figure 4.6, in which E_i is the clock signal of the system;

• Removing all combinational logic from identified original processes. It results
for each one of the processes a VHDL process purely sequential (Figure 4.8);

process (E_i, address_i)
begin
 if (E_i'event and E_i = '1') then
 load_addr <= address_i;
 end if;
end process;

Figure 4.8: A VHDL process purely sequential

• Creating a VHDL signal for interconnection between the combinational logic
and sequential process. It should be done in each one of those identified
processes. In Figure 4.9, the new signal called “address_i_signal” replaces the
former “address_i”;

process (E_i, address_i_signal)
begin
 if (E_i'event and E_i = '1') then
 load_addr <= address_i_signal;
 end if;
end process;

Figure 4.9: VHDL process purely sequential with the new interconnection signal

• Generating another VHDL process as illustrated in Figure 4.10 that characterizes
only the combinational logic from the original process (Figure 4.6). Notice that
as seen in Figure 4.10, the “else” construction is included in all “if” structures. It
is because by means of the VHDL synthesis tools, any construction such as “if”
or “case” can also implement sequential logics such as latches. Whenever not all
options of the tested signals are evaluated, latches will be created. Since the
intention is originally creating a pure combinational logic like a multiplexer, the
“else” construction is included in order to avoid latches;

process (state, address_i, tsc_i, load_addr)
begin
 if (tsc_i = '0') then
 if (state = LOAD1) then
 load_addr_signal <= address_i;
 else
 load_addr_signal <= load_addr;
 end if;
 else
 load_addr_signal <= load_addr;
 end if;
end process;

Figure 4.10: A VHDL process purely combinational

• Analyzing reports of results provided by the synthesis tool with the purpose of
verifying if all sequential logics were actually identified and if none extra latch

51

was implemented due to the creation of the new VHDL processes for the
combinational logics.

4.4.1.2 Modeling All Registers in a Unique Reusable Component

After the design steps from section 4.4.1.1, all sequential elements of the target
microprocessor, which are 18 registers, can be arranged in a practical way. All 18
registers can be modeled by a unique reusable parameterized VHDL component (Figure
4.11), in which the unique required parameter is a VHDL generic that assign the number
of bits of the target register to be instantiated. Reset and enable ports could be also
implemented in this VHDL component, it was not included in the next figures just to
simplify the illustrations.

Note that this approach requires a unique VHDL architecture and therefore a unique
VHDL file to describe all 18 registers of the system. Such unique architecture was
instantiated in 18 different points of the VHDL description (in the top VHDL
architecture or inside functional blocks) where were described the 18 registers. It makes
easy the implementation of the fault-tolerance mechanisms. For all registers, it is
required to instantiate just once the VHDL components that model the fault-tolerance
techniques (the TMR and TR+CWSP techniques, in this present design).

Furthermore, this practice of structuring the VHDL description also allows
improving the visibility, manipulability and reusability of the VHDL code. All this
reduces the susceptibility to designer’s errors, since the individual protection of the
registers would involve the creation of many VHDL processes in different files.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity RegisterComponent is
 generic
 (
 number_of_bits : integer
);
 port
 (
 clock : in std_logic;
 data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
end RegisterComponent;
architecture RTL of RegisterComponent is
begin
Register:
 process (clock, data_in)
 begin
 if (clock'event and clock = '0') then
 data_out <= data_in;
 end if;
 end process;
end RTL;
Figure 4.11: The unique reusable parameterized VHDL component for all registers

52

4.4.2 TMR Version or Robust to Direct SEUs

Based on reorganized Non-Protected version of the microprocessor previously
presented in 4.4.1, the TMR version was structured as Figure 4.12. A VHDL component
that characterizes the voter circuit illustrated in Figure 3.1 was created as Figure 4.13
and Figure 4.14.

Figure 4.12: Combinational and Register blocks in the TMR version

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity VoterComponent is
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in_0 : in std_logic_vector((number_of_bits - 1) downto 0);
 data_in_1 : in std_logic_vector((number_of_bits - 1) downto 0);
 data_in_2 : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
end VoterComponent;
architecture RTL of VoterComponent is
begin
Voter:
 process (data_in_0, data_in_1, data_in_2)
 begin
 data_out <= ((data_in_0 or data_in_1) and (data_in_1 or data_in_2) and
(data_in_0 or data_in_2));
 end process;
end RTL;

Figure 4.13: Voter component

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
Voter

53

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

package fault_tolerance_mechanisms is

 component VoterComponet
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in_0 : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_in_1 : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_in_2 : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector ((number_of_bits - 1) downto 0)
);
 end component;

end package fault_tolerance_mechanisms;

Figure 4.14: Package of the fault-tolerance mechanisms (1)

The TMR version of the unique reusable component detailed in Figure 4.11 is
presented in Figure 4.15 and Figure 4.16. The registers of the microprocessor were
triplicated by including the “generate” construction of the VHDL in the unique reusable
register component. The voter component was instantiated in the register component by
connecting its three inputs to the three outputs of the triplicated register.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work. fault_tolerance_mechanisms.all;

entity RegisterComponent is
 generic
 (
 number_of_bits : integer
);
 port
 (
 clock : in std_logic;
 data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
end RegisterComponent;

Figure 4.15: TMR parameterized component for each one of the registers (part 1)

54

architecture RTL of RegisterComponent is
 type type_data_in is array (0 to 2) of std_logic_vector((number_of_bits - 1)
downto 0);
 signal signal_data_in : type_data_in:=(others => (others=>'0'));
begin
Redundant_Registers:
 for i in 0 to 2 generate
 Register:
 process (clock, data_in)
 begin
 if (clock'event and clock = '0') then
 signal_data_in(i) <= data_in;
 end if;
 end process;
 end generate;
Voter_Block:
 VoterComponent
 generic map
 (
 number_of_bits
)
 port map
 (
 data_in_0 => signal_data_in (0),
 data_in_1 => signal_data_in (1),
 data_in_2 => signal_data_in (2),
 data_out => data_out
);
end RTL;

Figure 4.16: TMR parameterized component for each one of the registers (part 2)

4.4.3 TMR+TR+CWSP Version or Robust to Direct and Indirect SEUs

The TMR+TR+CWSP version of the microprocessor was built following the scheme
illustrated in Figure 4.17. The output of a combinational block, which originally is
connected to the input of a unique register, is shared with three delay and CWSP blocks
that have their outputs towards the inputs of the triplicated register. A voter block
compares the three register outputs and results that of majority to the input of the next
combinational block. Note that not only the registers are protected by the TMR but also
the elements of the TR+CWSP scheme. Otherwise, these elements of the TR+CWSP
scheme would be unprotected against SETs, as section 4.6.3 better explains.

Such TMR+TR+CWSP version was based on the Non-Protected and TMR versions
detailed respectively in sections 4.4.1 and 4.4.2. Additionally, a CWSP VHDL
component in accord to Figure 3.2 was created as Figure 4.18, Figure 4.20 and Figure
4.21 show. A dummy delay block was also modeled as a VHDL component. This
component characterized in Figure 4.19, Figure 4.20 and Figure 4.21 was used by the
synthesis tools to implement the target propagation time for the delay blocks. In other
words, it is to define the place in the circuit for setting the timing constraints required by

55

the synthesis tools to implement the delays. Details about these constraints are discussed
in section 4.5 and 4.6.1.

Figure 4.17: Combinational and Register blocks in the TMR+TR+CWSP version

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity CWSPcomponent is
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 delayed_data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
end CWSPcomponent;

architecture RTL of CWSPcomponent is
 signal signal_data_out : std_logic_vector((number_of_bits - 1) downto 0);
begin
Register:
 process (data_in, delayed_data_in, signal_data_out)
 begin
 signal_data_out <= ((delayed_data_in and signal_data_out) or (data_in and
delayed_data_in) or (signal_data_out and data_in));
 end process;
 data_out <= signal_data_out;
end RTL;

Figure 4.18: CWSP block component

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck
 CWSP

R
eg

is
te

r

D
el

ay

R
eg

is
te

r
R

eg
is

te
r

CWSP

CWSP

Voter D
el

ay

D
el

ay

56

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity DelayComponent is
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
end DelayComponent;

architecture RTL of DelayComponent is
begin
DelayBlock:
 process (data_in)
 begin
 data_out <= data_in;
 end process;
end RTL;

Figure 4.19: Delay block component

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

package fault_tolerance_mechanisms is

 component VoterComponet
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in_0 : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_in_1 : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_in_2 : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector ((number_of_bits - 1) downto 0)
);
 end component;

Figure 4.20: Package of the fault-tolerance mechanisms (2) (part 1)

57

 component DelayComponet
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in : in std_logic_vector ((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector ((number_of_bits - 1) downto 0)
);
 end component;
 component CWSPcomponent
 generic
 (
 number_of_bits : integer
);
 port
 (
 data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 delayed_ data _in : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
 end component;
end package fault_tolerance_mechanisms;

Figure 4.21: Package of the fault-tolerance mechanisms (2) (part 2)

The TMR+TR+CWSP version of the unique reusable component detailed in Figure
4.11 is presented in Figure 4.22 and Figure 4.23. The CWSP and delay block
components were instantiated in the register component from Figure 4.15 and Figure
4.16.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.fault_tolerance_mechanisms.all;

entity RegisterComponent is
 generic
 (
 number_of_bits : integer
);
 port
 (
 clock : in std_logic;
 data_in : in std_logic_vector((number_of_bits - 1) downto 0);
 data_out : out std_logic_vector((number_of_bits - 1) downto 0)
);
end RegisterComponent;

Figure 4.22: TMR+TR+CWSP component for each one of the registers (part 1)

58

architecture RTL of RegisterComponent is
 type type_data_in is array (0 to 2) of std_logic_vector((number_of_bits - 1)
downto 0);
 signal delayed_signal : type_data_in;
 signal tr_signal : type_data_in;
 signal signal_data_in : type_data_in:=(others => (others=>'0'));
begin
Redundant_Registers:
 for i in 0 to 2 generate
 Delay_Block:
 DelayComponent
 generic map (number_of_bits)
 port map (data_in, delayed_signal(i));
 CWSP_Block:
 CWSPcomponent
 generic map (number_of_bits)
 port map (data_in, delayed_signal(i), tr_signal(i));
 Register:
 process (clock, data_in)
 begin
 if (clock'event and clock = '0') then
 signal_data_in(i) <= tr_signal(i);
 end if;
 end process;
 end generate;
Voter_Block:
 VoterComponent
 generic map (number_of_bits)
 port map (signal_data_in(0), signal_data_in(1), signal_data_in(2), data_out);
end RTL;

Figure 4.23: TMR+TR+CWSP component for each one of the registers (part 2)

The kind of CWSP element implemented at all inputs of the CPU registers was the
called Identity block suggested by (NICOLAIDIS, 1999) and shown in Figure 3.2.
However, logic blocks of CWSP like those illustrated in Figure 3.5 could be used to
replace the last logic gate of the target combinational block (the nearest gate from the
output of the combinational block). It could decrease penalties in area, performance and
power. Nevertheless, the implementation and adaptation in the RT-level description of
the design would be onerous. The original combinational blocks from the Non-Protected
version would be modified. Furthermore, there could be a different logic block of
CWSP for each one of the original combinational blocks.

4.5 Back-End Physical Design
The physical design steps are well-defined problems with some complexity that

typically require CAD resources in order to solve them. By this reason, the physical
design flow depends so much on the available EDA tools. Table 4.1, Table 4.2 and
Table 4.3 summarize all steps, including also logical design steps, of the design flow
presented in Figure 4.5 by means of the tools used in each one. The tables show the
CAD resources like platforms and commands utilized in the designs of this work.

59

Additionally, software scripts based on these tables were created with the aim of
organizing and easily executing command sets of the design steps.

In the front-end logical design of this work, VHDL codes at the RT level were
developed (step 1 from Table 4.1), verified by simulation (steps 2 and 3) and
afterwards logically synthesized (step 6). It was supported by a logic simulator from
(MENTOR, 2004) and a logic synthesizer that provide, as output results, logic
descriptions of the target circuits with no physical information.

Table 4.1: The developed design flow (part 1)

Tool Design Step
Kind Command

Platform
(Command)

1 VHDL Description of
the Target Circuit Any Editor - -

2
Compilation of the

Target VHDL
Description

Compiler vlib
vcom

3 Behavioral Simulation Simulator vsim
run

Mentor
ModelSim

(vsim)

4 Technological
Information Setup Reader read_tlf

read_lef

5
Importation of the Target

VHDL Description
and I/O Pad Cells

Reader read_vhdl

6 Logic Synthesis Synthesizer do_build_generic

7 Constraint Setting Reader

set_operating_condition
set_wire_load_mode
set_port_capacitance

set_drive_cell
set_clock ideal_clock

set_clock_root
set_path_delay_constraint
set_floorplan_parameters
set_clock_tree_constraints

8 Technological Mapping Synthesizer
9 Floorplanning Floorplanner

10 Placement Placer
do_optimize

11 Clock-Tree Generation Placer do_build_clock_tree
12 Global Routing Router do_route
13 Area Analysis Analyzer report_area
14 Timing Analysis Analyzer report_timing
15 Power Analysis Analyzer report_power

16 Preliminary
Circuit Extraction Analyzer write_sdf

17 Netlist Generation Synthesizer write_verilog
write_vhdl

Cadence
PKS

(pks_shell)

The back-end physical design starts by including just physical information in these
resulting logic descriptions. Such physical information comes from a technology library.

60

In this work, it was the AMS 0.35 µm CMOS technology that uses 4 layers of metal
(AUSTRIAMICROSYSTEM, 2003).

By following the steps of the design flow detailed in Table 4.1, at steps 4 and 5, the
technological information, the I/O pad cells and VHDL descriptions of the target
circuits are loaded in a software platform. Such platform labeled as PKS (CADENCE,
2002) was utilized for the initial development of the physical design. Note, however,
that step 6 is a logical design step. It was arranged together with the physical design
steps in order to make easy the development of the design. This approach was feasible
because the PKS software platform has also integrated a logic synthesizer.

At step 7, initial design constraints are defined. The same initial constraints were
used in the three microprocessor design versions mentioned in section 4.4. The
operating conditions of the circuits were set in accord to the typical options of the
technology library. These options consider a temperature of 25 °C and a power supply
(vdd) of 3.3 V. All input ports of the circuit versions were connected to output buffers
for modeling the drive capability of external drivers. These output buffers are BU24P
cells from the target technology. It is a pad-limited output buffer cell with the strongest
drive strength of the library (around 24 mA). Furthermore, capacitances based on the
input loads from input buffers were specified at all output ports of the circuit versions.
These input buffers are ICP cells that have input capacitance of 4.737090 pF. It is a pad-
limited CMOS input buffer cell which can provide the typical input capacitance of a
pad. An initial timing constraint at the clock period used for the timing analysis was 333
ns. This preliminary value comes from the typical clock period of a commercial system
that: uses the target architecture of this work; and respects the lower speeds required by
the compatible data and program memories habitually used in such applications
(FREESCALE, 2002). The falling edge of the clock was set preceding the rising edge,
since the architectures were designed by using the negative edge of the clock. As
mentioned in section 4.4.3, delay constraints were also set in order to implement the
buffers for the delay blocks. More details about the values used in these delay blocks are
discussed in section 4.6.1. Other constraints were set at this step, such as the floorplan
and clock-tree constraints that are detailed in the following paragraphs.

At step 8, the generic logic cells of the logic descriptions are mapped to standard
cells of the target technology. At step 9, the floorplanning step is performed in order to
estimate sizes and set the initial relative locations of the blocks in the IC (SMITH,
1997). It also allocates the space for the clock and power wiring and decides on the
location of the I/O, power and ground pads. Concerning the initial floorplan parameters
set at step 7 and illustrated in Figure 4.24, the initial aspect ratio of 1 was set as a
constraint. In other words, the chip area should initially have a square shape (y = x, in
Figure 4.24). The left, right, top and bottom distances (x0, x1, y0 and y1 in Figure 4.24)
from the I/Os to the core were defined all equally as 746.200 µm. This dark gray area
detailed in Figure 4.24 between the I/Os and the core is the optimized space for placing
and routing symmetrically the power and ground rings and 52 pad cells required by the
three microprocessor versions. Values lower than 746.200 µm were tried but the tools
could not attain their aims successfully. The initial utilization of the core rows (look at
Figure 4.24 the core rows, where the standard logic cells are placed) was set to reach
around 70 % of the row area. The remaining row area of 30 % is for the routing
finishing successfully and it is just occupied with special cells known as filler cells. This
initial utilization was the highest value which the floorplanner succeeds for the three
microprocessor versions. The number of core rows is determined by the floorplanner in

61

accord to the design. More details about the initial floorplan parameters are presented in
section 6.1.1.

Figure 4.24: Initial floorplan parameters for the three microprocessor versions

At step 10, the placement tool defines the locations of the standard cells within the
IC and sets aside the space for the interconnect to each standard cell (SMITH, 1997).
The placement assigns each standard cell to a position in a row or core row as
mentioned in previous paragraph. Note that steps 8, 9 and 10 are integrated at the same
software command. In order to minimize the circuit path delays, this approach tries to
optimize the choice and placement of the standard cells based on a circuit timing
analysis.

At step 11, in order to avoid clock skew, a clock tree is built by an EDA tool based
on some initial constraints set at step 7. In other words, buffers or inverters are added in
the wires of the clock network for balancing the clock distribution. A minimum clock
delay of 3.00 ns and a maximum of 3.50 ns were initially assigned. In addition, a
maximum skew was set to 0.32 ns. Such values were deduced from some preliminary
simulation experiments with the target robust architecture using higher values for these
clock-tree constraints.

At step 12, the global routing tool determines where the interconnections between
the placed standard cells and blocks will be situated (SMITH, 1997). Only the routes to
be used by the interconnections are decided at this step, not the actual locations of the
interconnections within the wiring areas. At this step 12, a physical design information
file known as Design Exchange Format (DEF) is created to be used at following design
steps.

At steps 13, 14 and 15, analysis tools provide preliminary estimated results in area,
performance and power before the final layout adjustments. These design results can be
seen through report files generated by the tools. An IC preliminary view can be also
seen at these steps, as Figure 6.2, Figure 6.3 and Figure 6.4 in chapter 6 illustrate for the
three microprocessor versions. Area results show the total circuit area but they do not
detail about the wiring and routing issues. Performance results are estimated by a static
timing analysis tool. Power results are based on default values defined by a power

CORE y

y0

x1

x

x0

y1

62

analysis tool at primary inputs and outputs of circuit sequential elements. As
emphasized in section 4.3.1, these pre-layout design results are not as accurate as the
post-layout design results, but they can allow an initial evaluation of the IC design.

At step 16, preliminary delay information of logic gates and interconnects based on
the technology library was generated and stored in a Standard Delay Format (SDF) file.
At step 17, post-synthesis structured descriptions (VHDL and Verilog netlists) were
created. They are constituted of gates relating to the standard cells from the technology
library.

In Table 4.2, steps 18, 19 and 20 perform the pre-layout verification simulations of
the circuits, as the design flow in Figure 4.5 shows. It uses the pre-layout SDF
information from step 16.

Table 4.2: The developed design flow (part 2)

Tool Design Step
Kind Command

Platform
(Command)

18 Technology Library
Compilation Compiler

vlib
vcom
vmap

19 Netlist Compilation Compiler vlib
vcom

20 Pre-Layout Gate-Level
Simulation Simulator

vsim
(with sdf file)

run

Mentor
ModelSim

(vsim)

21 Technological
Information Setup Reader INPUT LEF

INPUT CTLF

22 Netlist Importation Reader INPUT VERILOG
INPUT DEF

23
Insertion of Corner Cells,

Power and Ground
Pad Cells

Reader INPUT DEF
ADD ROW

24 I/O Placement Placer IOPLACE
25 Power Ring Planning Planner CONSTRUCT RING
26 Insertion of Filler Cells Placer SROUTE ADDCELL

27 Detailed or Final
Routing Router CONNECT RING

WROUTE

28 Area Analysis Analyzer REPORT SUMMARY
REPORT WIRES

29 Circuit Extraction Extractor,
Analyzer

REPORT RC
(rspf file)

REPORT DELAY
(sdf file)

30 Netlist Generation Synthesizer OUTPUT VERILOG
OUTPUT DEF

31 GDSII-File Generation Synthesizer OUTPUT GDSII

Cadence
SE P&R
(seultra)

At steps 21 and 22, the technology information and the netlists, DEF and Verilog
files, from step 12 and 17 are read by the physical design tool. In addition to the I/O pad

63

cells, inserted at step 5 for the functional pins of the IC, other special pads are inserted
at step 23. At step 24, these special cells defined as corner cells, power and ground pad
cells are placed in the designs. The corner cells give continued to the power and ground
interconnects (pad rings) among the pad cells that are placed around the core.

At step 25, two power rings are constructed around the core area of the circuit. One
of them for the power supply (vdd) and the other one for the ground (gnd). Both rings
were built with a width of 75.000 µm. At step 26, filler cells are added in order to fill
gaps among the standard logic cells placed on the core of the design and among corner
and pad cells. As emphasized at step 9, such filler cell areas are the spaces for the
routing finishing successfully.

At step 27, the power rings are initially connected to the cells. After this, all wires
are routed by using a router tool. In other words, the standard logic cells, corner and pad
cells are joined by wires or interconnections. It includes also the routing of the clock,
power and ground interconnections. The width, mask layer and exact location of the
interconnections are defined by the router (SMITH, 1997). These interconnections can
be built by 4 different layers of metal. As emphasized in previous paragraphs, it is due
to the characteristics of the technology used in this work. The final layout illustrations
of the target circuits can be also seen at this step, as Figure 6.2, Figure 6.3 and Figure
6.4 in chapter 6 show for the three microprocessor versions.

The length and position characteristics of each interconnect for each net is known
after the detailed routing (SMITH, 1997). Thus, at step 28, results in area are generated
with the wiring details. And at step 29, parasitic capacitance and resistance associated
with each interconnect, via and contact can be calculated. It is generated by a circuit-
extraction tool that provides a Reduced Standard Parasitic Format (RSPF) file.
Additionally, a SDF file can be also generated based on the post-layout information. At
steps 30 and 31, post-layout netlists (Verilog, DEF and GDSII files) are created for the
next design steps.

At step 32 from Table 4.3, the GDSII files from the previous step are imported to a
software platform able to check the circuits. At step 33, a Design-Rule Check (DRC) is
performed to ensure that nothing has gone wrong in the process of assembling the
standard logic cells and routing (SMITH, 1997). It checks for shorts, spacing violations,
or other layout design-rule problems between standard logic cells. Other check like the
Layout Versus Schematic (LVS) could also be performed to ensure that the extracted
electrical schematic from the physical layout is the same to the designed netlist or HDL
code. Another usual check that could be used is a formal verification. It would extract a
Boolean description of the function of the layout and would compare that to a known
good HDL description.

At steps 34 and 35, a post-layout verification simulation of the circuits at the gate
level is performed by using the post-layout SDF information. In order to estimate the
dynamic power consumption, at steps 36 and 37, the switching activities of the circuits
are analyzed by counting and collecting changes of state on all nodes of the circuits. In
addition, the toggle coverage allows a view of the testbench effectiveness used in the
verification experiments. After the simulations of verification based on benchmarks,
Value Change Dump (VCD) files, which contain the switching activities of the circuits,
are created for the next design steps. At steps 38, 39, 40, 41 and 42, final post-layout
results in area, performance and static and dynamic power consumptions are generated
based on the post-layout information represented by Verilog, DEF, RSPF, SDF and

64

VCD files. The VCD files were converted to Toggle Count Format (TCF) files due to
the requirements to perform the power analysis through the used software platform. By
using report files, the EDA tools arrange all final design results. They are presented in
chapter 6 of this work.

Table 4.3: The developed design flow (part 3)

Tool Design Step
Kind Command

Platform
(Command)

32 GDSII-File Importation Reader

33 DRC Checker

From a Virtuoso
Command Interface
Window (Diva Tool)

Cadence
IC

(icfb)

34 Netlist Compilation Compiler vlib
vcom

35 Post-Layout Gate-Level
Simulation Simulator vsim

(with sdf file)

36 Toggle-File Generation Synthesizer vcd file
run

37 Toggle Coverage Analyzer toggle report

Mentor
ModelSim

(vsim)

38 Technological
Information Setup Reader read_tlf

read_lef

39 Netlist Importation Reader

read_verilog
read_def
read_wdb
read_spf
read_sdf

40 Timing Analysis Analyzer report_timing

41 Toggle-File Importation Reader lpsvcd2tcf.exe
read_tcf

42 Power Analysis Analyzer report_power

Cadence
PKS

(pks_shell)

4.6 Some Fault-Tolerant Circuit Characteristics
Some characteristics of the robust microprocessor by using the TMR+TR+CWSP

scheme are presented below:

4.6.1 The Maximum Width of SETs

As defined in section 3.2.2, there is a maximum width of SET pulse arisen at the
output of the combinational block that is able to be mitigated by the TR+CWSP scheme.
It is based on the propagation time of the CWSP and Delay blocks from Figure 4.17.
The delay of the CWSP blocks are based on their logic circuits, otherwise the Delay
blocks are defined by any sequence of buffers or inverters. By this reason, the Delay
blocks are used in the design as adjustment elements to achieve the target maximum
SET width. In this work, the delays of these blocks were implemented through timing
constraints readable by the synthesis tools, as emphasized previously in section 4.4.3
and 4.5.

In section 2.1.2.3 was discussed that in micrometer technologies the duration of a
SET pulse is typically a few hundreds of picoseconds. Note that in the Non-Protected
microprocessor version, it might diffuse itself and make SEs. The target technology,

65

AMS 0.35 µm (AUSTRIAMICROSYSTEM, 2003), establishes delays of basic standard
logic gates typically around 10 ps and 2 ns. See that a typical SET (e.g. 100 ps) can
propagate itself through a basic standard logic gate (e.g. 10 ps), since pulses of widths
larger than the delay of a logic gate usually are not able to suffer electrical masking.
Based on these issues, in the TMR+TR+CWSP microprocessor design, the Delay blocks
from Figure 4.17 were defined in order to achieve a maximum width of SET able to be
mitigated around 1 ns. Such value covers slackly the requirements of a typical SET
occurrence on this robust circuit based on this target technology. However, adjusting
this width for another desired value is easily made by using CAD resources. If a larger
width of SET is required, larger overheads are attained. Otherwise, optimized width can
be achieved by decreasing its value. Thus, lesser overheads are attained, since fewer
buffers or inverters are used to implement the Delay blocks.

Furthermore, as discussed in section 3.2.2, the TR+CWSP approach also mitigates
timing faults. Therefore, enlargements of the circuit paths up to around 1 ns will be
mitigated. However, in case there are such faults, the robust circuit may not be able to
mitigate SET pulses any more. It is because there will not be enough time slack to
mitigate them.

There is another important related issue detailed also in section 2.1.2.3. A SET pulse
that arises inside a combinational block can result at the output of this block with a
width larger than the original one. It can occur due to the different delays of the
propagation paths of the combinational circuit. In this case, the TR+CWSP scheme may
not work because the allowed maximum width of SET will be overcome. However, it is
a low-probability event. Experiments were done by (ANGHEL; ALEXANDRESCU;
NICOLAIDIS, 2000-b) in order to evaluate such effects. The results showed that the
scheme achieves a high error correction efficiency (around 97 %) and it can be
improved further by increasing the Delay blocks.

4.6.2 Multiple SEUs

A SET can start at any moment inside a clock cycle period of microprocessor
software applications. The TR+CWSP technique mitigates SETs inside each clock
cycle. In case of several SETs (more than one SET) occur inside a clock cycle, the
technique may not work. It is because there could be some confusion in the comparison
between the delayed and non-delayed outputs of the affected combinational circuit. In
sections 2.1.2.3 and 2.1.2.4, a low-probability multiple event is detailed. A unique SET
pulse on an internal node of a combinational circuit can sometimes create multiple
pulses at an output bit of this combinational circuit as a result of the delay difference
among the circuit paths.

Furthermore, in accord to the topology of the circuit, a unique SET can also achieve
a unique or several bits of the registers (i.e., a unique or several potential indirect SEUs)
or even not cause any consequence (i.e., an electrical, logical or latching-window
masking). At any moment during the use of the microprocessor, several SETs can also
occur at the same time on any bit of a combinational or sequential circuit (i.e., several
potential indirect or direct SEUs). The TMR+TR+CWSP scheme protects all bits of the
registers, hence MBUs or SEUs can occur at same time and on any data bit of the
registers that they will be mitigated. However, SEUs cannot occur at the same time on
the redundant parts of a triplicated register, as section 4.6.3 explains.

66

4.6.3 SETs on the Elements of the Fault-Tolerance Mechanisms

As affirmed in section 3.1, the fault-tolerant systems based only on the TMR
protection are susceptible to indirect SEUs. It is because a SET can propagate itself up
to the three registers of the triplicated one. Thus, in case of a triple indirect SEU, the
voter block is not able to detect differences among the values stored in the triplicated
register. As result of this, it is mandatory the use of dedicated fault-tolerance techniques,
like the TR+CWSP scheme, in order to avoid indirect SEUs.

On the other hand, SET occurrences on the Delay or CWSP blocks are not mitigated
for the TR+CWSP mechanisms as those SETs that can occur on combinational blocks.
By this reason, note in Figure 4.17 that the branch formed by the Delay, CWSP and
Register blocks is triplicated based on the TMR principles. Thus, a SET occurrence on
one branch of the triplicated one could provoke an indirect SEU on one register of the
triplicated one. However, this error would not propagate because the Voter block would
proceed in the same way if a direct SEU had occurred on that register. In other words, it
would elect the value of majority among the three stored in the triplicated register.

As defined in section 3.1, considering the three registers of a triplicated register,
observe that the Voter block requires at least two registers without errors to elect a
correct output. Therefore, for the mechanism working correctly, direct SEUs or SET
pulses, which potentially would cause indirect SEUs on the registers, cannot occur at
the same time on two or three branches of the triplicated one.

The Voter block is a combinational circuit that can be considered as a part of the
Next Combinational Block illustrated in Figure 4.17. Thus, if a SET happened on the
Voter block, it would be mitigated in the same way as those SETs that can occur on
combinational blocks.

4.6.4 Other Remarks

Another issues related to design of the fault-tolerant circuit are emphasized below:

• There are combinational circuits that do not achieve sequential elements, i.e.,
those combinational circuits in which their outputs are directly connected at
outputs of the core (output pads of the chip). Such combinational circuits are
susceptible to SET effects. In the target microprocessor of this work, it is the
case in two situations. The outputs of the registers called Address and ALU are
connected to combinational circuits (voter blocks) that achieve directly output
pads. Thus, SET effects on these combinational circuits may cause undesired
transient results at their outputs. These circuits correspond to a small part of the
core area, therefore such effects have a low-probability occurrence. On the other
hand, a fault-tolerance approach like the TR+CWSP scheme could be applied on
this circuits to reduce these effects;

• SET pulses arisen at input pins of the fault-tolerant system could be also taken
account of. These pulses can be erroneously considered as good inputs to
internal registers. The scheme TR+CWSP is able to mitigate these events,
however the allowed maximum width of SET must be lesser than a typical pulse
at input pins of the chip such as data pins or interruption pins. It is to prevent bad
detection by part of the TR+CWSP scheme. Such condition is not difficult to
meet for the target architecture of this work. The maximum SET width is around
1 ns as detailed in 4.6.1. It will be lesser than the usual minor widths of signals

67

required by the inputs of this CPU and provided by the outputs of its
conventional external peripherals. For this architecture, the widths of these
signals are usually larger than 10 ns. In future or advance architectures, this
condition may be critical;

• The combinational circuit (buffers and inverters) that defines the clock tree of
the system is susceptible to SETs. As this circuit does not achieve data inputs of
registers but specific clock inputs of the registers, it requires another protection
approach. The effects of a SET on this circuit can be a larger clock skew for a
certain register. Thus, an unbalance on the clock network can be characterized
and registers may be induced to store values wrongly;

• The target architecture in this work does not present latches. Note, however, that
these components are memory elements too. Consequently, in robust IC designs
composed also by latches, dedicated fault-tolerance techniques should be also
used to protect such elements. These techniques can be similar to those used for
flip-flops;

• In this work, the target system to protect was the microprocessor core (CPU). In
a design scenario of a fault-tolerant microcontroller similar to Figure 4.1, the
volatile memory resources vulnerable to SEUs are basically registers dispersed
on the CPU and a data memory (RAM). The program memory usually is non-
volatile and in principle it is not susceptible to SEUs because requires typically
higher currents to modify its bits. About the microcontroller protection, the CPU
registers would follow the same TMR+TR+CWSP approach implemented in this
work. The data memory could be protected against direct SEUs by using parity
or EDAC codes. As emphasized at the beginning of this chapter, it is because
such codes are relatively cheaper for memory arrays similar to the data memory.
Regarding possible indirect SEUs, it could be mitigated by using the TR+CWSP
approach applied on the elements of the data memory or another specific
technique for memory arrays such as that presented in (HENES-NETO; WIRTH;
KASTENSMIDT, 2006).

68

5 DESIGN VERIFICATION SIMULATION OF A ROBUST
MICROPROCESSOR

Incorrect operations or errors in a digital system can be detected by using a testing
scheme. Some typical errors that may occur in this kind of system can be classified
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). Design errors are, for instance,
incomplete or inconsistent specifications; incorrect mappings between different levels
of design; or violations of design rules. Fabrication errors are those which occur
during fabrication due to, for example, wrong components; incorrect wiring; or short
caused by improper soldering. Fabrication defects are not directly attributable to a
human error, rather, they result from an imperfect manufacturing process such as short,
opens, improper doping profiles, mask alignment errors, poor encapsulation, etc.
Physical failures occur during the lifetime of a system due to component wear-out or
environment factors like temperature, humidity, vibrations, electrical noise and the
radiation-induced effects. Fabrication errors, fabrication defects and physical failures
are consequences of physical faults that can be permanent, intermittent or transient.

The initial testing of an IC is performed by simulation within a CAD environment.
At this stage, the designer is verifying the functionality and the performance of the
intended circuit (GROCHOWSKI et al, 1997). In fact, the designer is looking for
eventual design errors. Many of the production tests, during the IC manufacture, are
based on this initial testing.

In this work, the testing experiments are concerned about such design errors. It is
because these errors precede the fabrication of the IC. As mentioned in chapter 1, the
steps of the IC manufacturing stage will be performed on the future. Moreover, some
kinds of physical failures (i.e., the Soft Errors (SEs) due to direct or indirect SEUs) need
be also considered in the testing experiments. The effects of these physical faults on the
IC can be represented by logical faults based on the fault model discussed in chapter 2.

The fault-tolerance techniques implemented in the target microprocessor as on-line
testing mechanisms (self-checkers) need be also tested by a different testing experiment,
such as a fault injection, in order to avoid eventual design errors in their circuits. The
issue is that the absence of faults in the circuit under test, i.e., in the target
microprocessor for this work, might hide design errors in the self-checking circuits. It is
because testing schemes like these self-checkers work different when the circuit under
test is at presence of faults. Thus, a means of performing such tests is emulating the
physical failures that these on-line testing circuits are able to mitigate through a fault
injection experiment.

The design verification testing in order to detect design errors is typically performed
by a testing experiment that uses a model of the designed system. Design verification

70

simulation or logic simulation usually determines the time evolution of the signals in the
model as responses to applied input sequences (ABRAMOVICI; BREUER;
FRIEDMAN, 1990). The verification is done by comparing the results obtained by
simulation with the expected results provided by the specified design behavior. In the
present work, a model of the target microprocessor was designed in accord to sections
4.4 and 4.5. In sections 5.1, 5.2, 5.3 and 5.4 is explained details about the design
verification simulations developed for this target circuit.

In addition to these experiments to detect eventual design errors, naturally, there are
others such as those verification methods briefly discussed in section 4.5: DRC, LVS,
formal verification, etc. Furthermore, there are some testing steps performed during or
after an IC fabrication that are mandatory. The called production tests usually are based
on test vectors applied at circuit inputs by tester equipments. They have the purpose of
checking essentially whether there are permanent physical failures, fabrication defects
or even fabrication errors (when the IC is part of a system on some kind of board). By
means of the difference between the behavior of the target circuit in the presence of a
fault and the fault-free circuit behavior, one can derive a test for that fault
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). Basically, the outputs of the fault-
free circuit are compared with outputs of the faulty circuit. Such test can be also
performed by simulation as a further verification step to find design errors before an IC
fabrication. Other post-fabrication testing approaches are redesigning circuit parts to
improve the accessibility to hard-to-test elements as a design-for-testability
(LUBASZEWSKI; HUERTAS, 2004). Another approach of design-for-testability such
as Built-in Self-Tests (BISTs), tester equipments to apply test vectors are not required
due to the on-chip test generation and evaluation. BISTs are performed through signals
specifically created to test the circuit, unlike the on-line self-checkers that are also
classified as a design-for-test approach but they are performed through functional
signals of the circuit under test.

5.1 Types of Design Verification Simulation
By means of simulator tools, the circuits can be simulated to verify their

characteristics at different design levels. Thus, the level of simulation corresponds to the
level of modeling employed to represent the simulated system (ABRAMOVICI;
BREUER; FRIEDMAN, 1990). From a high-level to a low-level simulation, the
simulations become more accurate, but they also become progressively more complex
and take longer to run (SMITH, 1997):

• Behavioral simulation considers circuits modeled with black boxes or
components without delays. In each clock cycle, the signals of the circuit are
updated at the clock event, not during the clock cycle. It occurs before the logic
synthesis of the circuit without any technological or physical information;

• Functional simulation or unit-delay simulation ignores timing and includes a
unit of delay. It sets delays in the circuit components to a fixed value like 1 ns.
This simulation occurs after the logic synthesis and technological mapping;

• Gate-level simulation or logic simulation can also be used to check the timing
performance of an IC. A logic gate or logic cell is treated as a black box usually
modeled by a function that determines the delay through the cell. This simulation
can be called as pre-layout simulation when includes logic-cell delays but no

71

interconnect delays. Setting all delays to a unit value, it becomes as a functional
simulation. On the other hand, this simulation can also be called as post-layout
simulation when considers, after physical design, delays of logic cells and also
interconnects;

• Switch-level simulation considers circuits modeled with transistors as switches
(on or off). This simulation may use a large possible set of discrete voltage
values or the value of a node may be allowed to vary continuously. It can
provide more accurate timing predictions than the gate-level simulation, but
takes longer time of execution;

• Transistor-level simulation or circuit level simulation is perhaps the most
accurate, but also the most complex and time-consuming. It requires models of
transistors, describing their non-linear voltage and current characteristics. This
simulation usually is used to analyze the analog, rather than the digital, behavior
of circuit voltages.

Different parts of the system can be simulated by different levels of simulation
(SMITH, 1997). Critical blocks can be simulated by more accurate low-level
simulations. On the other hand, as mentioned above, there is a cost in run time against
accuracy. Low-level simulation like switch-level and transistor-level simulations take
longer time and are almost impracticable for large circuits such as a microprocessor.
Indeed, switch-level and transistor-level design simulations are often used in full-
custom designs of specific small circuits.

5.1.1 The Developed Types of Design Verification Simulations

In this work, as detailed in section 4.3.1 by the design flow from Figure 4.5, three
different stages of simulations for verification were developed for each one of the three
microprocessor versions (Non-Protected, TMR and TMR+TR+CWSP versions
designed in accord to sections 4.4 and 4.5):

• Behavioral simulation simulates the behavior of the VHDL codes that describe
the microprocessor versions at the RT level;

• Pre-layout gate-level simulation simulates logically the resulting VHDL
netlists of logic gates that characterizes the microprocessor versions after the
synthesis steps. It uses the SDF information from before the final routing;

• Post-layout gate-level simulation simulates again logically the netlists of gates
but uses the SDF file with the final routing information;

These three stages of simulation were performed by using a CAD logic simulator
from (MENTOR, 2004). In order to run these design verification simulations, stimuli
need be generated at the inputs or internal signals of the microprocessor versions. This
task can be supported by a testbench, as section 5.2 discusses. Moreover, the resulting
responses at the outputs or other signals of these circuits need be checked with the aim
of detecting eventual design errors. By this reason, as section 5.3 presents, a check
approach through a functional testing experiment was performed at these three stages
of simulation. Additionally, only at the post-layout gate-level simulation, a fault
injection experiment was done as section 5.4 details.

Since in this work the target circuit was a microprocessor that inherently denotes a
complex circuit, a design flow based on high-level models and standard cells was

72

mandatory as discussed. Thus, the switch-level and transistor-level simulations, cited at
the beginning of this section 5.1, would be practically unfeasible due to the circuit
complexity. Furthermore, the standard cells were in principle well designed by
technology providers. Regarding the functional simulation, it would not be worth
performing due to the characteristics of the available CAD platform. As explained in
section 4.3.1, it was well replaced by a pre-layout simulation in order to develop a faster
design flow.

5.1.1.1 Timing Verification by Static Timing Analysis

Timing verification targets at determining whether the timing constraints imposed to
the design may be satisfied or not. It can be performed by using circuit simulation or by
timing analysis (GÜNTZEL, 2000).

Vector-based simulations (or dynamic simulations), like the functional simulation
and the gate-level simulation detailed at the beginning of this section 5.1, can check if
the design functions correctly (SMITH, 1997). However, in order to find the longest
delays of the circuits, they require test vectors that active the critical circuit paths. It is
not usually a simple task by considering the current design complexity. To cope with
this in an easier way, a static timing analysis is quite suitable.

A static timing analysis checks the timing performance based on circuit topology
and technology information and timing analysis algorithms. It analyzes the logic in a
static manner by computing the delay times for each path. It is static because does not
require the creation of a set of test-vectors (stimuli) that, as mentioned above, would be
onerous for a large circuit (SMITH, 1997).

In this work, in accord to section 4.3.1 by the design flow from Figure 4.5, two
different stages of static timing analysis were developed for each one of the three
microprocessor versions (defined in sections 4.4 and 4.5):

• Pre-layout static timing analysis estimates the performance through the critical
path in the microprocessor models generated before the final routing;

• Post-layout static timing analysis estimates again the critical path delay of the
circuits but after the final routing and circuit extraction.

Such analyses were performed through a CAD analyzer from (CADENCE, 2002).
This timing-analysis tool basically identifies the longest delays among the paths of the
circuit. It also checks the set-up and hold time requirements in accord to timing
constraints. The tool reports all this information in text files.

5.2 Modeling of System for Simulation
In order to perform the testing experiments in the microprocessor versions of this

work, whose models are characterized by VHDL codes or netlists detailed in chapter 4,
a system like Figure 5.1 composed of the target CPU and other peripherals was
modeled as a testbench in VHDL.

Based on this modeling of system, the CPU can execute machine codes of
instructions compiled from a software application or benchmark. These program codes
are allocated in another instance defined as the program memory. In accord to function
of the executed instructions, the CPU requires the temporary use of memory resources
to manipulate the instruction operations. These resources are defined in another instance

73

as the data memory. The CPU accesses such program and data memories essentially by
using an address bus and a data bus. The address bus indicates the desired position in
the memory to be accessed by the CPU. On the other hand, based on these address bus,
the data bus is used by the CPU to read/write codes from/to that position in the memory.

In addition, other peripherals support the design verification simulation: a clock
generator provides the clock signal to the system; and an interface device that offers
information about the signals of the system to a logic simulator. This information is
treated by the simulator terminal that prints it in an interface window with the designer.

Figure 5.1: Diagram of the system modeled as a testbench in VHDL

5.2.1 Functional Behavior of the Modeled System

The testbench emulates the functional behavior of an actual system based on this
CPU. All execution steps of a benchmark can be seen by means of the logic simulator.
The benchmarks must be described in assembly language of the M68HC11 family
(FREESCALE, 2002). Thus, they can be compiled by means of the standard assembler
tool provided by Freescale. As a result, the assembler generates an output file that
contains the program codes of the compiled benchmark. By using this output file, the
VHDL testbench can access the program codes as whether it was the program memory
of the system illustrated in Figure 5.1.

Figure 5.2 illustrates, through the main signals of the system, an instruction of a
certain benchmark being executed. The illustrated instruction is the JSR that makes the
current execution jumping to a subroutine. Its operation code (opcode) is 0xBD at the
extended addressing mode. It uses 2 operands and 6 clock cycles. In this example, the
operands are 0xF8 and 0x44 that represent, as 0xF844, the initial address of the
subroutine.

The execution of this instruction starts at state 0x01 when the CPU requests to the
program memory the address 0xF851. This address is based on the previous executed
instruction and indicates the position in the program memory where opcode 0xBD is
stored. This opcode is read by the CPU through the data bus. In the two following states
(0x03 and 0x0F), the operands (0xF8 and 0x44) are read from the program memory in
the same way that opcode 0xBD.

During state 0x1E, the CPU builds address 0xF844 to jump. Furthermore, the
address to return (0xF854) after the subroutine execution is calculated and stored in the
program counter (PC). At state 0x13, the address to return (0xF854) is saved in the
stack. As the stack is allocated in the data memory, 0xF8 and 0x54 are written in the
data memory by means of the write_data bus and the rw signal. The location in the data
memory where 0xF8 and 0x54 are positioned depends on the current address (0x00FB)
pointed by the stack pointer (SP). The SP always points to the next empty position in

Interface Device

Program Memory

 Data Memory

 Clock Generator

 CPU M68HC11

74

the stack. Thus, 0xF8 and 0x54 are written in the address 0x00FB and 0x00FA of the
data memory.

At its last state (0x01), the JSR instruction finishes by putting the address 0xF844 on
the address bus. It is to request to the program memory the opcode of the next
instruction (0x36), i.e., the opcode of the first instruction of the subroutine.

Figure 5.2: Execution of the JSR instruction by simulation

5.3 Functional Testing by Simulation
A functional testing experiment was performed at each one of the three simulation

stages discussed in 5.1.1: behavioral, pre-layout gate-level and post-layout gate-level.
The goal of this simulation experiment is testing functionally each one of the three
designed microprocessor versions (Non-Protected, TMR and TMR+TR+CWSP)
detailed in section 4.4.

The target circuits can be exercised through stimuli made by executions of
benchmarks. It is possible by using the testbench presented in section 5.2. New
benchmarks were created based on two software applications from (THIBAULT, 2000;
FREESCALE, 2002). One of these applications converts hexadecimal codes to their
ASCII characters and prints the output results in the interface device from Figure 5.1 to
be seen by the designer. The other one application is a program for automatic control of
a motor. It generates a PWM signal of constant frequency and variable duty cycle and it
also prints output results like the current speed and direction in the interface device.

5.3.1 Benchmark Design

As these two base benchmarks detailed above do not contain all microprocessor
instructions, the stimuli would not achieve the whole of the circuit. In this manner, the
microprocessor versions would not be completely tested. In order to check the functions
specified by all microprocessor instructions, five new benchmarks were created by
including instructions that are not present in the two base benchmarks.

The benchmarks should use all 306 different microprocessor instructions through the
six addressing modes. Note that thus all 18 existing microprocessor registers would be
used too. It was not 308 instructions because two instructions of division are not
implemented, as emphasized in sections 4.1 and 4.4.1.

The additional instructions in the new benchmarks must follow the functional
coherence of the two base benchmarks. Any value manipulated by an instruction in one
of these base benchmarks must be used by the first instruction added in one of the new

75

benchmarks. As the target CPU employs a sequential instruction processing without any
type of pipeline, a bundle of new instructions in sequence can be inserted to be tested.
Logic links through the manipulation of values must be established among the first
added instruction, its former and latter instructions and so on. The last instruction added
in the new benchmark must be able to give continuity to the remaining processing
without altering the functional execution of the base benchmark. It is to preserve the
same output results calculated by this base benchmark. Indeed, no new features are
inserted in the five new benchmarks but whether an added instruction not working
correctly, the benchmark execution shall be broken.

All added instructions to be tested were arranged in five groups. Thus, each one of
the five benchmarks tests a different set of instructions. It emulates a habitual
characteristic of the target software applications that almost in totality do not use all
microprocessor instructions. In addition, it divides the simulation time in parts
facilitating the management of the design tasks.

Another benchmark issue is about the values of inputs and operands used by the
instructions. It depends quite on the design specification of the software applications.
Therefore, there can be many combinations due to different specifications of software
applications. The option by values that have all their bits used by the instructions can be
good. The coverage of all value possibilities would be an arduous design task.

5.3.2 Benchmark Analysis

A statistics resource to estimate the quality of the stimuli or test vectors induced by
the created benchmarks is to use a toggle test. It checks which circuit nodes toggle as a
result of applying input stimuli. There is a strong correlation between high-quality test
vectors and high toggle coverage (SMITH, 1997). Table 5.1 shows the toggle coverage
for each one of the five benchmarks labeled as HNO, HLC, HLB, AOR and ALO on
each one of the three microprocessor versions.

Table 5.1: Toggle coverage of the benchmarks on the microprocessor versions

Circuits: Non-Protected TMR TMR+TR+CWSP

Total Node
Count: 10988 12480 17155

Benchmarks
Toggled

Node
Count

Toggle
Coverage

Toggled
Node
Count

Toggle
Coverage

Toggled
Node
Count

Toggle
Coverage

HNO 5430 49.42 % 6619 53.04 % 9468 55.19 %

HLC 5756 52.38 % 6839 54.80 % 9644 56.22 %

HLB 5776 52.57 % 7017 56.23 % 10064 58.67 %

AOR 6228 56.68 % 7794 62.45 % 10938 63.76 %

ALO 6288 57.23 % 7942 63.64 % 11261 65.64 %

Note in this Table 5.1 that the toggle coverage does not achieve 100 % especially
because not all microprocessor instructions are present in each one of the benchmarks.
However, as all these microprocessor instructions were arranged in the five

76

benchmarks, there is a trend for the overall toggle coverage of this functional testing. By
using the five benchmarks in sequence, as a unique program, the toggle coverage shall
approach to 100 %. It is an excellent sign of which these testing experiments achieve
almost the whole of the target circuits. It will not attain 100 % due to the values of the
inputs and operands or even due to unreachable parts of the circuits.

5.3.3 Benchmark Simulation Characteristics

About the clock cycles used by the five benchmarks, Table 5.2 shows the total
number of clock cycles required to run once the complete benchmark execution. This
table shows also the number of clock cycles to execute the program main loop by
considering a set of fixed inputs. It is to be used by the power analysis that requires the
periodic part of the benchmark. In addition, by using a typical clock period of 333 ns as
initially defined for the timing analysis in section 4.5, Table 5.2 illustrates the
equivalent times to the clock cycles (run time).

Table 5.2: Clock cycles of the benchmarks

 Simulation of the Program Main Loop Total Simulation

Benchmarks Clock Cycles Run Time Clock Cycles Run Time

HNO 393 130.869 µs 404 134.532 µs

HLC 393 130.869 µs 613 204.129 µs

HLB 393 130.869 µs 1448 482.184 µs

AOR 721215 240.164595 ms 729632 242.967456 ms

ALO 721215 240.164595 ms 731648 243.638784 ms

5.3.4 Required Processing Time

Regarding the processing time required by these testing experiments, the highest one
among those simulations performed through a machine Sun Blade 2000 from Sun
Microsystems was around 3 hours. Such processing time correspond to the simulation
tasks that execute the post-layout gate-level simulations. It includes also the processing
time to convert the generated VCD file to a TCF file. As discussed in section 4.5, this
TCF file is required at the power analysis. In contrast, the processing time at the pre-
layout gate-level simulations was around 1 hour and 30 minutes.

The time resolutions used at the post-layout and pre-layout gate-level simulations
due to the technology-library requirements were 1 ps. On the other hand, at the
behavioral simulations, the time resolution was 1 ns. It is the default of the simulator.
As the circuit component models do not have delays at these behavioral simulations, a
higher value for the time resolution can be used to speed up the simulation processing
times. At the behavioral simulations, such processing times were lower than 5 minutes.

5.3.5 Verification of Functional Testing Results

In order to verify whether the benchmark executions attain the functional goals
specified by their instructions, the output values generated by such functional testing
were monitored. If any instruction was not working correctly, these resulting output
values would be corrupted.

77

These output values are results due to the functional characteristics programmed in
the benchmarks. In this way, they were previously specified to be attained by means of
instructions. Therefore, they were known before the benchmark executions. Thus,
golden values (i.e., values that are considered the correct output values) could be
defined for each benchmark. An illustrative example can be given by the HNO
benchmark that was designed to obtain a golden value 0x04d2, consequently its
instructions must be processed to result such output value 0x04d2. As all benchmark
instructions are executed in sequence, whether an instruction fails, this golden value will
not be obtained or even the execution will be interrupted.

The output values monitored in benchmark executions (i.e., the benchmark output
results) were stored by the testbench in text files. In this way, they could be compared
with the defined golden values (i.e., the specified benchmark output results) in order to
detect eventual differences and thus eventual design errors. Such verification process of
design simulation results can be illustrated by Figure 5.3. It was performed until the
design simulation results matched the golden results.

Figure 5.3: Verification process of functional testing simulation results

Table 5.3 summarizes all functional testing simulations performed in order to detect
eventual design errors in the implemented microprocessor versions.

Detection of Eventual Design Errors
in Instruction Circuits Implemented in
Microprocessor Version under Test

Benchmark
Execution by

Microprocessor
Version

under Test

Benchmark
Output
Results

Specified
Benchmark

Output
Results

Text Files
of Design

Simulation
Results

Text Files
of Design

Golden
Results

Design Error
Diagnostic

Files
Match?

Microprocessor
Instructions

Work Properly!

Design Error
Correction

Yes

No

Verification of Functional Testing Results

78

Table 5.3: All functional testing simulation approaches

Functional
Testing

Approach
Simulation Stage

Microprocessor
Version

Under Test

Executed
Benchmark

1 HNO
2 HLC
3 HLB
4 AOR
5

Non-Protected

ALO
6 HNO
7 HLC
8 HLB
9 AOR

10

TMR

ALO
11 HNO
12 HLC
13 HLB
14 AOR
15

Behavioral simulation

TMR+TR+CWSP

ALO
16 HNO
17 HLC
18 HLB
19 AOR
20

Non-Protected

ALO
21 HNO
22 HLC
23 HLB
24 AOR
25

TMR

ALO
26 HNO
27 HLC
28 HLB
29 AOR
30

Pre-layout gate-level simulation

TMR+TR+CWSP

ALO
31 HNO
32 HLC
33 HLB
34 AOR
35

Non-Protected

ALO
36 HNO
37 HLC
38 HLB
39 AOR
40

TMR

ALO
41 HNO
42 HLC
43 HLB
44 AOR
45

Post-layout gate-level simulation

TMR+TR+CWSP

ALO

5.4 Fault Injection by Simulation
Fault injection experiments were performed through the post-layout gate-level

simulation discussed in section 5.1.1. The goal of this simulation experiment is to verify

79

by testing functionally the fault-tolerance mechanisms implemented in each one of the
designed robust microprocessor versions (TMR and TMR+TR+CWSP) detailed in
section 4.4. The target physical faults (SETs) were represented by rectangular transient
logic pulses injected at certain circuit nodes. In fact, the target faults are direct and
indirect SEUs. However, these two types of faults can be induced by SET pulses, as
discussed in chapter 2.

As the target faults have a timing nature, these fault injection experiments require a
type of simulation like the post-layout gate-level simulation that considers circuit
models based on delays of logic gates and interconnects. The resulting circuit models of
the three microprocessor versions are represented by VHDL netlists. On the other hand,
the delays of logic gates and interconnects are defined by SDF files.

Furthermore, the target faults by nature occur during the use of the circuit. In this
way, they need be injected during the simulation of the circuit. By using the same
framework of simulation utilized by the functional testing detailed in section 5.3, SET
pulses were injected during the execution of a benchmark.

In order to inject the SET pulses on the target circuit models, the VHDL netlists of
the microprocessor versions were internally modified by insertion of specific VHDL
components able to inject such faults. Indeed, a unique reusable parameterized VHDL
component labeled as SET Injector was developed to inject SET pulses of adjustable
width on any circuit node or signal and at any instant during each clock cycle of any
benchmark. Such injected SET characteristics can be adjusted by parameters (VHDL
generic) in the SET Injector component. In this way, this component can inject SETs of
distinct characteristics on different parts where it is instantiated in the VHDL netlists.

5.4.1 Instants of the SET Injection

By using the SET Injector, one SET pulse was programmed to occur in each clock
cycle of a benchmark. Since in this fault injection simulation, the goal was detecting
eventual design errors in the circuits of the fault-tolerance mechanisms (on-line self-
checkers) implemented in the target microprocessor. In other words, it was to verify
whether these self-checkers mitigate appropriately SETs and SEUs in accord to the
constraints of their features. Only those SETs, which respect the maximum width
tolerated by the robust microprocessor and occur at instants at which they potentially
would provoke SEs, need be injected.

Note that, as all injected SETs were fitted in these conditions, the self-checkers were
able to cover all injected faults. In this way, these self-checkers were functionally tested
through a fault injection simulation, but a measure of quality by the fault coverage of
them was not able to be evaluated. To obtain this fault coverage, a more complex fault
simulation based on probabilistic methods is required, as section 5.4.5 emphasizes. On
the other hand, such self-checkers are typically considered efficient, as discussed in
section 3.1 and 4.6.

5.4.2 Widths of Injected SETs

The SET Injector models SETs like rectangular pulses. Regarding the widths of
injected SETs, some issues were considered in accord to section 4.6.1:

• The width of SETs is typically around hundreds of picoseconds;

80

• The TMR+TR+CWSP microprocessor version mitigates SETs of widths up to
around 1 ns as a result of the timing constraints implemented in the Delay blocks
from Figure 4.17;

• Moreover, there is the electrical masking effect of SETs by logic gates. In the
target technology (AUSTRIAMICROSYSTEM, 2003), the delays of basic
standard logic gates are typically around 10 ps and 2 ns.

Thus, in this simulation experiment, pulses of 100 ps and 1 ns were injected to
evaluate extremities of widths tolerated by the robust microprocessor.

5.4.3 Target Circuit Nodes for the SET Injection

Ten SET injection simulation approaches were performed by considering different
circuit nodes. In each approach, the HNO benchmark detailed in 5.3, which uses all 18
existing microprocessor registers, was executed under SET injections in order to
functionally test all implemented fault-tolerance mechanisms.

• SET Injection Approach 1: it was performed on the Non-Protected
microprocessor version just to verify whether the shapes of the injected SETs
effectively provoke SEs. SET pulses were injected at the microprocessor register
inputs (node A in Figure 5.4). Since all 18 microprocessor registers totalize 187
flip-flops, 187 SET pulses of 1 ns were injected in each clock cycle of the
benchmark. Figure 5.5 illustrates a SET injected on this Non-Protected version
in order to cause a SE on a bit of a microprocessor register. In this way, the SET
meets the set-up and hold time requirements to avoid the latching-window
masking discussed in section 2.1.2.3. Note that this fault injected on node A
effectively results in a SE at the register output. The value 0 should be stored and
not the value 1 from the faulty output of the combinational block;

• SET Injection Approach 2: it was the same that SET Injection Approach 1
except SET pulses of 100 ps were injected;

Figure 5.4: Target circuit nodes in the Non-Protected version

Figure 5.5: SET injected on the Non-Protected microprocessor version

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r

A

81

• SET Injection Approach 3: it was performed on the TMR microprocessor
version. SET pulses were injected only at one input of a triplicated flip-flop
(node B in Figure 5.6) in such way that they were stored by one flip-flop. It was
to emulate the occurrence of a direct SEU on only one flip-flop. Thus, the voter
block functionality could be tested. In the same way that SET Injection
Approach 1, 187 SET pulses of 1 ns were injected in each clock cycle of the
benchmark in order to test all 187 voters. Figure 5.7 illustrates a SET injected on
this TMR microprocessor version that provokes a direct SEU on a flip-flop. By
reason of the TMR protection implemented in this circuit, the faulty output of
this triplicated flip-flop (value 1 in register 1) is not propagated to the voter
output (value 0). Thus, a SE does not occur due to this injected fault;

• SET Injection Approach 4: it was the same that SET Injection Approach 3, but
the SET pulse was injected only on the node C from Figure 5.6;

• SET Injection Approach 5: it was also the same that SET Injection Approach
3, but the SET pulse was injected only on the node D from Figure 5.6;

Figure 5.6: Target circuit nodes in the TMR version

Figure 5.7: SET injected on the TMR microprocessor version

• SET Injection Approaches 6, 7 and 8: these approaches were respectively the
same that SET Injection Approaches 3, 4 and 5, but they were performed on the
TMR+TR+CWSP microprocessor version and in accord to Figure 5.8;

• SET Injection Approach 9: it was performed on the TMR+TR+CWSP
microprocessor version. SET pulses were injected at the outputs of the

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

R
eg

is
te

r
3

R
eg

is
te

r
2

R
eg

is
te

r
1

Voter
C

B

D

82

combinational blocks (node A in Figure 5.8). It emulated SETs that potentially
would provoke indirect SEUs on the flip-flops. Thus, the TR+CWSP mitigation
scheme could be tested. In the same way that SET Injection Approach 1, 187
SET pulses of 1 ns were injected in each clock cycle of the benchmark. Figure
5.9 illustrates a SET injected on the TMR+TR+CWSP microprocessor version
that potentially would cause an indirect SEU on a bit of a microprocessor
register. Observe that, as there is the TR+CWSP scheme implemented in this
circuit, the faulty output of the combinational block (transient value 1 on node
A) is not propagated to the three inputs of the triplicated register (value 0 on
nodes B, C and D). Consequently, the three outputs of this triplicated register
and the voter output are not reached by the fault. Therefore, a SE does not occur
due to this injected fault;

• SET Injection Approach 10: it was the same that SET Injection Approach 9
except SET pulses of 100 ps were injected.

Figure 5.8: Target circuit nodes in the TMR+TR+CWSP version

Figure 5.9: SET injected on the TMR+TR+CWSP microprocessor version

5.4.4 Verification of Fault Injection Results

In order to verify whether the implemented self-checkers work properly at
benchmark executions under faults, the fault injection simulations were performed by

C
om

bi
na

tio
na

l B
lo

ck

N
ex

t C
om

bi
na

tio
na

l B
lo

ck

CWSP 1
R

eg
is

te
r

3

D
el

ay
 3

R
eg

is
te

r
2

R
eg

is
te

r
1

CWSP 2

CWSP 3

Voter

D
el

ay
 2

D

el
ay

 1

A C

B

D

83

using the same verification process detailed in section 5.3.5. However, just the HNO
benchmark was executed through the post-layout gate-level simulation discussed in
5.1.1.

In addition, the values stored in all 18 microprocessor registers and all outputs of the
voter blocks were also monitored in each clock cycle of the benchmark. By using a
fault-free functional testing simulation of the Non-Protected microprocessor (i.e., a
simulation without SET injection), the golden values of the microprocessor registers in
each clock cycle were stored by the testbench in text files. In this way, the monitored
values in the microprocessor versions under SETs could be compared with ideal values
from a correct benchmark execution. Such verification process of design simulation
results can be illustrated by Figure 5.10.

Figure 5.10: Verification process of fault injection simulation results

In each SET Injection Approach mentioned in section 5.4.3 was injected 187 SET
pulses by clock cycle. Since a HNO benchmark execution requires 404 clock cycles (as
detailed in Table 5.2), 75548 faults were injected in each one of the ten approaches. In
section 5.4.1 was discussed that all these injected faults were covered by the
implemented self-checkers. Thus, whether there were not design errors in these self-
checkers, all injected faults would be mitigated and therefore the monitored values
would match the golden values.

Detection of Eventual Design Errors
in Self-Checkers Implemented in

Microprocessor Version under SET

Benchmark
Execution by

Microprocessor
Version

under SET

Benchmark
Output
Results

Benchmark
Execution by

Non-Protected
Microprocessor

Version

Fault-Free
Simulation

SET
Injection

Benchmark
Output
Results

Values
Stored in all 18
Microprocessor

Registers
and all Outputs of
the Voter Blocks

in each
Benchmark
Clock Cycle

Values
Stored in all 18
Microprocessor

Registers
in each

Benchmark
Clock Cycle

Text Files
of Design

Simulation
Results

Text Files
of Design

Golden
Results

Design Error
Diagnostic

Files
Match?

Implemented
Self-Checkers
Work Properly!

Design Error
Correction

Yes

No

Verification of Fault Injection Results

84

Table 5.4 summarizes all fault injection simulations performed in order to detect
eventual design errors. The target circuit-node labels are in accord to Figure 5.4, Figure
5.6 and Figure 5.8.

Table 5.4: All fault injection simulation approaches

SET
Injection
Approach

Simulation Stage
Microprocessor

Version
Under Test

Executed
Benchmark

Injected
SET

Width

Target
Circuit
Node

Fault-Free HNO - -
1 HNO 1 ns A
2

Non-Protected
HNO 100 ps A

3 HNO 1 ns B
4 HNO 1 ns C
5

TMR
HNO 1 ns D

6 HNO 1 ns B
7 HNO 1 ns C
8 HNO 1 ns D
9 HNO 1 ns A

10

Post-layout gate-level
simulation

TMR+TR+CWSP

HNO 100 ps A

5.4.5 Some Remarks about Fault Coverage of On-Line Self-Checkers
Fault simulation is also widely used for evaluation of the test by checking the fault

coverage or the percentage of faults detected by a set of input stimuli
(LUBASZEWSKI; HUERTAS, 2004). It can be used to measure qualitatively the
effectiveness of tests such as the on-line detectors or self-checkers.

The fault simulation developed in this work is not able to obtain such fault coverage,
as explained in section 5.4.1. Even so the fault-tolerance mechanisms implemented in
the target microprocessor through the TMR and TR+CWSP on-line testing schemes are
typically considered efficient, a more accurate estimation of efficiency would be useful.
On the other hand, it would incorporate an inherent complexity in the fault simulation,
since the target faults by nature have characteristics quite peculiar. Note that faults like
the SETs can have different transient shapes. Furthermore, they can occur on any circuit
part and at any instant during the use of the circuit. Even though such physical faults
can be represented through logical faults based on fault models as that discussed in
section 2.1.2, the simulation process would be complex too. See that the logical faults
would be modeled like rectangular transient pulses. Therefore, the injected faults would
be not just logical levels, they could have different widths, occur on any circuit node
and at any instant.

Due to these different possibilities of SET behaviors on the circuits, methods more
advanced based on non-deterministic or probabilistic fault simulation are required in
order to evaluate the fault coverage of a robust circuit. Evaluation resources like
(MASSENGILL et al, 2000; LIMA et al, 2001-a; ALEXANDRESCU; ANGHEL;
NICOLAIDIS, 2002; NEVES et al, 2006-a, 2006-b) might offer some answers
concerning the effectiveness of mitigation techniques against indirect and direct SEUs
on the circuits. However, these works and other many ideas about this issue even lack
advances to become in consolidated and practical analysis tools for large circuits. This
issue could be progress faster whether commercial tools become further easily available,
even so they need improvements. A usual better means of evaluation can be performed
through radiation ground test experiments on prototypes of the target circuits.

6 DESIGN RESULTS OF A ROBUST
MICROPROCESSOR

A preliminary assessment of the designed circuit characteristics is mandatory ahead
of the IC fabrication. Furthermore, the design of the robust architectures always entails
extra costs that need be considered. Accurate estimated design results of the IC features
can be attained by using advanced CAD resources.

In this work, design results especially in area, performance and power were
generated in accord to the IC design flow detailed in chapter 4. It is based on the
standard cells from the AMS 0.35 µm CMOS technology (AUSTRIAMICROSYSTEM,
2003). In accord to section 4.5, the same initial constraints were adjusted for the three
designed microprocessor versions.

Such design results are shown in the following sections. The costs of the robustness
added in the Non-Protected microprocessor version are evaluated through the TMR
and TMR+TR+CWSP microprocessor versions. In fact, as the TMR version mitigates
only direct SEUs and TMR+TR+CWSP version mitigates direct and indirect SEUs, the
overheads to protect the target CPU against such faults can be analyzed.

6.1 Area Analysis
Regarding IC design results in area, there are many issues which can be analyzed

such as the final floorplan characteristics after the tool decisions; the number of
standard logic cells, filler cells, corner cells, pad cells (I/O, power and ground); the
clock-tree elements; the lengths of the routed wires; and obviously the area dimensions
in each one of these former issues. In the following sections, results about these design
issues for the three microprocessor versions are presented and compared.

6.1.1 Floorplan Characteristics

As detailed in section 4.5, initial floorplan parameters are set as constraints in order
to the floorplanner tool achieves them. However, the final achieved floorplan
parameters may not be exactly the same of those initially set. It is because the
floorplanning task depends also on some designed circuit characteristics like the total
number of required standard cells. This and other characteristics are not known when
the initial floorplan parameters are set. Thus, the floorplanning algorithms can meet
values that differ from those initial decided parameters, but they approach to them.

Table 6.1 presents the floorplan characteristics achieved for the three designed
microprocessor versions. As defined in section 4.5, the initial core row utilizations were
set to reach final core utilizations around 70 %. The initial aspect ratio was set to attain
a square IC area, i.e., the value 1. Furthermore, initially, the left, right, top and bottom

86

I/O to core distances (x0, x1, y0 and y1 in Figure 6.1) were all equally set to 746.200
µm in order to define the optimized area required for the routing.

Table 6.1: Floorplan characteristics

 Non-Protected TMR TMR+TR+CWSP

Initial Core Row Utilization 75.30 % 73.30 % 64.00 %

Final Core Row Utilization 70.48 % 70.85 % 70.97 %

Number of Core Rows 48 58 69

w Side Length of the Core 635.600 µm 754.600 µm 896.000 µm

h Side Length of the Core 624.000 µm 754.000 µm 897.000 µm

Initial Core Aspect Ratio 1.0000 1.0000 1.0000

Final Core Aspect Ratio 1.0186 1.0008 0.9989

Final Core Area 0.39661440 mm2 0.56896840 mm2 0.80371200 mm2

Left, Right, Top and Bottom
I/O to Core Distances 746.200 µm 746.200 µm 746.200 µm

x Side Length of the Chip 2128.000 µm 2247.000 µm 2388.400 µm

y Side Length of the Chip 2116.400 µm 2246.400 µm 2389.400 µm

Final Chip Aspect Ratio 1.0055 1.0003 0.9996

Final Chip Area 4.50369920 mm2 5.04766080 mm2 5.70684296 mm2

Based on these initial constraints, the following final design results were obtained
(Table 6.1): the final core utilization; the number of rows; and the final core and chip
dimensions in accord to Figure 6.1. These final results were adjusted with the aim of
placing and routing successfully all cells of the designs, as explained in section 4.5. The
final I/O to core distances (x0, x1, y0 and y1) are the same values initially defined as
746.200 µm. Note that the Non-Protected chip has around 4.504 mm2 and the
TMR+TR+CWSP chip around 5.707 mm2. An area overhead evaluation among the
three microprocessor versions is presented in section 6.1.3.

Figure 6.1: Core and chip areas

y

y0

x1

x

x0

y1

w

h CORE

Core Area:

combinational, sequential and filler cells.

 Region for Routing:
rings and interconnects.

 Periphery Cell Area:
corner, pad and filler cells.

87

Microprocessor-version illustrations as an IC preliminary view (before the final
layout adjustments, i.e., before step 7 from the design flow in Figure 4.5) and the final
IC layout are presented in Figure 6.2, Figure 6.3 and Figure 6.4 by a scale of
approximately 28:1. Note that, in the preliminary view, the final routing and pad cells of
power and ground were not defined yet. The axes h and y are in relation to Figure 6.1.

Figure 6.2: Non-Protected IC version: preliminary view (left) and final layout (right)

Figure 6.3: TMR IC version: preliminary view (left) and final layout (right)

Figure 6.4: TMR+TR+CWSP IC version: preliminary view (left) and final layout (right)

h

y

h

y

h

y

88

At the final layouts from Figure 6.2, Figure 6.3 and Figure 6.4, the wires routed in
four metal layers are represented by the following colors: blue (MET1), red (MET2),
green (MET3) and yellow (MET4).

6.1.2 About Standard Logic Cells and Other Types of Cells

In Table 6.2 all types of cells used by the designed circuits are listed. The number of
cells (columns “Count”) and the area totalized by each type of cell are presented.

The sequential and combinational logic cells indicated in Table 6.2 are classified as
parts of the standard logic cells. In the target technology of this work, the sequential
logic cells are memory cells like flip-flops and latches. However, in the designed
circuits, such cells are only flip-flops. The combinational logic cells are logic gates like
NOT, NOR, NAND, XNOR, buffers or circuits of logic gates like half adders, full
adders, majority (AB+AC+BC), multiplexers, AND+OR+NOT blocks,
OR+AND+NOT blocks.

Table 6.2 shows also the gaps among the standard logic cells which are basically
occupied with core-filler cells. The filler cell areas are the spaces for the routing
finishing successfully. Information about corner cells is also shown. They are placed at
each corner of the chips. As explained in section 4.5, it is to continue the pad ring
sequence among I/O, power and ground pad cells that are placed around the core at the
yellow area detailed in Figure 6.1. Periphery-filler cells are placed at the vacant spaces
among corner and pad cells. Observe that the total number of cells in the Non-Protected
chip is 6412 and in the TMR+TR+CWSP chip is 11994. Furthermore, Table 6.2 shows
the area between the core and pad cells (row “Region for Routing”). It is the dark blue
area detailed in Figure 6.1. This region is used for routing the power and ground rings
and the interconnects among the core and the pad cells.

Table 6.2: About standard logic cells and other types of cells (1)

 Non-Protected TMR TMR+TR+CWSP

Cells Count Area (µm2) Count Area (µm2) Count Area (µm2)

Combinational Logic 3211 228501.00 3363 249958.80 5772 417271.40

Sequential Logic 187 51051.00 561 153153.00 561 153153.00

Core Filler 2754 117062.40 3690 165856.60 5329 233287.60

Corner 4 463488.64 4 463488.64 4 463488.64

I/O Pad 46 1565840.00 46 1565840.00 46 1565840.00

Power Pad 3 102120.00 3 102120.00 3 102120.00

Ground Pad 3 102120.00 3 102120.00 3 102120.00

Periphery Filler 204 188717.76 232 358236.96 276 551856.48

Region for Routing - 1684798.40 - 1886886.80 - 2117705.84

Total Chip 6412 4503699.20 7902 5047660.80 11994 5706842.96

Based on Table 6.2, Table 6.3 details the number of cells (columns “Count”) and the
area about some sets of chip regions. The row “Logic” represents the sum of

89

combinational and sequential logic cells. As this sum can be obtained at initial design
steps, preliminary estimated results in area, as emphasized in sections 4.3.1 and 4.5, can
be evaluated based on this information. Results about the core are shown in row “Core”.
The row “Filler” sums the core and periphery cells. The row “Pad” totalizes the pad
cells. The row “Periphery” shows information for the “Periphery Cell Area” from
Figure 6.1 that is occupied by corner, pad and filler cells. Moreover, the row “I/O to
Core Region” indicates the region between I/Os and core. It is the yellow area plus the
dark blue area from Figure 6.1. The existing cells in these yellow and dark blue areas
are the periphery cells (corner, pad and filler cells) that do not determine the total area
of this “I/O to Core Region”. It is because there is a part of this region used for routing
where there are not cells. As discussed in the former paragraph, this part is that
represented by the “Region for Routing” from Figure 6.1.

Table 6.3: About standard logic cells and other types of cells (2)

 Non-Protected TMR TMR+TR+CWSP

Cells Count Area (µm2) Count Area (µm2) Count Area (µm2)

Logic 3398 279552.00 3924 403111.80 6333 570424.40

Core 6152 396614.40 7614 568968.40 11662 803712.00

Filler 2958 305780.16 3922 524093.56 5605 785144.08

Pad 52 1770080.00 52 1770080.00 52 1770080.00

Periphery 260 2422286.40 288 2591805.60 332 2785425.12

I/O to Core Region 260 4107084.80 288 4478692.40 332 4903130.96

Based on the information from Table 6.2, Figure 6.5 illustrates the percentages of
the core utilization by filler, sequential and combinational cells.

44.77%

3.04%

52.19%

29.52%

12.87%

57.61%

48.46%

7.37%

44.17%

29.15%

26.92%

43.93%

45.70%

4.81%

49.49%

29.03%

19.06%

51.92%

Count Area Count Area Count Area

Core Filler Sequential Logic Combinational Logic

Non-Protected TMR TMR+TR+CWSP

Figure 6.5: Core utilization

90

Observe in Figure 6.5 that the combinational logic cells prevail on the three
microprocessor versions as in number of cells as in area. The count of standard logic
cells (sequential and combinational logic) is a little higher than 50 % of the total core
cells on the three architectures. The final core utilization indicated in Table 6.1 can be
seen through this figure. It is represented by the area of the standard logic cells that use
around 71 % of the core area. In consequence, around 29 % of the core area is required
for the routing finishing successfully (the core-filler cell areas).

See also that the core area on the Non-Protected version is defined around 0.397
mm2 in Table 6.1 or Table 6.3. Note in Figure 6.5 that a part of 12.87 % of this area
corresponds to 3.04 % of the total core cell count. This part is the sequential logic area
composed of storage components (flip-flops) that are inherently susceptible to SEU. It is
protected by the TMR on the robust microprocessor versions, i.e., this part is triplicated
on these robust versions. Observe that the percentage of SEU susceptible cell area in the
TMR+TR+CWSP version (19.06 %) is not so higher than in the Non-Protected version
(12.87 %).

Figure 6.6 is also based on Table 6.2 and analyzes the chip utilization by means of
the typical circuit regions. Note that the biggest region on the three versions is around
37 % of the chip area. It is that required for routing (dark blue area detailed in Figure
6.1). Another big region is that related to the I/O pad cells that are big cells by nature.
See also as the core area is small compared to the chip area. It is around 9 %, 11 % and
14 % of the overall chip area respectively on the three architectures. In the robust
microprocessor versions, note that the fault-tolerance mechanisms are implemented in
these small chip parts (core areas).

2.60%
1.13%
5.07%
4.19%

34.77%

10.29%
2.27%
2.27%

37.41%

3.29%
3.03%
4.95%
7.10%

31.02%

9.18%
2.02%
2.02%

37.38%

4.09%
2.68%
7.31%

9.67%

27.44%

8.12%
1.79%
1.79%

37.11%

 Area
Non-Protected

 Area
TMR

Area
TMR+TR+CWSP

Core Filler Sequential Logic Combinational Logic
Periphery Filler I/O Pad Corner
Power Pad Ground Pad Region for Routing

Figure 6.6: Chip area utilization

91

6.1.3 Costs in Area against Robustness

The TMR and TMR+TR+CWSP microprocessor versions use additional areas to
obtain robustness. By using the area results presented in Table 6.2 and Table 6.3, the
costs in area of these robust microprocessor versions can be evaluated based on the
results of the Non-Protected version. Figure 6.7 and Figure 6.9 illustrate the percent
overheads in number of cells to implement the fault-tolerance mechanisms in the Non-
Protected version. Figure 6.8 and Figure 6.10 show such overheads in area.

4.
73

%
79

.7
6%

20
0.

00
%

20
0.

00
%

33
.9

9%
93

.5
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

13
.7

3% 35
.2

9%

23
.2

4%
87

.0
6%

C
om

bi
na

tio
na

l
Lo

gi
c

S
eq

ue
nt

ia
l

Lo
gi

c

C
or

e
Fi

lle
r

C
or

ne
r

I/O
 P

ad

P
ow

er
 P

ad

G
ro

un
d

P
ad

P
er

ip
he

ry
Fi

lle
r

To
ta

l C
hi

p

TMR TMR+TR+CWSP

Figure 6.7: Percent increase in number of cells at chip areas (1)

9.
39

%
82

.6
1%

20
0.

00
%

20
0.

00
%

41
.6

8%
99

.2
8%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

89
.8

3%
19

2.
42

%

11
.9

9%
25

.6
9%

12
.0

8%
26

.7
1%

C
om

bi
na

tio
na

l
Lo

gi
c

S
eq

ue
nt

ia
l

Lo
gi

c

C
or

e
Fi

lle
r

C
or

ne
r

I/O
 P

ad

P
ow

er
 P

ad

G
ro

un
d

P
ad

P
er

ip
he

ry
Fi

lle
r

R
eg

io
n

fo
r

R
ou

tin
g

To
ta

l C
hi

p

TMR TMR+TR+CWSP

Figure 6.8: Percent increase in chip areas (1)

92

15.48%

86.37%

23.76%

89.56%

32.59%

89.49%

0% 0%

10.77%

27.69%

10.77%

27.69%

Logic Core Filler Pad Periphery I/O to Core
Region

TMR TMR+TR+CWSP

Figure 6.9: Percent increase in number of cells at chip areas (2)

44.20%

104.05%

43.46%

102.64%

71.40%

156.77%

0% 0% 7.00%
14.99%

9.05%
19.38%

Logic Core Filler Pad Periphery I/O to Core
Region

TMR TMR+TR+CWSP

Figure 6.10: Percent increase in chip areas (2)

Observe in Figure 6.7 and Figure 6.8 that the number of sequential logic cells and
the area increase by 200 % in the TMR and TMR+TR+CWSP microprocessor versions.
It is justified because the TMR technique is applied to protect all sequential logic cells
in both versions. Thus, as discussed in section 3.1.1, it inherently triplicates the target
components to be protected. In these TMR-based designs detailed in section 4.4.2 and
4.4.3, the 187 sequential logic cells (flip-flops) from the Non-Protected version become
3 × 187 = 561 flip-flops as emphasized in Table 6.2.

On the other hand, note that the number of combinational logic cells increases by
4.73 % and their area by 9.39 % in the TMR version. It is a result of the voter
implementations that are circuits purely combinational. Furthermore, it is also due to the
additional clock-tree elements (buffers and inverters) that are discussed in section 6.1.4.
Since there are the 187 flip-flops in the Non-Protected microprocessor version, there are
187 1-bit voter circuits in the TMR and TMR+TR+CWSP versions. In addition, there
are the CWSP and delay blocks in the TMR+TR+CWSP version which are built by
using combinational logic cells in order to mitigate SETs of widths up to around 1 ns.
Therefore, due to the voter, CWSP and delay circuits for each one of the microprocessor

93

registers and due to the additional clock-tree elements, the number of combinational
logic cells rises in 79.76 % and their area in 82.61 % in the TMR+TR+CWSP version.

Figure 6.7 and Figure 6.8 also show increases in the core- and periphery-filler cells.
The number of core fillers rises because the final core row utilization is almost the same
in the three microprocessor versions. It is around 71 % as detailed in Table 6.1. As the
area of combinational and sequential logic cells expands in the TMR and
TMR+TR+CWSP versions, the 71 % of row utilization in these versions is bigger in
area than the 71 % of row utilization in the Non-Protected version. Thus, as Figure 6.5,
Figure 6.7 and Figure 6.8 explain, the 29 % of core-filler area in the robust versions are
bigger than the 29 % in the Non-Protected version.

See in Figure 6.7, Figure 6.8, Figure 6.9 and Figure 6.10 that as the I/O pins required
by the robust versions are the same used in the Non-Protected version, there are not
increases (0 %) in the corner and pad cells. By this reason and since the I/O to core
distances (Table 6.1) are maintained in the three microprocessor versions but the core
areas increase respectively by 43.46 % and 102.64 % in the TMR and TMR+TR+CWSP
version (Figure 6.10). The consequence is that the periphery-filler area (Figure 6.8), the
region of routing (Figure 6.8) and the I/O to core region (Figure 6.10) grow too. Note,
however, that due to these issues, the total chip area increases are about four times
lesser than those in core areas. In the TMR version, it grows by 12.08 % and in the
TMR+TR+CWSP version by 26.71 %, as Figure 6.8 illustrates. Figure 6.9 and Figure
6.10 also detail the increases in logic cells (combinational and sequential) and in filler
cells (core and periphery).

6.1.4 Clock-Tree Elements

To avoid clock skew, a clock tree was created by an EDA tool to meet the same
initial constraints in each microprocessor version (detailed in section 4.5, step 7). The
clock-tree elements that build balanced clock networks in the target circuits are
presented in Table 6.4. Observe that a total number of 38 combinational logic cells are
added in the Non-Protected version to build the clock tree. In the TMR+TR+CWSP
version, 107 combinational logic cells are added.

Table 6.4: Clock-tree elements

 Non-Protected TMR TMR+TR+CWSP

Cells Count Area (µm2) Count Area (µm2) Count Area (µm2)

Buffers 25 3494.40 49 7007.00 96 13904.80

Inverters 13 582.40 11 509.60 11 509.60

Total 38 4076.80 60 7516.60 107 14414.40

Figure 6.11 illustrates the contributions of the clock-tree elements in relation to the
total number of combinational logic cells, core cells and chip cells (columns “Count”).
Furthermore, it shows the contributions in relation to the total combinational, core and
chip areas. See that in the Non-Protected version 1.03 % of the core area is due to the
clock-tree elements. In the TMR+TR+CWSP version these clock-tree elements
represent 0.25 % of the chip area. Observe, however, that the actual areas used by the
clock trees in the microprocessor versions are bigger than those shown in Figure 6.11 in

94

relation to core and chip areas. It is because this figure does not consider the area due to
the interconnects among buffers and inverters of the clock tree.

1.18%

0.62%
0.59%

1.78%

1.03%

0.09%

1.78%

0.79%
0.76%

3.01%

1.32%

0.15%

1.85%

0.92%
0.89%

3.45%

1.79%

0.25%

Count Area Count Area Count Area

Combinational Logic Core Chip

Non-Protected TMR TMR+TR+CWSP

Figure 6.11: Clock-tree element ratios to total combinational, core or chip elements

6.1.4.1 Costs in Clock-Tree Elements against Robustness

Based on the Non-Protected version, the extra costs in combinational logic cells to
build the clock tree in the TMR and TMR+TR+CWSP versions are those detailed in
Figure 6.12. Note that the number of clock-tree elements (combinational logic cells)
increase by 57.89 % in the TMR version. It is a consequence of the flip-flop triplication
from the TMR technique. As there are more flip-flops, i.e., more circuit nodes requiring
the clock signal, there is a bigger clock tree. In the TMR+TR+CWSP version, the area
due to the clock-tree cells rises in 253.57 %. Such growth is higher than those 84.38 %
in the TMR version because the sequential and combinational logic area in the
TMR+TR+CWSP version is higher than the logic area in the TMR version. Thus, due to
the higher circuit complexity and larger core area in the TMR+TR+CWSP version, the
distances of its circuit paths are larger. Therefore, more clock-tree elements are required
to the clock signal reach successfully all nodes of the circuit.

57.89%

181.58%

84.38%

253.57%

Count Area

TMR TMR+TR+CWSP

Figure 6.12: Percent increase in clock-tree elements

6.1.5 Routing Issues

The designed circuits can be routed by using wires in four metal layers in accord to
the target technology (AUSTRIAMICROSYSTEM, 2003). MET1 and MET3 layers are

95

used preferentially in horizontal routing. Otherwise, MET2 and MET4 layers are
preferential in vertical routing. The wires used by the routing can be classified into
special and regular wires. Special wires are those for power and ground
interconnections. Regular wires are for interconnections among the cells. In Table 6.5,
some information about the circuit routing can be seen such as the number of vias
(connections between metal layers) and segments in the nets, besides the total length of
wires and wire length per layer. See that the total length of all wires generated by the
routing for the Non-Protected version is about 45.049 cm and for the TMR+TR+CWSP
version about 66.864 cm.

Table 6.5: Routing issues

 Non-Protected TMR TMR+TR+CWSP

W
ir

es

R
eg

ul
ar

Sp
ec

ia
l

T
ot

al

R
eg

ul
ar

Sp
ec

ia
l

T
ot

al

R
eg

ul
ar

Sp
ec

ia
l

T
ot

al

M
E

T
1

W
ir

e
L

en
gt

h
(µ

m
)

79
03

.2
2

43
60

0.
80

51
50

4.
02

93
38

.9
0

59
00

2.
20

68
34

1.
10

13
27

7.
77

79
38

6.
00

92
66

3.
77

M
E

T
2

W
ir

e
L

en
gt

h
(µ

m
)

10
19

67
.1

3

48
86

.0
0

10
68

53
.1

3

12
79

35
.3

7

53
96

.5
0

13
33

31
.8

7

16
55

46
.2

5

59
63

.8
0

17
15

10
.0

5

M
E

T
3

W

ir
e

L
en

gt
h

(µ
m

)

16
53

02
.7

7

0.
00

16
53

02
.7

7

20
10

12
.1

0

0.
00

20
10

12
.1

0

24
66

89
.0

2

0.
00

24
66

89
.0

2

M
E

T
4

W
ir

e
L

en
gt

h
(µ

m
)

12
64

79
.8

3

35
4.

00

12
68

33
.8

3

12
46

89
.3

5

34
4.

00

12
50

33
.3

5

15
71

89
.4

8

58
8.

00

15
77

77
.4

8

T
ot

al

W
ir

e

L
en

gt
h

(µ
m

)

40
16

52
.9

5

48
84

0.
80

45
04

93
.7

5

46
29

75
.7

2

64
74

2.
70

52
77

18
.4

2

58
27

02
.5

2

85
93

7.
80

66
86

40
.3

2

N
um

be
r o

f
V

ia
s

29
28

7

11
0

29
39

7

32
15

5

13
0

32
28

5

43
60

3

15
4

43
75

7

N
um

be
r o

f
Se

gm
en

ts

27
03

4

49
1

27
52

5

29
43

8

52
1

29
95

9

41
22

0

55
8

41
77

8

Based on Table 6.5, Figure 6.13 shows that in the three microprocessor versions the
special wires correspond to around 12 % of the total wire length and the regular wires

96

around 88 %. On the other hand, Figure 6.14 emphasizes that MET3 predominates in
the regular wire length (around 42 %) and in the total wire length (around 37 %). In the
special wire length, MET1 is predominant (around 91 %).

89.16%

10.84%

87.73%

12.27%

87.15%

12.85%

Non-Protected TMR TMR+TR+CWSP

Regular Special

Figure 6.13: Total wire length through the regular and special wires

1.97%

25.39%

41.16%

31.49%

89.27%

10.00%

0.72%

11.43%

23.72%

36.69%

28.15%

2.02%

27.63%

43.42%

26.93%

91.13%

8.34%
0.53%

12.95%

25.27%

38.09%

23.69%

2.28%

28.41%

42.34%

26.98%

92.38%

6.94%
0.68%

13.86%

25.65%

36.89%

23.60%

Regular Special Total Regular Special Total Regular Special Total

MET1 MET2 MET3 MET4

Non-Protected TMR TMR+TR+CWSP
Figure 6.14: Total wire length through the layers

6.1.5.1 Costs in Routing Issues against Robustness

In relation to Non-Protected version, the extra costs in wire length can be seen in
Figure 6.15 for the TMR and TMR+TR+CWSP versions. Observe that the total length
of all wires generated by the routing is increased by 17.14 % for the TMR version and
in 48.42 % for the TMR+TR+CWSP version. Wires in MET1 have the highest increases
in length in the TMR+TR+CWSP version. In Figure 6.16, the extra costs in vias and
segments are illustrated. Note that in the TMR and TMR+TR+CWSP versions the total
number of vias increases respectively by 9.82 % and 48.85 %. The total number of
segments of interconnections is grown by 8.84 % in the TMR version and by 51.78 % in
the TMR+TR+CWSP version.

97

18
.1

7%
68

.0
0%

25
.4

7%
62

.3
5%

21
.6

0%
49

.2
3%

-1
.4

2%
24

.2
8%

15
.2

7%
45

.0
8%

35
.3

2%
82

.0
7%

10
.4

5%
22

.0
6%

-2
.8

2%
66

.1
0%

32
.5

6%
75

.9
5%

32
.6

9%
79

.9
2%

24
.7

8%
60

.5
1%

21
.6

0%
49

.2
3%

-1
.4

2%
24

.4
0%

17
.1

4%
48

.4
2%

MET1 MET2 MET3 MET4 Total MET1 MET2 MET3 MET4 Total MET1 MET2 MET3 MET4 Total

TMR TMR+TR+CWSP

Regular Special Total

Figure 6.15: Percent increase in wire lengths

9.79%

48.88%

8.89%

52.47%

18.18%

40.00%

6.11%

13.65%
9.82%

48.85%

8.84%

51.78%

Vias Segments Vias Segments Vias Segments

TMR TMR+TR+CWSP

Regular Special Total

Figure 6.16: Percent increase in vias and segments

6.2 Performance Analysis
Results about performance of the three microprocessor versions are discussed in this

section. Performance generally refers to the maximum clock frequency at which the
designed circuit can operate. By using a static timing analysis through an EDA tool, the
critical path delay of the circuits can be obtained. As detailed in sections 4.5 (step 7) and
5.1.1.1, based on the same initial constraints in each microprocessor version, the static
timing analysis was performed at two steps: pre-layout and post-layout.

In Table 6.6, results from the pre-layout and post-layout static timing analysis are
presented respectively by the preliminary and final estimations of the worst arrival times
in the microprocessor versions. Worst arrival time is defined as the time at which the

98

signal arrives at the other end of the worst circuit path from where this path starts. The
maximum frequency is obviously the inverse ratio of this time.

Observe that the maximum frequency achieved by the Non-Protected version is
around 14.40 MHz and by the TMR+TR+CWSP version around 12.77 MHz. Otherwise,
a CPU from the M68HC11E family designed by Freescale (FREESCALE, 2002)
achieves a nominal speed of 3 MHz. However, this comparison might be unfair, since
this Freescale’s design is implemented through a different fabrication process. It uses a
HCMOS technology probably from a generation older than the AMS 0.35 µm CMOS
technology (AUSTRIAMICROSYSTEM, 2003) used in the microprocessor versions of
this present work. Furthermore, this Freescale’s implementation considers a power
supply (vdd) of 5.0 V unlike the 3.3 V used in the circuits of this work. The nominal
speed of 3 MHz recommend by Freescale respects also the lower speeds typically
required by the compatible data and program memories that are habitually used in
commercial applications based on this CPU.

Table 6.6: Timing analysis results

 Non-Protected TMR TMR+TR+CWSP

W
or

st

A
rr

iv
al

T

im
e

(n
s)

M
ax

im
um

Fr

eq
ue

nc
y

(M
H

z)

W
or

st

A
rr

iv
al

T

im
e

(n
s)

M
ax

im
um

Fr

eq
ue

nc
y

(M
H

z)

W
or

st

A
rr

iv
al

T

im
e

(n
s)

M
ax

im
um

Fr

eq
ue

nc
y

(M
H

z)

Preliminary Estimation 36.01 27.77 38.86 25.73 39.74 25.16

Final Estimation 69.45 14.40 75.93 13.17 78.29 12.77

Figure 6.17 shows the contributions from the circuit-extraction information that are
added in the preliminary estimations. Note that the worst arrival times at the final
estimation are around 95 % higher than the preliminary estimation and the maximum
frequencies are around 49 % higher. It occurs because at the preliminary estimation
there are not details about the final routing. See that a performance analysis based only
on preliminary estimation can be critical due to such differences.

92.86%

-48.15%

95.39%

-48.81%

97.01%

-49.24%

Non-Protected TMR TMR+TR+CWSP

Worst Arrival Time Maximum Frequency

Figure 6.17: Circuit-extraction information contribution at the worst arrival time

99

6.2.1 Costs in Performance against Robustness

Figure 6.18 illustrates the costs in performance to implement the robustness in the
Non-Protected microprocessor version. Observe that in TMR version, the worst arrival
time rises in 9.33 % basically due to the voter block discussed in section 3.1.1. In the
TMR+TR+CWSP version, the critical path delay is affected in 12.73 %. In accord to
sections 3.1.1, 3.2.2 and 4.6.1, it is a result of the defined maximum SET width
constraint (around 1 ns), the buffers for the delay blocks and the combinational logic
gates for the CWSP elements and voter blocks. Furthermore, these timing degradations
in the TMR and TMR+TR+CWSP versions are also due to the extra interconnects
(wires) generated by reason of the additional components.

9.33%
12.73%

-8.54%
-11.32%

Worst Arrival Time Maximum Frequency

TMR TMR+TR+CWSP

Figure 6.18: Timing degradation

6.3 Power Analysis
Estimations about the power consumption or in other words the power dissipation in

the designed circuits are presented in this section. By using the circuit frames generated
for the gate-level netlists of the three microprocessor versions, a power analysis through
an EDA tool is able to estimate the power consumption in the circuits. The estimations
consider the same initial constraints in each microprocessor version to specify input
drivers and output loads, as detailed in sections 4.5 (step 7).

In order to calculate the power dissipation in the cells, the power analysis tool takes
into account the internal load capacitive power dissipation and the short circuit power
dissipation, which are obtained from a look-up table in the technology library.
Furthermore, the leakage power dissipation is also considered. It is obtained from a
leakage power annotation in the technology library. About the power consumed by nets
of wires or interconnects, the tools calculates the power dissipation due to the net
capacitance and the capacitances of the pins driven by the nets (CADENCE, 2002).

The leakage power consumption is defined as the static power estimation of the
circuit. Regarding the power consumption inside the cells and in the nets, it is defined as
the dynamic power estimation. Such estimation inherently requires computing the
switching activity of circuit internal nodes unlike the static power estimation. The
power analysis tool uses a probabilistic technique to propagate the switching activities

100

from the nodes containing the asserted values. If none of the logic nodes in the circuit
contain assertion values, the tool assumes default values at the primary inputs and
outputs of sequential elements (CADENCE, 2002).

As mentioned in sections 4.3.1 and 4.5, a preliminary pre-layout power analysis and
a more accurate final post-layout power analysis were performed. The preliminary pre-
layout evaluation is based on PKS analysis (CADENCE, 2002), a power analysis
without stimulating dynamically the circuit inputs is considered. Only default values
defined by the power analysis tool itself are fixed at the primary inputs and outputs of
the sequential cells. On the other hand, in the final post-layout evaluation of power, the
switching activity created by stimuli of benchmarks at circuit inputs is considered. More
accurate power results can be obtained because actual toggle count values from the
benchmark switching activity are used by the power analysis tool.

Five benchmarks detailed in section 5.3 were considered in this final evaluation.
Observe that the dynamic power estimation due to each one of these benchmarks
indicates more accurately the dynamic power consumed by a part of the circuit (i.e., by
a certain amount of nodes achieved by the stimuli of the benchmark). Habitual software
applications normally do not use all parts of the circuit. It can be seen by the toggle
coverage shown in Table 5.1 for each one of the benchmarks. These benchmarks use all
microprocessor instructions and each one has a toggle coverage around 49 % and 66 %.
However, note that the power analysis tool propagates probabilistically the switching
activity to other nodes in order to achieve the whole of the circuit. On the other hand, in
accord to section 5.3, a more accurate estimation could be obtained by using the five
benchmarks in sequence, as a unique program. Thus, practically all circuit nodes would
be attained. Nevertheless, the simulation and analysis tools would require memory
resources and processing time that would be quite onerous to execute this task. In this
way, a probabilistic approach is a sufficient analysis.

Table 6.7 shows the static power estimation through the leakage power
consumption, moreover, the dynamic power estimation by means of the power
consumption inside the cells and in the nets. The leakage power in the Non-Protected
microprocessor version corresponds roughly 0.24 µW and in the TMR+TR+CWSP
version approximately 0.50 µW. See that the preliminary pre-layout power analysis (the
PKS estimation discussed at the former paragraphs) indicates a total power consumed
by the Non-Protected version about 0.301 mW and around 0.506 mW by the
TMR+TR+CWSP version. The dynamic power due to the five benchamrks considers
the periods of the program main loops detailed in Table 5.2. Observe that the Non-
Protected version consumes around 3.4 mW by using each one of the five benchmarks
and the TMR+TR+CWSP version around 5.1 mW.

In Figure 6.19, the percent distribution of the power components from Table 6.7 is
shown for each benchmark and the PKS estimation. Note that the component related to
the power consumption of cells corresponds to around 55 % of the overall consumption
and the component due to wires or interconnects among cells approximately 45 %. The
component related to the leakage power is a quite small part of the overall power. It is
around 0.09 % for the PKS estimation and approximately 0.009 % for the benchmarks.
In these results, the dynamic power consumption predominance is justified as a typical
characteristic of technologies like that used in the designed circuits (CMOS, channel
length of 0.35 µm). The static power component can constitute a significant portion of
the total power consumption in more recent technologies based on lesser channel
lengths (KIM et al, 2003).

101

Table 6.7: Power results

 Non-Protected TMR TMR+TR+CWSP

Static Static Static

Po
w

er

(µ
W

)

L
ea

ka
ge

L
ea

ka
ge

L
ea

ka
ge

0.
24

40

0.
36

45

0.
50

24

Dynamic Dynamic Dynamic

Po
w

er

(m
W

)

In
te

rn
al

C

el
ls

N
et

s

T
ot

al

T
ot

al
 P

ow
er

 (D
yn

am
ic

 +
 S

ta
tic

) (
m

W
)

In
te

rn
al

C

el
ls

N
et

s

T
ot

al

T
ot

al
 P

ow
er

 (D
yn

am
ic

 +
 S

ta
tic

) (
m

W
)

In
te

rn
al

C

el
ls

N
et

s

T
ot

al

T
ot

al
 P

ow
er

 (D
yn

am
ic

 +
 S

ta
tic

) (
m

W
)

PK
S

E
st

im
at

io
n

0.
15

15

0.
14

94

0.
30

09

0.
30

11
44

0

0.
21

34

0.
20

09

0.
41

43

0.
41

46
64

5

0.
26

37

0.
24

20

0.
50

57

0.
50

62
02

4

H
N

O

B
en

ch
m

ar
k

1.
79

85

1.
53

07

3.
32

92

3.
32

94
44

0

2.
33

82

1.
77

62

4.
11

44

4.
11

47
64

5

2.
87

25

2.
16

73

5.
03

98

5.
04

03
02

4

H
L

C

B
en

ch
m

ar
k

1.
82

65

1.
56

61

3.
39

26

3.
39

28
44

0

2.
35

91

1.
80

62

4.
16

53

4.
16

56
64

5

2.
84

91

2.
16

64

5.
01

55

5.
01

60
02

4

H
L

B

B
en

ch
m

ar
k

1.
82

70

1.
56

72

3.
39

42

3.
39

44
44

0

2.
35

96

1.
80

73

4.
16

69

4.
16

72
64

5

2.
84

91

2.
16

73

5.
01

64

5.
01

69
02

4

A
O

R

B
en

ch
m

ar
k

1.
97

40

1.
62

94

3.
60

34

3.
60

36
44

0

2.
50

81

1.
88

46

4.
39

27

4.
39

30
64

5

3.
08

22

2.
28

93

5.
37

15

5.
37

20
02

4

A
O

L

B
en

ch
m

ar
k

1.
91

76

1.
60

03

3.
51

79

3.
51

81
44

0

2.
44

68

1.
85

24

4.
29

92

4.
29

95
64

5

2.
99

12

2.
23

36

5.
22

48

5.
22

53
02

4

102

50
.3

08
2%

49
.6

10
8%

0.
08

10
%

54
.0

18
0%

45
.9

74
7%

0.
00

73
%

53
.8

33
9%

46
.1

58
9%

0.
00

72
%

53
.8

23
2%

46
.1

69
6%

0.
00

72
%

54
.7

77
9%

45
.2

15
3%

0.
00

68
%

54
.5

06
0%

45
.4

87
1%

0.
00

69
%

51
.4

63
3%

48
.4

48
8%

0.
08

79
%

56
.8

24
6%

43
.1

66
5%

0.
00

89
%

56
.6

32
0%

43
.3

59
2%

0.
00

88
%

56
.6

22
3%

43
.3

69
0%

0.
00

87
%

57
.0

92
3%

42
.8

99
4%

0.
00

83
%

56
.9

08
1%

43
.0

83
4%

0.
00

85
%

52
.0

93
8%

47
.8

07
0%

0.
09

92
%

56
.9

90
6%

42
.9

99
4%

0.
01

00
%

56
.8

00
2%

43
.1

89
8%

0.
01

00
%

56
.7

90
0%

43
.2

00
0%

0.
01

00
%

57
.3

75
3%

42
.6

15
4%

0.
00

94
%

57
.2

44
5%

42
.7

45
9%

0.
00

96
%

PKS HNO HLC HLB AOR AOL PKS HNO HLC HLB AOR AOL PKS HNO HLC HLB AOR AOL

Internal Cells Nets Leakage

Non-Protected TMR TMR+TR+CWSP

Figure 6.19: Total power through its components

6.3.1 Costs in Power against Robustness

By means of the TMR and TMR+TR+CWSP microprocessor versions, the extra
costs in power due to the robustness applied in the Non-Protected microprocessor
version can be analyzed based on the results from Table 6.7. In addition, observe that in
the Non-Protected version, 88.54 % of the total leakage power and around 33 % of the
total power consumption (dynamic power + static power) are due to the core area. Thus,
the remaining 11.46 % of the total leakage power and the 67 % of the total power are
consumed by the “Region for Routing” and “Periphery Cell Area” from Figure 6.1.

Figure 6.20 illustrates the increases in leakage power dissipation. It increases around
49 % in the TMR version and approximately 106 % in the TMR+TR+CWSP version.

49.39%

105.90%

Leakage

TMR TMR+TR+CWSP

Figure 6.20: Percent increase in static power

On the other hand, Figure 6.21 shows that the total dynamic power consumption in
the TMR version elevates around 23 % by using each one of the benchmarks and
around 49 % in the TMR+TR+CWSP version. The less accurate PKS estimation
indicates increases by roughly 38 % and 68 % respectively. In Figure 6.22 is denoted
that such results are practically the same in respect to the increases in total power

103

consumptions. It is explained by the dynamic power consumption predominance seen in
Figure 6.19 and emphasized at the beginning of this section 6.3. Note that, as discussed
in section 4.4, such increases in the TMR and TMR+TR+CWSP versions are basically
due to the triplications of registers, inclusions of voters, additional clock-tree elements
and required interconnects. Additionally, in the TMR+TR+CWSP version, the increases
are also a result of the insertions of CWSP elements, delay blocks, additional clock-tree
elements and their required interconnects.

40
.8

6%
74

.0
6%

30
.0

1%
59

.7
2%

29
.1

6%
55

.9
9%

29
.1

5%
55

.9
4%

27
.0

6%
56

.1
4%

27
.6

0%
55

.9
9%

34
.4

7%
61

.9
8%

16
.0

4%
41

.5
9%

15
.3

3%
38

.3
3%

15
.3

2%
38

.2
9%

15
.6

6%
40

.5
0%

15
.7

5%
39

.5
7%

37
.6

9%
68

.0
6%

23
.5

9%
51

.3
8%

22
.7

8%
47

.8
4%

22
.7

7%
47

.7
9%

21
.9

0%
49

.0
7%

22
.2

1%
48

.5
2%

PKS HNO HLC HLB AOR AOL PKS HNO HLC HLB AOR AOL PKS HNO HLC HLB AOR AOL

TMR TMR+TR+CWSP

Internal Cells Nets Total

Figure 6.21: Percent increase in dynamic power

37.70%

68.09%

23.59%

51.39%

22.78%

47.84%

22.77%

47.80%

21.91%

49.07%

22.21%

48.52%

PKS HNO HLC HLB AOR AOL

TMR TMR+TR+CWSP

Figure 6.22: Percent increase in total power

104

7 CONCLUSIONS AND FINAL REMARKS

Inherently the implementation of any fault-tolerance mechanism involves additional
overheads that claim a preliminary analysis before the IC manufacture. In the present
work, fault-tolerance techniques were explored in such way that the most adequate ones
for the target microprocessor were employed. Those techniques that use multiple clock
networks and do not preserve the total number of clock cycles were avoided in order to
conserve the standard microprocessor characteristics as detailed in section 4.2. The
main goal was to evaluate the extra costs in area, performance and power due to such
robustness implemented in this target circuit.

The work also explained the basic design steps to develop at the RT level a robust 8-
bit microprocessor to SEs. By using a typical IC design flow, the front-end logical
design and back-end physical design were developed. The design started from a VHDL
description and achieved a GDSII stream file for manufacture. In addition, functional
testing and fault injection simulations based on benchmark executions were performed
in order to detect eventual design errors. Two robust microprocessor versions based on
fault-tolerance techniques were designed. A microprocessor version protected by the
TMR technique mitigates only direct SEUs. Another version mitigates direct and
indirect SEUs as a result of the TMR and TR+CWSP protection techniques.

Furthermore, the present work showed the viability of the CWSP element
implementation by using a design flow based only on standard logic gates of any
library. It determines that a robust circuit by means of CWSP elements is also able to be
developed at the RT level without requiring specific non-standard gates or even full-
custom layout tools for the CWSP element design. In this way, the TMR and
TR+CWSP protection schemes could be modeled as a unique reusable VHDL
component which allows saving design time and development cost.

Results detailed in chapter 6 and published in (BASTOS; KASTENSMIDT; REIS,
2006-a, 2006-c, 2006-d) show the cost in area, performance and power to make robust
the target microprocessor. The main design results are correlated in Figure 7.1 by means
of their percent increases.

To protect such target microprocessor only against direct SEUs (TMR version), the
core area increases by 43.46 % (9.39 % in combinational cell area and 200 % in
sequential cell area). It results in a performance degradation of 9.33 % and a power
consumption growth around 23 % for the target benchmarks. The static power grows by
49.39 %. The total length of all wires generated by the routing is increased by 17.14 %.
Moreover, the extra cost in area due to the insertions of buffers and inverters to build
the clock tree is + 84.38 %.

106

On the other hand, to protect the target microprocessor against direct and indirect
SEUs (TMR+TR+CWSP version that mitigates SETs of widths up to around 1 ns), the
core area practically doubles or it increases by 102.64 % (82.61 % in combinational cell
area and 200 % in sequential cell area). It results in a performance degradation of 12.73
% and a power consumption growth around 49 % for the target benchmarks. The static
power grows by 105.90 %. The total length of all routed wires is increased by 48.42 %.
Furthermore, the extra cost in area due to the clock-tree elements is + 253.57 %.

Note also in Figure 7.1 that the increases in the chip areas are around four times
lesser than in the core areas (TMR version: 12.08 %; and TMR+TR+CWSP version:
26.71 %), since the required I/O pins and the I/O to core distances are the same in the
three microprocessor versions, as explained in section 6.1.3. The total chip area of the
TMR+TR+CWSP version is around 5.707 mm2. Note that such area is equivalent to
approximately the following square: ��.

43
.4

6%

10
2.

64
%

9.
39

%

82
.6

1%

20
0%

20
0%

9.
33

%

12
.7

3%

23
% 49

%

49
.3

9%

10
5.

90
%

17
.1

4% 48
.4

2% 84
.3

8%

25
3.

57
%

12
.0

8%

26
.7

1%

C
or

e
A

re
a

C
om

bi
na

tio
na

l C
el

l
A

re
a

S
eq

ue
nt

ia
l C

el
l

A
re

a

W
or

st
 A

rr
iv

al
 T

im
e

B
en

ch
m

ar
k

P
ow

er
C

on
su

m
pt

io
n

Le
ak

ag
e

P
ow

er

To
ta

l W
ir

e
Le

ng
th

C
lo

ck
-T

re
e

C
el

l
A

re
a

C
hi

p
A

re
a

TMR TMR+TR+CWSP

Figure 7.1: Correlation among design results

As illustrated by these results, the implemented fault-tolerance techniques induce
considerable overheads in area, performance and power. However, it is the required cost
to protect the target microprocessor at the RT level without modifying its standard
characteristics. In this way, due to the maintenance of compatibility between the
standard non-protected architecture and the robust versions, the reliability and
reusability of their existing hardware and software applications are guaranteed.
Furthermore, these fault-tolerance techniques are simple and fast to be implemented by
using the RT level. All these design issues trend to reduce the time-to-market and
development cost. On the other hand, other protection technique solutions might
improve these results but they cannot maintain such characteristics of simplicity,
compatibility and robustness. Alternative solutions could be aggregating compensation
techniques that maintain these characteristics and decrease these costs due to the
robustness. An alternative solution to reduce the dynamic power consumption was
proposed in (BASTOS; KASTENSMIDT; REIS, 2005-b). By using just some bytes of

107

the data memory and simple adjustments in the software applications, this low-power
technique decreases the dynamic power consumption without penalties in area and
performance.

There are many future works that can be done based on the present work. The
developed front-end logical design could be implemented by using a nanometer
technology. In addition, other microprocessor versions able to mitigate smaller and
larger SET widths than that maximum SET width allowed in the present design could be
also implemented. The design results of these new microprocessor versions could be
compared with the present results that are based on a micrometer technology. Thus, the
differences of costs due to the robustness in different technologies and SET widths
could be evaluated.

To detect eventual design error, usual verification approaches such as timing
analysis, functional testing and fault injection by simulation, and DRC were performed
in the three designed microprocessor versions. Before the IC fabrication, other
traditional checks like LVS and formal verification could be also performed to certify
further these designs. Moreover, the suitable test vectors to detect eventual permanent
faults based on the stuck-at fault model could be generated by simulation. Such faults
could be injected in the designed circuit models, one at each simulation. Thus, by
comparing the circuit outputs in simulations under fault with fault-free simulations, the
test vectors that detect faults could be found. During the IC manufacture, such test
vectors could be used at the circuit inputs by tester equipments.

As emphasized in section 4.6, the redundant parts of a triplicated register being
attacked at the same time are susceptible elements of the designed robust
microprocessor. Furthermore, the combinational circuit that defines the clock tree and
the voter circuits that achieve directly output pads of the chip are also vulnerable. In
order to improve the fault coverage, such parts of the robust circuit even susceptible to
faults could be protected by using other fault-tolerance techniques, even so nowadays
such circuit debilities have typically low probabilities of inducing errors.

Even though the implemented fault-tolerance techniques are typically considered
efficient, an evaluation of those mentioned circuit debilities through fault injection
experiments able to obtain the fault coverage could be performed. As discussed in
section 5.4.5, it would require complex non-deterministic methods due to the peculiar
characteristics of SETs. Since the main future goal of this work is manufacturing the
three designed microprocessor versions, radiation ground test experiments could be
performed on the prototypes of these target circuits to evaluate the effectiveness of the
implemented fault-tolerance mechanisms.

108

REFERENCES

ABRAMOVICI, M.; BREUER, M. A.; FRIEDMAN, A. D. Digital Systems Testing
and Testable Design. New York: IEEE, 1990.

ALEXANDRESCU, D.; ANGHEL, L.; NICOLAIDIS, M. New Methods for Evaluating
the Impact of Single Event Transients in VDSM ICs. In: IEEE INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS
WORKSHOP, DFT, 17., 2002. Proceedings… [S.l.]: IEEE Computer Society, 2002. p.
99-107.

ANGHEL, L.; NICOLAIDIS, M. Cost Reduction and Evaluation of a Temporary Faults
Detecting Technique. In: DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE AND EXHIBITION, DATE, 2000, Paris. Proceedings… Los
Alamitos: IEEE Computer Society, 2000-a. p. 591-598.

ANGHEL, L.; ALEXANDRESCU, D.; NICOLAIDIS, M. Evaluation of a Soft Error
Tolerance Technique Based on Time and/or Space Redundancy. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 13., 2000, Manaus.
Proceedings… Los Alamitos: IEEE Computer Society, 2000-b. p. 237-242.

AUSTRIAMICROSYSTEM. 0.35µm CMOS Digital Standard Cell Databook.
Austria, January 2003. Available at: <http://asic.austriamicrosystems.com/databooks/
index_c35.html>. Visited on March 2006.

BARTH, J. Applying Computer Simulation Tools to Radiation Effects Problems. In:
IEEE NUCLEAR SPACE RADIATION EFFECTS CONFERENCE, NSREC, 1997.
Proceedings… [S.l.]: IEEE Computer Society, 1997. p. 1-83.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Designing Low Power Embedded
Software for Mass-Produced Microprocessor by Using a Loop Table in On-Chip
Memory. In: SOUTH SYMPOSIUM ON MICROELECTRONICS, SIM, 20., May 6-7,
2005, Santa Cruz do Sul, RS, Brazil. Proceedings… Porto Alegre, RS, Brazil:
Universidade de Santa Cruz do Sul, UNISC, 2005-a. p. 137-140.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Designing Low Power Embedded
Software for Mass-Produced Microprocessor by Using a Loop Table in On-Chip
Memory. In: INTERNATIONAL WORKSHOP ON POWER AND TIMING
MODELING, OPTIMIZATION AND SIMULATION, PATMOS, 15., September 20-
23, 2005, Leuven, Belgium. Proceedings… Berlin, Germany: Springer, 2005-b. p. 59-
68. (Lecture Notes in Computer Science, LNCS, v.3728).

110

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design of a Robust 8-Bit
Microprocessor to Soft Single Event Effects. In: LATIN AMERICAN TEST
WORKSHOP, LATW, 7., March 26-29, 2006, Buenos Aires, Argentina. Proceedings...
[S.l.]: IEEE Computer Society, 2006-a. p. 137-142.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design of a Robust 8-Bit
Microprocessor to Soft Single Event Effects. In: SOUTH SYMPOSIUM ON
MICROELECTRONICS, SIM, 21., May 8, 2006, Porto Alegre, RS, Brazil.
Proceedings… Porto Alegre, RS, Brazil: Universidade de Federal do Rio Grande do
Sul, UFRGS, 2006-b. p. 151-155.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design of a Robust 8-Bit
Microprocessor to Soft Errors. In: INTERNATIONAL ON-LINE TESTING
SYMPOSIUM, IOLTS, 12., July 10-12, 2006, Lake of Como, Italy. Proceedings...
[S.l.]: IEEE Computer Society, 2006-c. p. 195-196.

BASTOS, R. P.; KASTENSMIDT, F. L.; REIS, R. Design at High Level of a Robust 8-
Bit Microprocessor to Soft Errors by Using Only Standard Gates. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 19., August 28 –
September 1, 2006, Ouro Preto, Brazil. Proceedings... [S.l.]: IEEE Computer Society,
2006-d. p. 196-201.

BAUMANN, R.; SMITH, E. Neutron-Induced Boron Fission as a Major Source of Soft
Errors in Deep Submicron SRAM Devices. In: IEEE INTERNATIONAL ELIABILITY
PHYSICS SYMPOSIUM, 38., 2000. Proceedings… [S.l.]: IEEE Computer Society,
2000.

BAUMANN, R. C. Soft Errors in Advanced Semiconductor Devices—Part I: The Three
Radiation Sources. IEEE Transactions on Device and Materials Reliability, [S.l.],
v.1, n.1, p. 17-22, Mar. 2001.

BORKAR, S. Designing Reliable Systems from Unreliable Components: The
Challenges of Transistor Variability and Degradation. IEEE Micro, [S.l.], v.25, n.6, p.
10-16, Nov.-Dec. 2005.

BRÜNING, U. Hardware Design and Simulation. April 2006, Computer Architecture
Group, Department of Computer Engineering, University of Mannheim, Germany.
Available at: < http://mufasa.informatik.uni-mannheim.de/pages/lectures/ss06/hwe/
script_pdf/vl_hwd_A4.pdf >. Visited on May 2006.

CADENCE DESIGN SYSTEMS, INC. Tool Manuals. USA, May 2002.

CALIN, T.; VARGAS, F.L.; NICOLAIDIS, M. Upset-Tolerant CMOS SRAM Using
Current Monitoring: Prototype And Test Experiments. In: INTERNATIONAL TEST
CONFERENCE, ITC, 1995. Proceedings... [S.l.]: IEEE, 1995. p. 45-53.

CALIN, T.; NICOLAIDIS, M.; VELAZCO, R. Upset Hardened Memory Design for
Submicron CMOS Technology. IEEE Transactions on Nuclear Science, New York,
v.43, n.6, p. 2874 -2878, Dec. 1996.

111

COCHRAN, D. J. et al. Recent Total Ionizing Dose Results and Displacement Damage
Results for Candidate Spacecraft Electronics for NASA. In: RADIATION EFFECTS
DATA WORKSHOP, 2005. Proceedings... [S.l.]: IEEE, 2005. p. 149-155.

CONSTANTINESCU, C. Neutron SER Characterization of Microprocessors. In:
INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND
NETWORKS, DSN, 2005. Proceedings... [S.l.]: IEEE Computer Society, 2005. p. 754-
759.

COTA, E.; LIMA, F.; REZGUI, S.; CARRO, L.; VELAZCO, R.; LUBASZEWSKI, M.;
REIS, R. Synthesis of an 8051-like Micro-Controller Tolerant to Transient Faults.
Journal of Electronic Testing Theory and Applications, JETTA, MA, USA, v.17,
n.2, p. 149-161, 2001.

DAVIS, R. et al. BWRC IC Design Flow. January 2000, Berkeley Wireless Research
Center, USA. Available at: < http://bwrc.eecs.berkeley.edu/Presentations/Retreats/
Winter_Retreat_Jan_2000/Tuesday%20AM/Microsoft%20PowerPoint%20-%20rhett_
ICDFtalk_BWRCwinter2000retreat.pdf >. Visited on May 2006.

DODD, P. E. et al. Neutron-Induced Soft Errors, Latchup, and Comparison of SER Test
Methods for SRAM Technologies. In: INTERNATIONAL ELECTRON DEVICES
MEETING, IEDM, 2002. Technical Digest... [S.l.]: IEEE, 2002. p. 333-336.

FREESCALE SEMICONDUCTOR, INC. M68HC11 Reference Manual. USA, April
2002. Available at: <http://www.freescale.com>. Visited on July 2005.

FREESCALE SEMICONDUCTOR, INC. M68HC11E Family Data Sheet. USA, June
2003. Available at: <http://www.freescale.com>. Visited on July 2005.

GAISLER, J. Evaluation of a 32-Bit Microprocessor with Built-in Concurrent Error-
Detection. In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT
COMPUTING, FTCS, 27., 1997. Digest of Papers... [S.l.]: IEEE, 1997. p. 42-46.

GRANLUND, T.; GRANBOM, B.; OLSSON, N. Soft Error Rate Increase for New
Generations of SRAMs. IEEE Transactions on Nuclear Science, [S.l.], v.50, n.6, p.
2065-2068, Dec. 2003.

GROCHOWSKI, A. et al. Integrated Circuit Testing for Quality Assurance in
Manufacturing: History, Current Status, and Future Trends. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, [S.l.], v.44, n.8, p.
610-633, Aug. 1997.

GÜNTZEL, J. L. A. Functional Timing Analysis of VLSI Circuits Containing
Complex Gates. 2000. 182 f. Thesis (Ph.D) – PPGC, Instituto de Informática, UFRGS,
Porto Alegre.

IYER, R. K. et al. Recent Advances and New Avenues in Hardware-Level Reliability
Support. IEEE Micro, [S.l.], v.25, n.6, p. 18-29, Nov.-Dec. 2005.

HARBOE-SORENSEN, R.; SUND, A. T. Radiation Pre-Screening of R3000/R3000A
Microprocessors. In: RADIATION EFFECTS DATA WORKSHOP, 1992. Workshop
Record... [S.l.]: IEEE, 1992. p. 34-41.

112

HASS, J. et al. Mitigating Single Event Upsets From Combinational Logic. In: NASA
SYMPOSIUM ON VLSI DESIGN, 7., 1998. Proceedings... [S.l.: s.n.], 1998.

HASS, J. Probabilistic Estimates of Upset Caused by Single Event Transients. In:
NASA SYMPOSIUM ON VLSI DESIGN, 8., 1999. Proceedings... [S.l.: s.n.], 1999.

HAZUCHA, P. et al. Neutron Soft Error Rate Measurements in a 90-nm CMOS Process
and Scaling Trends in SRAM from 0.25-µm to 90-nm Generation. In:
INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2003. Technical
Digest... [S.l.]: IEEE, 2003. p. 21.5.1-21.5.4.

HENES-NETO, E.; WIRTH, G.; KASTENSMIDT, F. L. A. Using Bulk Built-In
Current Sensors to Detect Transient Faults in SRAM Memory Architectures. In: LATIN
AMERICAN TEST WORKSHOP, LATW, 7., March 26-29, 2006, Buenos Aires,
Argentina. Proceedings... [S.l.]: IEEE Computer Society, 2006.

HENTSCHKE, R.; MARQUES, F.; LIMA, F.; CARRO, L.; SUSIN, A.; REIS, R.
Analyzing Area and Performance Penalty of Protecting Different Digital Modules with
Hamming Code and Triple Modular Redundancy. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 15., 2002, Porto
Alegre. Proceedings... Los Alamitos: IEEE Computer Society, 2002. p. 95-100.

HERRERA, F. et al. Specification Components: Reusability at the HW/SW System
Specification Level. In: FALL VIUF WORKSHOP, 1999. Proceedings... [S.l.]: IEEE,
1999. p. 50-56.

HOWARD, J. W. J. et al. Total Dose and Single Event Effects Testing of the Intel
Pentium III (P3) and AMD K7 Microprocessors. In: RADIATION EFFECTS DATA
WORKSHOP, 2001. Proceedings... [S.l.]: IEEE, 2001. p. 38-47.

HUTCHESON, G. D. Os Primeiros Nanochips. Scientific American Brasil, [S.l.],
n.24, p. 68-75, maio 2004.

JOHNSTON, A. Scaling and Technology Issues for Soft Error Rates. In: RESEARCH
CONFERENCE ON RELIABILITY, 4., 2000. Proceedings... Palo Alto: Stanford
University, 2000.

KARNIK, T.; HAZUCHA, P.; PATEL, J. Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes. IEEE Transactions on Dependable and
Secure Computing, [S.l.], v.1, n.2, p. 128-143, Apr.-June 2004.

KASTENSMIDT, F. L.; CARRO, L.; REIS, R. Fault-Tolerance Techniques for
SRAM-Based FPGA. [S.l.]: Springer, 2006.

KIM, N. S. et al. Leakage Current: Moore's Law Meets Static Power. IEEE Computer,
[S.l.], v.36, n.12, p. 68-75, Dec. 2003.

KRISHNAMOHAN, S.; MAHAPATRA, N. R. A Highly-Efficient Technique for
Reducing Soft Errors in Static CMOS Circuits. In: COMPUTER DESIGN: VLSI IN
COMPUTERS AND PROCESSORS, ICCD, 2004. Proceedings... [S.l.]: IEEE
Computer Society, 2004. p. 126-131.

113

LABEL, K. A. et al. Commercial Microelectronics Technologies for Applications in the
Satellite Radiation Environment. In: AEROSPACE APPLICATIONS CONFERENCE,
1996. Proceedings... [S.l.]: IEEE, 1996. p. 375-390.

LABEL, K. A. et al. A Roadmap for NASA's Radiation Effects Research in Emerging
Microelectronics and Photonics. In: AEROSPACE CONFERENCE, 2000.
Proceedings... [S.l.]: IEEE, 2000. p. 535-545.

LAPRIE, J. Dependability of Computer Systems: from Concepts to Limits. In: IFIP
INTERNATIONAL WORKSHOP ON DEPENDABLE COMPUTING AND ITS
APPLICATIONS, DCIA, 1998. Proceedings... Johannesburg: University of the
Witwatersrand, 1998. p. 108-126.

LAMBERT, D. et al. Neutron-Induced SEU in Bulk SRAMs in Terrestrial
Environment: Simulations and Experiments. IEEE Transactions on Nuclear Science,
[S.l.], v.51, n.6, p. 3435-3441, Dec. 2004.

LAZZARI, C.; ANGHEL, L.; REIS, R. On Implementing a Soft Error Hardening
Technique by Using an Automatic Layout Generator: Case Study. In:
INTERNATIONAL ON-LINE TESTING SYMPOSIUM, IOLTS, 11., 2005.
Proceedings... [S.l.]: IEEE Computer Society, 2005. p. 29-34.

LERAY, J. et al. Atmospheric Neutron Effects in Advanced Microelectronics,
Standards and Applications. In: INTERNATIONAL CONFERENCE ON
INTEGRATED CIRCUIT DESIGN AND TECHNOLOGY, ICICDT, 2004.
Proceedings... [S.l.]: IEEE, 2004. p. 311-321.

LIDÉN, P. et al. On Latching Probability of Particle Induced Transients in
Combinational Networks. In: INTERNATIONAL SYMPOSIUM ON FAULT-
TOLERANT COMPUTING, FTCS, 24., 1994. Digest of Papers... [S.l.]: IEEE, 1994.
p. 340-349.

LIMA, F.; COTA, E.; CARRO, L.; LUBASZEWSKI, M.; REIS, R.; VELAZCO, R.;
REZGUI, S. Designing a Radiation Hardened 8051-Like Micro-Controller. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI,
13., 2000. Proceedings... Los Alamitos: IEEE Computer Society, 2000-a. p. 255-260.

LIMA, F.; REZGUI, S.; COTA, E.; CARRO, L.; LUBASZEWSKI, M.; VELAZCO, R.;
REIS, R. Designing and Testing a Radiation Hardened 8051-like Micro-controller. In:
INTERNATIONAL CONFERENCE ON MILITARY AND AEROSPACE
APPLICATIONS OF PROGRAMMABLE LOGIC DEVICES, MAPLD, 2000.
Proceedings... [S.l.: s.n.], 2000-b.

LIMA, F. Single Event Upset Mitigation Techniques for Programmable Devices.
2000-c. 102 f. Qualifying Examination (Ph.D) – PPGC, Instituto de Informática,
UFRGS, Porto Alegre.

LIMA, F.; REZGUI, S.; CARRO, L.; VELAZCO, R.; REIS, R. On the Use of VHDL
Simulation and Emulation to Derive Error Rates. In: EUROPEAN CONFERENCE ON
RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS, RADECS,
2001. Proceedings... [S.l.]: IEEE Computer Society, 2001-a. p. 253-260.

114

LIMA, F.; CARMICHAEL, C.; FABULA, J.; PADOVANI, R.; REIS, R. A Fault
Injection Analysis of Virtex FPGA TMR Design Methodology. In: EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND
SYSTEMS, RADECS, 2001. Proceedings... [S.l.]: IEEE Computer Society, 2001-b. p.
275 -282.

LIMA, F.; CARRO, L.; VELAZCO, R.; REIS, R. Injecting Multiple Upsets in a SEU
Tolerant 8051 Micro-Controller. In: LATIN AMERICAN TEST WORKSHOP, LATW,
2002. Proceedings... Amissville: IEEE Computer Society, 2002-a.

LIMA, F.; CARRO, L.; VELAZCO, R.; REIS, R. Injecting Multiple Upsets in a SEU
Tolerant 8051 Micro-Controller. In: IEEE INTERNATIONAL ON-LINE TESTING
WORKSHOP, IOLTW, 8., 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002-
b. p. 194.

LIMA, F.; CARRO, L; REIS, R. Techniques for Reconfigurable Logic Applications:
Designing Fault Tolerant Systems into SRAM-based FPGAs. In: INTERNATIONAL
DESIGN AUTOMATION CONFERENCE, DAC, 2003. Proceedings... New York:
ACM, 2003-a. p. 650-655.

LIMA, F. Designing Single Event Upset Mitigation Techniques for Large SRAM-
Based FPGA Components. 2003-b. 157 f. Thesis (Ph.D) – PPGC, Instituto de
Informática, UFRGS, Porto Alegre.

LUBASZEWSKI, M.; HUERTAS, J. L. Test and Design-For-Test of Mixed-Signal
Integrated Circuits. In: REIS, R. (Ed.). Information Technology: Selected Tutorials.
Boston: Kluwer Academic, 2004. p.183-212.

MA, T.; DRESSENDORFER, P. Ionizing Radiation Effects in MOS Devices and
Circuits. New York: John Wiley & Sons, 1989.

MAHESHWARI, A.; KOREN, I.; BURLESON, N. Techniques for Transient Fault
Sensitivity Analysis and Reduction in VLSI Circuits. In: INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, 18.,
2003. Proceedings... [S.l.]: IEEE, 2003. p. 597-604.

MAIZ, J. et al. Characterization of Multi-bit Soft Error Events in Advanced SRAMs. In:
INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2003. Technical
Digest... [S.l.]: IEEE, 2003. p. 21.4.1-21.4.4.

MASSENGILL, L. W. et al. Analysis of Single-Event Effects in Combinational Logic –
Simulation of the AM2901 Bitslice Processor. IEEE Transactions on Nuclear
Science, Reno, NV, USA, v.47, n.6, p. 2609-2615, Dec. 2000.

MENTOR GRAPHICS CORPORATION. ModelSim Manuals. USA, March 2004.

NEVES, C.; HENES-NETO, E.; RIBEIRO, I.; WIRTH, G.; KASTENSMIDT, F. L.;
GUNTZEL, J. L. A. Automatic Evaluation of Single Event Transient Propagation in
CMOS Logic Circuits Based on Topological Timing Analysis. In: LATIN AMERICAN
TEST WORKSHOP, LATW, 7., March 26-29, 2006, Buenos Aires, Argentina.
Proceedings... [S.l.]: IEEE Computer Society, 2006-a.

115

NEVES, C.; HENES-NETO, E.; RIBEIRO, I.; WIRTH, G.; KASTENSMIDT, F. L.;
GUNTZEL, J. L. A. Avoiding Circuit Simulation for the Analysis of Single Event
Transient Propagation in Combinational Circuits. In: EUROPEAN TEST
SYMPOSIUM, ETS, 2006. Proceedings... [S.l.]: IEEE, 2006-b.

NICOLAIDIS, M. Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer
Technologies. In: VLSI TEST SYMPOSIUM, 17., 1999. Proceedings... [S.l.]: IEEE
Computer Society, 1999. p. 86-94.

NICOLAIDIS, M.; PEREZ, R. Measuring the Width of Transient Pulses Induced by
Ionising Radiation. In: INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM,
41., 2003. Proceedings... [S.l.]: IEEE, 2003. p. 56-59.

NORMAND, E.; BAKER, T. J. Altitude and Latitude Variations in Avionics SEU and
Atmospheric Neutron Flux. IEEE Transactions on Nuclear Science, New York, v.40,
n.6, p. 1484-1490, Dec. 1993.

NORMAND, E. et al. Single Event Upset and Charge Collection Measurements Using
High Energy Protons and Neutrons. IEEE Transactions on Nuclear Science, [S.l.],
v.41, n.6, p. 2203-2209, Dec. 1994.

NORMAND, E. Single-Event Effects in Avionics. IEEE Transactions on Nuclear
Science, [S.l.], v.43, n.2, p. 461-474, Apr. 1996-a.

NORMAND, E. Single Event Upset at Ground Level. IEEE Transactions on Nuclear
Science, New York, v.43, n.6, p. 2742-2750, Dec. 1996-b.

NORMAND, E. Correlation of In-Flight Neutron Dosimeter and SEU Measurements
with Atmospheric Neutron Model. IEEE Transactions on Nuclear Science, New
York, v.48, n.6, p. 1996-2003, Dec. 2001.

O'BRYAN, M. V. et al. Single Event Effect and Radiation Damage Results for
Candidate Spacecraft Electronics. In: RADIATION EFFECTS DATA WORKSHOP,
1998. Proceedings... [S.l.]: IEEE, 1998. p. 39-50.

O'BRYAN, M. V. et al. Recent Single Event Effects Results for Candidate Spacecraft
Electronics for NASA. In: RADIATION EFFECTS DATA WORKSHOP, 2005.
Proceedings... [S.l.]: IEEE, 2005. p. 26-35.

SAGGESE, P. G. et al. An Experimental Study of Soft Errors in Microprocessors.
IEEE Micro, [S.l.], v.25, n.6, p. 30-39, Nov.-Dec. 2005.

SEE SYMPOSIUM, FIFTEENTH BIENNIAL. April 10-12, 2006, Long Beach, USA.
Available at: <http://radhome.gsfc.nasa.gov/radhome/SEE/seesym.htm>. Visited on
April 2006.

SHIVAKUMAR, P. et al. Modeling the Effect of Technology Trends on the Soft Error
Rate of Combinational Logic. In: INTERNATIONAL CONFERENCE ON
DEPENDABLE SYSTEMS AND NETWORKS, DSN, 2002. Proceedings... [S.l.]:
IEEE Computer Society, 2002. p. 389-398.

SMITH, M. J. S. Application-Specific Integrated Circuits. Reading: Addison-Wesley,
1997.

116

SROUR, J. R.; MARSHALL, C. J.; MARSHALL, P. W. Review of Displacement
Damage Effects in Silicon Devices. IEEE Transactions on Nuclear Science, [S.l.],
v.50, n.3, p. 653-670, June 2003.

SYNOPSYS, INC. Tool Manuals. USA, June 2004.

THIBAULT, S. GM HC11 CPU Core. USA, August 2000. Available at:
<http://www.gmvhdl.com/hc11core.html>. Visited on March 2006.

TOSAKA, Y. et al. Measurement and Analysis of Neutron-Induced Soft Errors in Sub-
Half-Micron CMOS Circuits. IEEE Transactions on Electron Devices, [S.l.], v.45,
n.7, p. 1453-1458, July 1998.

VAHID, F.; GORDON-ROSS, A. A Self-Optimizing Embedded Microprocessor using
a Loop Table for Low Power. In: INTERNATIONAL SYMPOSIUM ON LOW
POWER ELECTRONICS AND DESIGN, ISLPED, August 6-7, 2001, Huntington
Beach, California, United States. Proceedings... New York, NY, USA: ACM Press,
2001. p. 219-224.

VELAZCO, R.; KAROUI, S.; CHAPUIS, T. SEU Testing of 32-Bit Microprocessors.
In: RADIATION EFFECTS DATA WORKSHOP, 1992. Workshop Record... [S.l.]:
IEEE, 1992. p. 16-20.

WAGNER, F. R. Metodologias de Projeto. Aula 2 da Disciplina de Arquitetura e
Projeto de Sistemas VLSI I, 2004. PPGC, Instituto de Informática, UFRGS, Porto
Alegre.

ZHANG, M.; SHANBHAG, N. R. An Energy-efficient Circuit Technique for Single
Event Transient Noise-Tolerance. In: INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, ISCAS, 2005. Proceedings... [S.l.]: IEEE, 2005. p. 636-
639.

ZIEGLER, J. F. et al. IBM Experiments in Soft Fails in Computer Electronics (1978-
1994). IBM Journal of Research and Development, [S.l.], v.40, n.1, p. 3-18, Jan.
1996.

ZIEGLER, J. F. et al. Cosmic Ray Soft Error Rates of 16-Mb DRAM Memory Chips.
IEEE Journal of Solid-State Circuits, [S.l.], v.33, n.2, p. 246-252, Feb. 1998.

APPENDIX PROJETO DE UM MICROPROCESSADOR
ROBUSTO A SOFT ERRORS

Resumo da Dissertação em Português

O avanço das tecnologias de circuitos integrados (CIs) levanta importantes questões
relacionadas à confiabilidade e à robustez de sistemas eletrônicos. A diminuição da
geometria dos transistores, a redução dos níveis de tensão, as menores capacitâncias e
portanto menores correntes e cargas para alimentar os circuitos, além das freqüências de
relógio elevadas, têm tornado os CIs mais vulneráveis a falhas, especialmente àquelas
causadas por ruído elétrico ou por efeitos induzidos pela radiação.

Os efeitos induzidos pela radiação conhecidos como Soft Single Event Effects (Soft
SEEs) podem ser classificados em: Single Event Upsets (SEUs) diretos em nós de
elementos de armazenagem que resultam em inversões de bits; e pulsos transientes
Single Event Transients (SETs) em qualquer nó do circuito. Especialmente SETs em
circuitos combinacionais podem se propagar até os elementos de armazenagem e podem
ser capturados. Estas errôneas armazenagens podem também serem chamadas de SEUs
indiretos.

Falhas como SETs e SEUs podem provocar erros em operações funcionais de um
CI. Os conhecidos Soft Errors (SEs) são caracterizados por valores armazenados
erradamente em elementos de memória durante o uso do CI. SEs podem produzir sérias
conseqüências em aplicações de CIs devido à sua natureza não permanente e não
recorrente. Por essas razões, mecanismos de proteção para evitar SEs através de técnicas
de tolerância a falhas, no mínimo em um nível de abstração do projeto, são atualmente
fundamentais para melhorar a confiabilidade de sistemas.

Nos dias atuais, a complexidade dos circuitos através de System-On-Chips (SOCs),
o usual time-to-market e as restrições orçamentárias de projeto têm levado projetistas a
investigar técnicas de tolerância a falhas e fluxos de projeto mais versáteis. A
reusabilidade de IPs de hardware desenvolvidos em alto nível e fluxos de projeto para
CIs baseados em ferramentas de CAD auxiliam engenheiros a enfrentar tais exigências.
Por outro lado, algumas técnicas de tolerância a falhas podem implicar em modificações
indesejadas em características padrões de um sistema, especialmente quando o alvo é a
reusabilidade de sistemas baseados em arquiteturas padrões como microprocessadores
comerciais. Por exemplo, algumas técnicas exigem redes de relógio adicionais para
detecção de falhas e ciclos de relógio extras para correção de falhas. A fim de
economizar tempo de projeto e custo de desenvolvimento, deseja-se geralmente que as
técnicas escolhidas não somente garantam a confiabilidade e reusabilidade de suas
aplicações de hardware e software. Também se deseja que elas sejam facilmente ou no

118

mínimo aplicáveis no nível de projeto alvo e que elas se adaptem a cores comerciais
padrões.

Microprocessadores tais como algumas arquiteturas AMD, IBM e Intel (LIMA et al,
2000-a, 2000-b; COTA et al, 2001; IYER et al, 2005) geralmente são protegidas contra
SEUs diretos, mas não usualmente contra SEUs indiretos. As condições tecnológicas e a
redução dos transistores tendem a exigir proteções também contra tais SEUs indiretos
(SHIVAKUMAR et al, 2002).

O propósito deste trabalho de dissertação é robustecer a SEs um microprocessador
comercial 8-bits da família M68HC11 (FREESCALE, 2002) para a fabricação futura de
um IC. A fim de economizar tempo de projeto, algumas restrições iniciais de projeto
foram estabelecidas. O projeto do circuito tolerante a falhas deveria ser desenvolvido
em alto nível como o nível RT. As técnicas de tolerância a falhas implementadas não
deveriam usar múltiplas redes de relógio. Para qualquer aplicação, as técnicas deveriam
preservar o número total de ciclos de relógio, mesmo que sob uma ocorrência de falha.
Tais restrições iniciais mantêm as características da arquitetura padrão e assim a
reusabilidade de aplicações do microprocessador. Além disto, estas restrições
economizam custo de desenvolvimento.

SETs em circuitos combinacionais do microprocessador, que podem potencialmente
causar SEUs indiretos, são aliviados através do uso de uma técnica de Redundância no
Tempo (TR). O trabalho em (NICOLAIDIS, 1999) sugere mas não implementa uma
abordagem de TR baseada em um elemento especial chamado Code Word State
Preserving (CWSP) como aquele da Figura 1 (a). Um outro trabalho (ANGHEL;
ALEXANDRESCU; NICOLAIDIS, 2000-b) avalia essa abordagem em área e
performance através do uso de simples circuitos de teste, como somadores e
multiplicadores, e portas não-padronizadas, tais como aquelas da Figura 1 (b), para
implementar os elementos CWSP. Em (LAZZARI; ANGHEL; REIS, 2005), a mesma
avaliação é feita para dois microprocessadores, MIPS e 8051, mas um gerador
automático especial de layout implementa as portas não-padronizadas que caracterizam
os elementos CWSP. A fim de aliviar SEUs diretos, em (LAZZARI; ANGHEL; REIS,
2005) uma versão da técnica de Redundância Modular Tripla (TMR) que exige três
sinais de relógio foi também implementada. No presente trabalho de dissertação foi
implementada uma alternativa mais simples e rápida para projetar por meio do uso de
apenas portas padrões, como aquela da Figura 1 (a), e sem uma ferramenta de layout
extra como aquela apresentada em (LAZZARI; ANGHEL; REIS, 2005). As definidas
restrições iniciais de projeto são encontradas através desta alternativa. A meta foi
avaliar os custos em área, performance e também potência e outros resultados de projeto
dessa abordagem de tolerância a falhas no microprocessador alvo. Além disto, os
elementos do esquema TR+CWSP e os registradores do microprocessador foram
protegidos de acordo com a Figura 1 (c) através do uso de uma versão da técnica TMR
que exige apenas um sinal de relógio para aliviar os SEUs diretos.

A fim de obter os custos da robustez implementada na CPU alvo através do uso de
apenas portas padrões, três versões do microprocessador foram desenvolvidas baseadas
em uma descrição VHDL M68HC11 (THIBAULT, 2000): versão Não-Protegida, que
é a arquitetura reorganizada da CPU sem qualquer mecanismo de tolerância a falhas;
versão TMR que é somente protegida por TMR nos registradores e assim ela alivia
apenas SEUs diretos; e versão TMR+TR+CWSP que é a versão robusta a SEUs
diretos e indiretos através do esquema TMR+TR+CWSP. As três versões foram
implementadas usando um fluxo de projeto para CIs baseado em células padrões em

119

tecnologia CMOS (AMS 0.35 µm, 4 níveis de metal, 3.3V)
(AUSTRIAMICROSYSTEM, 2003) e ferramentas de CAD (CADENCE, 2002;
MENTOR, 2004) para simulação, síntese, posicionamento, roteamento, extração,
verificação e análise.

Figura 1: Um esquema de proteção TR+CWSP através de portas padrões (a) e através

de portas não-padronizadas (b). Em (c), o esquema de proteção TMR+TR+CWSP usado

Três abordagens de simulação para verificação do projeto foram desenvolvidas para
cada uma das versões do microprocessador com o objetivo de detectar eventuais erros
de projeto. Um experimento para testagem funcional foi realizado através de simulações
de verificação comportamental e simulações de verificação pré-layout e pós-layout no
nível de portas. Um experimento de injeção de falhas foi feito por meio das simulações
de verificação pós-layout no nível de portas. Além disso, uma análise de timing estática
e um DRC foram realizados através de ferramentas de CAD.

A Tabela 1 mostra os resultados de projeto estimados das três versões do
microprocessador que foram desenvolvidas.

Tabela 1: Resultados dos projetos em área, performance e outros

Versões do Microprocessador

Não-Protegida TMR
Protegida contra

SEUs Diretos

TMR+TR+CWSP
Protegida contra

SEUs Diretos e Indiretos

Área do Core (mm2)

0,397 0,569 + 43,32 % 0,804 + 102,52 %

Pior Tempo de Chegada (ns)

69,45 75,93 + 9,33 % 78,29 + 12,73 %

Comprimento Total das Conexões (mm)

450,49 527,72 + 17,14 % 668,64 + 48,43 %

Área Exigida pelos Elementos da Árvore do Relógio (µm2)

4076,8 7516,6 + 84,38 % 14414,4 + 253,57 %

Consumo de Potência Leakage (µW)

0,2440 0,3645 + 49,39 % 0,5024 + 105,90 %

(a)

B
lo

co
 C

om
bi

na
ci

on
al

P
ró

xi
m

o
B

lo
co

 C
om

bi
na

ci
on

al

Identidade
CWSP

A
tr

as
o

R
eg

.

B
lo

co
 C

om
bi

na
ci

on
al

P
ró

xi
m

o
B

lo
co

 C
om

bi
na

ci
on

al

R
eg

.

Inversor

A
tr

as
o

CWSP

(b)

B
lo

co
 C

om
bi

na
ci

on
al

P
ró

xi
m

o
B

lo
co

 C
om

bi
na

ci
on

al

CWSP

R
eg

.

A
tr

as
o

R
eg

.
R

eg
.

CWSP

CWSP

Votador A
tr

as
o

A
tr

as
o

(c)

120

Observe na Tabela 1 que para a implementação TMR+TR+CWSP a performance foi
afetada em 12,73 % como um resultado da restrição do máximo pulso de SET (cerca de
1 ns), os buffers para o bloco de Atraso (para produzir a comparação pelo princípio da
TR) e as portas para os blocos CWSP e Votador. O esquema de proteção da Figura 1 (c)
implementado em todos os registradores aumentou a área em 102,52 % e a potência
estática em 105,90 %. O comprimento total de todas as conexões geradas pelo
roteamento foi aumentado em 48.43 %. Os custos extras em área devido as inserções de
buffers e inversores para construir a árvore do relógio são também detalhados na Tabela
1. A versão Não-Protegida é constituída de 3211 células padrões combinacionais
(+79,76 % para versão TMR+TR+ CWSP) e de 187 células padrões seqüenciais (+200
% para versão TMR+TR+CWSP). A área das células combinacionais da versão
TMR+TR+CWSP corresponde a 51,90 % da area do core, a área de células seqüenciais
19,05 % e a área de células filler 29,05 % (ou seja, o espaço para o roteamento finalizar
com sucesso). O layout final com pads da versão de CI TMR+TR+CWSP resultou em
uma área total de cerca de 5,707 mm2.

