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ABSTRACT 

The advance of the IC technologies raises important issues related to the reliability 
and robustness of electronic systems. The transistor scale by shrinking its geometry, the 
voltage reduction, the lesser capacitances and therefore smaller currents and charges to 
supply the circuits, besides the higher clock frequencies, have made the IC more 
vulnerable to faults, especially those faults caused by electrical noise or radiation-
induced effects. 

The radiation-induced effects known as Soft Single Event Effects (Soft SEEs) can 
be classified into: direct Single Event Upsets (SEUs) at nodes of storage elements that 
result in bit flips; and Single Event Transient (SET) pulses at any circuit node. 
Especially SETs on combinational circuits might propagate itself up to the storage 
elements and might be captured. These erroneous storages can be also called indirect 
SEUs. Faults like SETs and SEUs can provoke errors in functional operations of an IC. 
The known Soft Errors (SEs) are characterized by values stored wrongly on memory 
elements during the use of the IC. They can make serious consequences in IC 
applications due to their non-permanent and non-recurring nature. By these reasons, 
protection mechanisms to avoid SEs by using fault-tolerance techniques, at least in one 
abstraction level of the design, are currently fundamental to improve the reliability of 
systems. 

In this dissertation work, a fault-tolerant IC version of a mass-produced 8-bit 
microprocessor from the M68HC11 family was designed. It is able to tolerate SETs and 
SEUs. Based on the Triple Modular Redundancy (TMR) and Time Redundancy (TR) 
fault-tolerance techniques, a protection scheme was designed and implemented at high 
level in the target microprocessor by using only standard logic gates. The designed 
scheme preserves the standard-architecture characteristics in such way that the 
reusability of microprocessor applications is guaranteed. A typical IC design flow was 
developed by means of commercial CAD tools. Functional testing and fault injection 
simulations through benchmark executions were performed as a design verification 
testing. Furthermore, fault-tolerant IC design issues and results in area, performance and 
power were compared with a non-protected microprocessor version. The core area 
increased by 102.64 % to protect the target circuit against SETs and SEUs. The 
performance was degraded in 12.73 % and the power consumption grew around 49 % 
for a set of benchmarks. The resulting area of the robust chip was approximately 5.707 
mm2. 

 

Keywords: fault-tolerant microprocessor, Soft Errors, SET, SEU, integrated circuit 
design. 





Projeto de um Microprocessador Robusto a Soft Errors 

RESUMO 

O avanço das tecnologias de circuitos integrados (CIs) levanta importantes questões 
relacionadas à confiabilidade e à robustez de sistemas eletrônicos. A diminuição da 
geometria dos transistores, a redução dos níveis de tensão, as menores capacitâncias e 
portanto menores correntes e cargas para alimentar os circuitos, além das freqüências de 
relógio elevadas, têm tornado os CIs mais vulneráveis a falhas, especialmente àquelas 
causadas por ruído elétrico ou por efeitos induzidos pela radiação. 

Os efeitos induzidos pela radiação conhecidos como Soft Single Event Effects (Soft 
SEEs) podem ser classificados em: Single Event Upsets (SEUs) diretos em nós de 
elementos de armazenagem que resultam em inversões de bits; e pulsos transientes 
Single Event Transients (SETs) em qualquer nó do circuito. Especialmente SETs em 
circuitos combinacionais podem se propagar até os elementos de armazenagem e podem 
ser capturados. Estas errôneas armazenagens podem também serem chamadas de SEUs 
indiretos. Falhas como SETs e SEUs podem provocar erros em operações funcionais de 
um CI. Os conhecidos Soft Errors (SEs) são caracterizados por valores armazenados 
erradamente em elementos de memória durante o uso do CI. SEs podem produzir sérias 
conseqüências em aplicações de CIs devido à sua natureza não permanente e não 
recorrente. Por essas razões, mecanismos de proteção para evitar SEs através de técnicas 
de tolerância a falhas, no mínimo em um nível de abstração do projeto, são atualmente 
fundamentais para melhorar a confiabilidade de sistemas. 

Neste trabalho de dissertação, uma versão tolerante a falhas de um microprocessador 
8-bits de produção em massa da família M68HC11 foi projetada. A arquitetura é capaz 
de tolerar SETs e SEUs. Baseado nas técnicas de Redundância Modular Tripla (TMR) e 
Redundância no Tempo (TR), um esquema de proteção foi projetado e implementado 
em alto nível no microprocessador alvo usando apenas portas lógicas padrões. O 
esquema projetado preserva as características da arquitetura padrão de tal forma que a 
reusabilidade das aplicações do microprocessador é garantida. Um típico fluxo de 
projeto de circuitos integrados foi desenvolvido através de ferramentas de CAD 
comerciais. Testes funcionais e injeções de falhas através da simulação de execuções de 
benchmarks foram realizados como um teste de verificação do projeto. Além disto, 
detalhes do projeto do circuito integrado tolerante a falhas e resultados em área, 
performance e potência foram comparados com uma versão não protegida do 
microprocessador. A área do core aumentou 102,64 % para proteger o circuito alvo 
contra SETs e SEUs. A performance foi degrada em 12,73 % e o consumo de potência 
cresceu cerca de 49 % para um conjunto de benchmarks. A área resultante do chip 
robusto foi aproximadamente 5,707 mm2. 

Palavras-Chave: microprocessador tolerante a falhas, Soft Errors, SET, SEU, 
projeto de circuito integrado. 





1 INTRODUCTION 

The constant technology evolution on the electronic circuitry has already been 
allowing the manufacture of integrated circuits (ICs) using semiconductors built with 
nanometer-scale features that near of the physics limits. Indeed, nowadays some popular 
microchips can be already called nanochips (HUTCHESON, 2004). 

If on one hand, the evolutions allow expressive innovations on the engineering of 
designs optimized in area, performance and power and thus enabling the building of 
more sophisticated and complex electronic systems. On the other hand, the increasing 
importance, which ICs have been placing in many spheres of life activities, obliges 
them to perform their functional tasks within higher levels of safety and correctness. It 
is even more required in perturbed environments, where ICs are potentially more 
susceptible to errors. 

In fact, the advance of the IC technologies has raised important issues related to the 
reliability and robustness of the electronic systems. The transistor scale by shrinking its 
geometry, the voltage reduction, the lesser capacitances and therefore smaller currents 
and charges to supply the circuits, besides the greater clock frequencies, have made the 
ICs more vulnerable to faults, especially those faults caused by electrical noise or 
radiation-induced effects. These scaling and technology issues of the Very Deep 
Submicron (VDSM) ICs reduce significantly their noise margins and thus their 
reliabilities regarding various internal or external sources of upset (LIMA, 2003-b; 
KASTENSMIDT; CARRO; REIS, 2006). 

About radiation, the physics explains as the process of emitting radiant energy in the 
form of waves or particles. The Soft Single Event Effects (Soft SEEs) are caused 
specially by alpha particles (released by radioactive impurities) and, more importantly, 
cosmic rays (neutrons) hitting on the silicon chips and transferring charge to the circuit 
nodes with enough energy able to perturb its storage elements (BORKAR, 2005). These 
effects are classified in accord to the localization of the attacked node on the IC: direct 
upsets at nodes of storage elements causing alteration in their information as bit flips 
can be called direct Single Event Upsets (SEUs) (MASSENGILL et al, 2000); 
transient voltage fluctuations at any circuit node due to radiation-induced particles as 
well electrical noise are characterized as Single Event Transients (SETs) 
(KRISHNAMOHAN, MAHAPATRA, 2004). Especially SETs on combinational 
circuits are modeled like transient pulses that might propagate up to the storage 
elements and might be captured. It basically depends on the delays of the combinational 
network gates, on the widths of the created pulses and if these pulses meet the set-up 
and hold time requirements of the memory elements at a clock transition for storing. 
These erroneous storages can be also called indirect SEUs. 
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Faults like SETs and SEUs may provoke errors in functional operations of an IC. 
The known Soft Errors (SEs) are characterized by values stored wrongly on memory 
elements during the use of the IC and not due to design errors, fabrication defects or 
permanent physical failures. They can make serious consequences in IC applications as 
a result of their non-permanent and non-recurring nature (SHIVAKUMAR et al, 2002; 
KARNIK; HAZUCHA; PATEL, 2004). The increase in Soft Error Rates (SERs) on ICs 
has been a great source of concern for researchers in the last years. Some techniques 
have been developed to decrease the SER on ICs. Alpha particle flux has been gradually 
reduced by the use of purified materials. Fabrication process improvements in the 0.18 
µm technology generation made the low-energy (lesser than 1 MeV) neutron SER 
negligible. Even though such techniques have reduced the SER, the high-energy (1 
MeV to 1000 MeV) neutrons often dominate it in advanced CMOS logic (TOSAKA et 
al, 1998). Experiments, which replicate the sea level conditions for energies from 10 to 
500 MeV, showed that the SER per bit of SRAMs in 0.25 µm, 0.18 µm, 0.13 µm and 90 
nm technologies increases by 8% per generation (HAZUCHA et al, 2003). In addition, 
the situation is worse for ICs operating at flight altitudes or in space due to the even 
higher energies of the particles from there (LIMA, 2003-b). Years ago, studies related to 
the fault tolerance in semiconductor devices had larger developments especially for 
space and physics applications. Unlike today at which the concern is also focused at the 
debilities of circuits on terrestrial applications like servers and many embedded systems 
that usually have a large amount of embedded memory elements. By all these reasons, 
protection mechanisms to avoid SEs by using fault-tolerance techniques, at least in one 
abstraction level of the design, are currently fundamental. It improves the reliability and 
guarantees the correct operation of the systems. Several commercial microprocessors 
from AMD, Freescale, IBM, Intel and Sun are real implementations of robust systems 
by using detection and recovery techniques (IYER et al, 2005). 

The current system complexities, the usual time-to-market and the project budget 
constraints have led designers to investigate fault-tolerance techniques and design flows 
more versatile. Reusable Intellectual Property (IP) cores developed at the higher 
abstraction levels of design, like the Register Transfer (RT) level, support engineers to 
faster cope with even more complex requirements such as System-On-Chips (SOCs). 
The reusability of hardware IPs and also software applications avoids redesigning and 
redeveloping the same features repeatedly and thus saves effort (i.e., development cost) 
and design time (HERRERA et al, 1999). Furthermore, the industry of EDA tools or 
CAD environments in the last years has been making easier and quicker the 
development of IC designs. Starting from higher design levels, EDA tools are able to 
provide very accurate estimated results of the IC design for a preliminary evaluation. On 
the other hand, making robust a system by using any fault-tolerance mechanism 
inherently involves additional overheads. There are many fault-tolerance techniques 
with different characteristics aiming different design levels, each one can be better 
adapted to a distinct design purpose. Therefore, a carefully preliminary analysis of the 
robustness features applied to the target system is mandatory before starting the design 
of the robust system. Moreover, a preliminary evaluation of the design costs before the 
IC manufacture is also fundamental through estimated IC design results such as in area, 
performance and power consumption. 

Some requirements for the fault-tolerance implementation may implicate undesired 
modifications at standard characteristics of a system, especially when the target is the 
reusability of systems based on standard architectures like commercial microprocessors. 
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For instance, some typical fault-tolerance techniques require additional clock networks 
for fault detection and extra clock cycles for fault correction. In addition to the inherent 
cost of the fault-tolerance mechanisms, some consequences, which may be undesired, 
are the necessity for other clock signals and extra clock-tree implementations besides 
unexpected overheads at the execution time of its software applications. To save design 
time and development cost in a robust IC design, the chosen fault-tolerance techniques 
usually are desired not only to guarantee the reliability and reusability of their existing 
hardware and software applications. They are also desired to be easily or at least 
applicable at the target design level (for example, at the RT level) and that they adapt 
themselves to commercial standard cores. 

Commercial microcontrollers like Freescale M68HC11, Intel 8051 and Microchip 
PIC are commonly mass-produced for electronic systems or embedded systems. Such 
systems have a wide range of applications in instrumentation, automation, control, 
telecommunication or even domestic appliances. These microcontrollers and their 
microprocessors are also largely used as cores or parts of SOCs. As these commercial 
circuits are consolidated in the market because they are simple and cheap, there are 
many systems and applications based on them. The utilization of these circuits allows 
the reusability of those already existing systems and applications. Consequently, design 
time and development costs can be saved. Typically, these commercial circuits are not 
prepared to operate under hostile environments. On the other hand, as circuits based on 
the new technology generations are more vulnerable to SEs. Thus, in the new 
manufactures, such commercial circuits trend to require some embedded fault-tolerance 
mechanism to guarantee their functionalities (i.e., to ensure the circuit reliability). 

Another issue is that many commercial microprocessor systems such as some AMD, 
IBM and Intel architectures (LIMA et al, 2000-a, 2000-b; COTA et al, 2001; IYER et 
al, 2005) generally are protected against direct SEUs but not usually against indirect 
SEUs. The most commonly used mechanisms against SEs in modern processor are 
based on parity and Error Detection and Correction (EDAC) codes (IYER et al, 2005). 
Such techniques are essentially focused on protecting memory arrays and they usually 
do not mitigate indirect SEUs. Nevertheless, the scaling and technology issues tend to 
require protections against such faults too (SHIVAKUMAR et al, 2002). By this reason, 
many fault-tolerance techniques dedicated to mitigate indirect SEUs have been currently 
developed like those in (NICOLAIDIS, 1999; ANGHEL; NICOLAIDIS, 2000-a; 
KRISHNAMOHAN, MAHAPATRA, 2004; ZHANG; SHANBHAG, 2005). 

The purpose of this dissertation work is to make robust to Soft SEEs or Soft Errors a 
commercial digital circuit, such as the 8-bit microprocessor from the microcontroller 
family M68HC11 (FREESCALE, 2002), for a future IC manufacture. In order to save 
design time, some initial design constraints were established. The fault-tolerant circuit 
design should be developed at high level like the RT level. The implemented fault-
tolerance techniques should not use multiple clock networks. For any application, the 
techniques should preserve the total number of clock cycles, even so under a fault 
occurrence. Such initial constraints keep the standard-architecture characteristics and 
thus the reusability of microprocessor applications. In addition, they save development 
cost. 

SETs on combinational circuits of the microprocessor, which can potentially cause 
indirect SEUs, are mitigated by using a Time Redundancy (TR) technique. The work in 
(NICOLAIDIS, 1999) suggests but does not implement a TR approach based on a 
special element called Code Word State Preserving (CWSP) like that from Figure 1.1 
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(a). Another work (ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000-b) evaluates 
this approach in area and performance by using simple test circuits, like adders and 
multipliers, and non-standard gates, such as that from Figure 1.1 (b), to implement the 
CWSP elements. In (LAZZARI; ANGHEL; REIS, 2005), the same evaluation is made 
for two microprocessors, MIPS and 8051, but a special automatic layout generator 
implements the non-standard gates that characterize the CWSP elements. In order to 
mitigate direct SEUs, in (LAZZARI; ANGHEL; REIS, 2005) a Triple Modular 
Redundancy (TMR) version that requires three clock signals was also implemented. In 
the present dissertation work was implemented a simpler and faster alternative to design 
by using only standard gates, like that from Figure 1.1 (a), and without an extra layout 
tool like that presented in (LAZZARI; ANGHEL; REIS, 2005). The defined initial 
design constraints are met through this alternative. The goal was to evaluate the costs in 
area, performance and also power and other design results of this fault-tolerance 
approach in the target microprocessor. In addition, the TR+CWSP elements and 
microprocessor registers were protected in accord to Figure 1.1 (c) by using a TMR 
version that require just one clock signal for mitigating direct SEUs. 

 
Figure 1.1: A TR+CWSP mitigation scheme by standard gates (a) and by non-standard 

gates (b). In (c), the TMR+TR+CWSP mitigation scheme that was used 

The present dissertation is organized by chapters in the following way. Chapter 2 
characterizes the target faults on integrated circuits by means of a radiation-induced 
fault model. Chapter 3 presents an overview about usual soft error mitigation techniques 
and details concerning the techniques implemented in the target microprocessor of this 
work. Chapter 4 introduces the target microprocessor to be protected and emphasizes 
the strategies applied in the robust microprocessor design. Furthermore, it shows the 
design steps from the microprocessor RT-level descriptions up to the GDSII stream files 
that are used to specify the physical design characteristics in an IC manufacture process. 
Chapter 5 presents the design verification simulation methods performed with the 
implemented microprocessor models in order to avoid design errors. In chapter 6, 
microprocessor design results by means of the circuit area, performance, power and 
other resulting information are analyzed. Some final remarks, conclusions and future 
works are discussed in chapter 7. 
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2 A RADIATION-INDUCED FAULT MODEL 

Noxious effects on integrated circuits caused by internal or external sources of upset 
have been increasing due to the current scaling and technology trends. The direct 
consequences of these trends are smaller noise margins and thus circuits more 
vulnerable to external effects, like charged particles from different sources of radiation, 
as well to internal or external electrical noise. If a charge disturbance on a circuit node 
is smaller than the noise margin, the circuit will continue to operate properly. 
Otherwise, the disturbed voltage may be interpreted as the opposite logic state and the 
circuit will malfunction (KARNIK; HAZUCHA; PATEL, 2004). 

Many different sorts of particles are found in environments where integrated circuits 
usually work. In space, particles from cosmic rays consist mostly of protons, but also of 
helium, oxygen and other ions (TOSAKA et al, 1998). At atmospheric and ground 
levels, alpha particles released by radioactive impurities in the device materials and 
mainly terrestrial cosmic rays in the form of high-energy neutrons are the major 
contributors for perturbations on circuit nodes (TOSAKA et al, 1998; BAUMANN; 
SMITH, 2000; BAUMANN, 2001; LERAY et al, 2004; BORKAR, 2005). Even so 
neutrons do not have electrical charges, their effects occur through nuclear collisions 
that give rise to charged particles. When such particles interact with the silicon atoms, 
they create a direct ionization in the semiconductor device causing transient currents 
that are able to make faults on the circuits. The amount of ionization and the current 
surge in a given semiconductor device are directly proportional to the energy lost by the 
radiation particles (KARNIK; HAZUCHA; PATEL, 2004; LIMA, 2003-b). 

The type and the flux of hadrons like neutrons, protons and pions exhibit strong 
altitude and latitude dependence (NORMAND, 1996-a; CONSTANTINESCU, 2005). 
At sea level, the neutron flux is several hundred times lower than at aircraft altitudes. 
For instance, the neutron flux at 12 km (~40000 ft) altitude is around 300 times higher 
than at sea level and at 20 km (~60000 ft) it has its maximum peak. For this reason, 
integrated circuits operating at aircraft altitudes are more susceptible to faults induced 
by such particles than at ground level (NORMAND, 1996-b; GRANLUND; 
GRANBOM; OLSSON, 2003). 

2.1 The Basic Radiation-Induced Effects on Integrated Circuits 
The radiation-induced effects by means of their charged particles can cause different 

serious consequences on semiconductor circuits. Energetic particles incident on a solid 
lose their energy to ionizing and non-ionizing processes as they travel through a given 
material. The result of this energy loss is the production of electron-hole pairs 
(ionization) and displaced atoms (displacement damage) (SROUR; MARSHALL; 
MARSHALL, 2003). Especially three classes of these effects (Figure 2.1) are deeply 
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explored by researchers due to their random natures and occurrence rates: Total Ionizing 
Dose (TID), Displacement Damage (DD) and Single Event Effects (SEEs). 

 
Figure 2.1: Main radiation-induced effects on integrated circuits 

Total Ionizing Dose (TID) is due to long-term degradation of electronic circuits as 
a result of the cumulative energy deposited in some materials used by ICs. In space 
environment, significant sources of TID include trapped electrons, trapped protons and 
solar protons. Its effects include parametric failures or variations in device parameters 
like leakage current, threshold voltage, timing changes, etc (LABEL et al, 2000). These 
effects usually take a long time to occur, but they are permanent and can induce 
functional failures to ICs as putting out of use some of their functional blocks. 

Displacement Damage (DD) is non-ionizing radiation effect that often has similar 
long-term degradation characteristics like TID. This effect leads to the degradation of 
material and device properties and is a consequence of the incident particles that 
displace atoms. The resulting defects give rise to new energy levels that alter the 
materials and devices in their electrical and optical properties. The effectiveness of 
radiation-induced DD depends basically on the defect rate and on the time exposure. 
Prime sources of DD include trapped protons, solar protons, neutrons, and in a lesser 
extent, trapped electrons (LABEL et al, 2000; SROUR; MARSHALL; MARSHALL, 
2003). 

Single Event Effects (SEEs) are due to transient physical faults such as single ions 
that impact on the circuit sensitive area. Sometimes, these events can deposit sufficient 
energy in the device that give rise to current pulses able to disturb the correct 
functionality of the system. Significant sources of SEEs include trapped protons, solar 
protons, neutrons and heavy ions from galactic cosmic rays. SEEs faults are composed 
by three distinct categories, depending on the consequences of the involved current 
pulse (LIMA, 2000-c; O’BRYAN et al, 1998): 

• Soft SEE: during the operation of a device, a transient current pulse or a bit flip 
in its circuit can cause errors in its functionalities. Due to their non-permanent 
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and non-recurring nature, these physical failures were called Soft Errors (SEs) 
(KARNIK; HAZUCHA; PATEL, 2004). They disappear when the system is 
reset or a data is rewritten in the memory. By this reason they can also be 
considered as intermittent events. Such errors are entirely device specific and are 
better categorized by their impacts on the device (LABEL et al, 2000). When a 
radiation-induced particle hits a node of a circuit, a Single Event Transient 
(SET) pulse can be created with enough energy to switch the node to a different 
voltage level. Indeed, SETs are characterized as transient voltage fluctuations on 
circuit nodes. They can be caused by radiation-induced particles as well 
electrical noise like noisy power supply, crosstalk noise, electromagnetic 
interference (EMI), radiation from lightning, etc (ZIEGLER et al, 1996; CALIN; 
VARGAS; NICOLAIDIS, 1995; MAHESHWARI; KOREN; BURLESON, 
2003; KRISHNAMOHAN, MAHAPATRA, 2004). In a digital device, a direct 
Single Event Upset (SEU) occur when a storage element is directly affected by 
a SET in such way that it causes an undesired change on the memorized 
information as a bit flip (MASSENGILL et al, 2000). A SET pulse can be 
generated on a combinational logic circuit. Depending on the delay of the 
combinational gates and on the width of the pulse, it also can propagate up to the 
output of the combinational logic block. If the storage element succeeds to 
capture this undesired pulse, an indirect SEU is characterized; 

• Hard SEE: hard errors are permanent functional effects to the device. An event 
of Single Hard Error (SHE) causes an undesired permanent change to a circuit 
node. A common example would be a stuck bit in a memory element (LABEL et 
al, 2000); 

• Destructive SEE: events that can cause permanent physical destruction of the 
circuit. A Single Event Latchup (SEL) is the most common Destructive SEE. It 
is a potential destructive condition involving parasitic transistors on which 
currents might exceed their maximums specified. These parasitic transistors in 
the circuit can be activated by spurious currents, like those from radiation-
induced effects. It would create a short between internal circuit nodes that may 
destroy the device by thermal effect, unless the power supply is removed. A 
Single Event Burnout (SEB) is a highly localized destructive burnout of the 
drain-source in a MOSFET. On the other hand, a Single Event Gate Rupture 
(SEGR) is the destructive burnout of a gate insulator in a MOSFET (LABEL et 
al, 2000). 

2.1.1 Occurrence Rate of Radiation-Induced Effects 

The SEE rates are not described as Mean-Time-To-Failure (MTTF). If an SEE rate 
is one per five years, it may happen at any time during that five year period with nearly 
equal probability. Otherwise, cumulative effects, such as TID or DD, the MTTF 
numbers are useful. The time-to-failure is the amount of operation time until the device 
has encountered enough degradation to cause failure (LABEL et al, 1996). 

The high relevance of such effects can be supported by recent and frequent 
researches. At least since 1998, NASA’s researchers have annually published at IEEE 
conference experimental results about the susceptibility of commercial and emerging 
technology devices to TID, DD and SEEs (O’BRYAN et al, 1998; COCHRAN et al, 
2005; O’BRYAN et al, 2005). 
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This large concern, especially with the Soft Error (SE) occurrences on ICs, has 
resulted in a lot of researches for measuring, estimating and evaluating the Soft Error 
Rate (SER) of semiconductor devices. Many works characterize and evaluate the SE 
effects on ICs like those in (HARBOE-SORENSEN; SUND, 1992; VELAZCO; 
KAROUI; CHAPUIS, 1992; NORMAND et al, 1994; TOSAKA et al, 1998; ZIEGLER 
et al, 1998; BAUMANN, 2001; HOWARD et al, 2001; LIMA et al, 2001-a, 2001-b, 
2002-a, 2002-b; DODD et al, 2002; MAIZ et al, 2003; KARNIK; HAZUCHA; PATEL, 
2004; LERAY et al, 2004; LAMBERT et al, 2004; CONSTANTINESCU, 2005; 
SAGGESE et al, 2005). 

Some real examples about SE evidence on ICs at ground level were discussed in 
(NORMAND, 1996-b). The computer system ACPMAPS at Fermilab is a very large 
system of individual computers, which when joined together, it contains about 160 
Gbits of DRAM memory. This system is protected only by parity mechanisms. In a 
monitorial experiment, it had 2.5 upsets per day or a SER of 0.7·10-12 upset/(bit·hour). 
Another case, 58 off-the-shelf Nite Hawk computers were monitored. Each computer is 
constituted by 1 Gbits of DRAM protected by EDAC codes. On the average, each 
machine showed around one upset per month (assigned as 624 hours), which was 
equivalent to a SER of 1.6·10-12 upset/(bit·hour). 

Additionally, there is a set of other works related to the SE effects on ICs at ground, 
atmospheric and space levels (NORMAND; BAKER, 1993; LABEL et al, 1996; 
NORMAND, 1996-a; BARTH, 1997; LABEL et al, 2000; NORMAND, 2001). Others 
show the SER increase in the new technology generations of ICs due to the scaling and 
technology trends (HAZUCHA el al, 2003; GRANLUND; GRANBOM; OLSSON, 
2003; BORKAR, 2005). 

2.1.2 Modeling of Radiation-Induced Effects 

The radiation-induced effects on an integrated circuit can be modeled at different 
abstraction levels of the circuit design. In accord to (ABRAMOVICI; BREUER; 
FRIEDMAN, 1990; SMITH, 1997; WAGNER, 2004), the usual design levels from the 
lowest to the highest are classified into: 

• Real circuit level, the circuit prototypes or the circuit fabricated by physical 
materials from a fabrication technology;  

• Electrical level, the circuit layout mask at a geometric axis or the circuit models 
based on transistors, resistors, capacitors and inductors at a structural axis. Some 
authors consider the layout mask issues as part of the labeled physical level, 
even so such label is also used for the real circuit level. In addition, others define 
switch level as transistors modeled discretely and transistor level as transistors 
characterized by non-linear models; 

• Logical level, the circuit models at a structural axis based on flip-flops, latches 
and logic gates, besides library cells at a geometric axis. EDA tools usually label 
the model of logic gates as gate level; 

• Micro-architectural level or the well-known Register Transfer (RT) level, the 
circuit models at a structural axis based on registers, multiplexers, operators like 
adders, subtracters, multipliers and dividers, besides macro cells at a geometric 
axis. Some authors label this level as behavioral level or even functional level 
in accord to the delay model that is used; 
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• Algorithmic level, circuit models at a structural axis based on hardware 
modules. Modules, cores, plans of power, ground and clock at a geometric axis; 

• Systemic level, circuit models at a structural axis based on processors, memories 
and other peripherals. Components and boards at a geometric axis. 

As defined in chapter 1, the goal in this work is to make robust against radiation-
induced effects a digital system such as a Central Processor Unit (CPU). A digital 
system denotes a complex digital circuit. The complexity of a circuit is related to the 
abstraction level required to describe its operation in a meaningful way 
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). Typically, highest abstraction levels 
are used to design complex circuits because they provide a better management for 
designers. In this way, digital system designs usually require high-level abstraction 
resources like the VHDL, in which the lowest abstraction level that designers can deal 
with is the logical level. 

At the abstraction logical level of a digital circuit, a further distinction can be made 
between combinational and sequential circuits. Unlike a combinational circuit, whose 
output logic values depend only on its present input values, a sequential circuit can also 
remember past values and hence it processes sequences of logic values 
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). 

In such circuit design abstraction, the radiation-induced effects feasible to be treated 
are those in which their tolerance mechanisms are able to be implemented at least at the 
logical level. The Soft and Hard SEEs are feasible. However, Destructive SEEs, TI and 
DD are typically treated at lower abstraction levels. 

As emphasized in chapter 1, this work focuses on the Soft SEE on ICs. The serious 
effect of such physical fault can be modeled at the logical level as a bit flip. As seen in 
the last sections, it is an undesired change on the memorized information of storage 
elements or in other words a Soft Error (SE). At the logical level of an IC, storage 
elements are sequential circuits or memory cells such as flip-flops or latches. 

This problem of Soft SEEs on ICs can be summarized based on the traditional 
definitions of fault, error and failure for a computer system (LAPRIE, 1998). The 
transient current pulse caused by a source of upset on a combinational or sequential 
circuit is a system fault, the bit flip on the memory cell is a system error and the 
reading of wrong values stored in the register is a system failure. 

From the Soft SEEs, the sequential elements (memory cells) can be affected by 
direct or indirect Single Event Upsets (SEUs). In following sections, such effects and 
their characteristics are modeled and discussed. 

2.1.2.1 Direct SEUs 

A direct SEU is modeled as a logic perturbation or a direct logic inversion on a bit 
memorized by a sequential element. To illustrate such fault at the logical level, firstly 
the ideal timing behavior of a memory cell such as a positive edge-triggered flip-flop is 
shown in Figure 2.2 (a). After, Figure 2.2 (b) shows the timing behavior of the memory 
under a direct SEU. 

Note in Figure 2.2 (a) that the memory input is switched from 0 to 1 at an instant 
before the clock event. This instant need respect the set-up time, thus such switch can 
not occur within a set-up time before the clock event. In the same way, the memory 
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input need be kept on that value (value 1) at least a hold time after the clock event. 
Thus, the memory output switches logically from 0 to 1 and such value 1 is kept in the 
memory. 

On the other hand, in Figure 2.2 (b), a direct SEU makes an inversion from 1 to 0 at 
the memory output (i.e., a SE) without any input or clock event. Note that the SE might 
be transient if new events occur. The memory output will be kept on 0 until new input 
switch (respecting the set-up and hold time requirements) or even until new SEU. 

 
Figure 2.2: The timing behavior of a memory cell without SE (a) and with SE (b) 

2.1.2.2 Indirect SEUs 

An indirect SEU is due to a Single Event Transient (SET) modeled as a rectangular 
transient pulse that occurs on a combinational circuit and propagates itself up to a 
sequential element.  

To illustrate such fault at the logical level, initially the ideal behavior of a sequential 
element (flip-flop) and a combinational circuit by means of its logic gates are presented 
in Figure 2.3 (a). After in Figure 2.3 (b), the fault is characterized. 

Observe in Figure 2.3 (a) that the combinational circuit processes properly the 
values 0 at its three inputs. In addition, the sequential element memorizes appropriately 
the value 0 from the resulting combinational circuit output.  

On the other hand, in Figure 2.3 (b), a SET occurs on a gate of the combinational 
circuit. The SET succeeds in propagating up to the output of the combinational circuit 
that is temporarily switched to 1. It hypothetically occurs at an instant and lasts enough 
time to meet the requirements of the set-up and hold times. Thus the undesired value 1 
is memorized as an indirect SEU and a SE is characterized. 
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Figure 2.3: A combinational circuit without SETs (a) and with a SET (b) 

2.1.2.3 SET Issues 

A SET on a combinational circuit does not always give rise to an indirect SEU, it 
may not cause any unfavorable consequence to the IC. Such masking effect can be due 
to one of the following factors (SHIVAKUMAR et al, 2002): 

• Logical Masking: a SET does not propagate up to output of the combinational 
circuit because makes some combinational logical operation that masks it; 

• Electrical Masking: a SET is sufficiently attenuated due to the electrical 
properties of gates in the propagation path. In fact, if the duration of a SET pulse 
is larger than the propagation time (logic transition time) of a gate, it typically 
should not be attenuated. However, when a SET width is lesser than the 
propagation time of a gate, it starts to be slight attenuated and usually when it is 
lesser than half of the propagation time, it is sufficiently attenuated 
(NICOLAIDIS, 1999); 

• Latching-Window Masking: a SET reaches the input of a sequential element, 
however does not meet the time window such as the set-up and hold times, 
which is required for the circuit latching a value at the clock event. 

Such three masking phenomena provide the combinational circuits a form of natural 
resistance to SEs (SHIVAKUMAR et al, 2002). Past research has shown that 
combinational logic is much less susceptible to allow SEs than memory elements 
(LIDÉN et al, 1994; GAISLER, 1997). The memories always were considered most 
vulnerable to SEs due to their spatial density and the amount of information that they 
store (MAHESHWARI; KOREN; BURLESON, 2003). However, in the current decade 
as a result of the current nanometer technologies and the consequent high complexity of 
the integrated circuits, the SER arisen in combinational circuits shall become as relevant 
as the SER in sequential elements. In the work (SHIVAKUMAR et al, 2002) were 
analyzed the trends in the SER for SRAM cells, latches and combinational circuits. It 
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predicts that by 2011 the SER arisen in combinational circuits will be comparable to 
that of unprotected memory elements. 

The timing nature of a SET pulse generated on a circuit, especially on the 
combinational parts, depends on the energy of the perturbation event, on the employed 
physical technology and on the design topology of the circuit. The work (ANGHEL; 
NICOLAIDIS, 2000-a) generically presumes the duration of a typical SET pulse at few 
hundreds of picoseconds. Currently, such order of SET width is common for 
micrometer (channel length above 0.1 µm) nearly nanometer (below 0.1 µm) 
technologies. It can be easily found in many related experiments and works discussed in 
dedicated conferences such as the (SEE SYMPOSIUM, 2006). 

Since pulses wider than the logic transition time of a gate usually can propagate 
itself without attenuation. For circuits based on micrometer technologies in which 
typical delays of basic standard logic gates can be around 10 ps, a SET of width around 
100 ps can diffuse itself through gates, reach sequential elements and make SEs. On the 
other hand, in nanometer technologies, the propagation time of gates can be even 
smaller than the SET duration. In this way, even SET pulses due to perturbations of 
lower energy, therefore smaller SET widths, might not be attenuated. Furthermore, as 
the clock frequencies have increased significantly, the probability of latching a SET 
have also increased. In fact, as more frequent are the latching edges of the clock, higher 
is the probability to have a SET coinciding with a latching edge (ANGHEL; 
NICOLAIDIS, 2000-a). 

Another critical characteristic of a SET pulse is when it occurs on an internal node 
of a combinational circuit with a certain width. After propagating through some 
combinational circuit paths, it can result wider at the output of the combinational circuit 
(input of a sequential element). Such occurrences make difficult the prevision of the 
maximum width for a fault-tolerance implementation. This phenomenon is essentially 
due to reconvergent fan-outs with different delays (ANGHEL; ALEXANDRESCU; 
NICOLAIDIS, 2000-b). The original pulse can propagate itself through several paths 
which reconverge and concatenate several pulses into a single one. This pulse can be 
larger than the original one due to the different delays of the propagation paths 
(ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000-b). In the work (NICOLAIDIS; 
PEREZ, 2003) is proposed a circuit that can measure experimentally the SET widths. 

A unique SET pulse arisen in a combinational circuit can sometimes also generate 
multiple pulses at the output of this circuit as a result of the delay differences among its 
paths. Nevertheless, by considering a balanced circuit, such multiple events are rare. It 
is because those delay differences must not exceed the width of the original pulse arisen 
in the combinational circuit. Modern logic synthesis tools and architectural solutions 
trend to generate balanced circuits. This kind of circuit has the delays of its paths close 
to the delay of its largest path (NICOLAIDIS, 1999; ANGHEL; ALEXANDRESCU; 
NICOLAIDIS, 2000-b). 

In addition, depending on the topology of the circuit, a unique SET can also cause a 
unique or several indirect SEUs. Several SETs can also occur at the same time on any 
bit of a combinational or sequential circuit, at any moment during the use of the IC. 

By reason of all these behaviors of the SET pulses, their evaluations become very 
complex in circuits composed by many paths. Some works dedicate special attention to 
analyze the probability of a SET becoming an indirect SEU (HASS et al, 1998; HASS, 
1999; MASSENGILL et al, 2000; ALEXANDRESCU; ANGHEL; NICOLAIDIS, 



 

 

29 

 

2002). Other approaches like a SET propagation method based on topological timing 
analysis (NEVES et al, 2006-a, 2006-b) could be used to evaluate such probability too. 

2.1.2.4 Multiple SEUs 

When multiple indirect or direct SEUs happen at the same time on bits of memories, 
it is traditionally called of Multiple Bit Upsets (MBUs). According to the number of 
upsets that occur at the same time in the circuit, bit upsets can be classified in first, 
second and third order effects. A single bit upset (SEU) is classified as a first order 
effect, while multiple bit upsets (MBUs) are classified as second or third order effects  
(LIMA, 2003-b). MBUs can occur when: 

• A single particle hits two adjacent nodes, located in two distinct memory cells. 
This event is classified as a second-order effect and can be avoided by specific 
placement design; 

• A single particle strikes two adjacent nodes located in the same memory cell. 
This event is classified as a third-order effect and can be avoided by physical 
layout constraints for separating critical nodes; 

• Multiple particles strike the circuit causing upsets in multiple nodes. These 
events can be considered as a group of direct SEUs; 

• A unique SET from a combinational circuit result in multiple indirect SEUs; 

• Several SETs from a combinational circuit result in multiple indirect SEUs. 
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3 SOFT ERROR MITIGATION TECHNIQUES 

The evolution of scaling down technology has raised relevant issues related to the 
reliability and robustness of circuits. Reliability is normally defined as the immunity of 
a circuit to faults like, for instance, those that cause Soft Errors (SEs). Design 
robustness is defined as the ability of a circuit to operate correctly under varying 
process, temperature, voltage, and noise conditions (KRISHNAMOHAN, 
MAHAPATRA, 2004). 

In order to improve the reliability and guarantee the correct operation of systems, 
robustness mechanisms to mitigate SEs through fault-tolerance techniques, at least in 
one abstraction level of the IC design, are currently much used at the industry. Several 
commercial microprocessors from AMD, Intel, IBM, Freescale and Sun are real 
implementations of robust systems. As examples, there are processors from the families: 
Intel P6, AMD Hammer, Intel Itanium, IBM G5 and IBM Power 4. These 
microprocessors use typically Error Detection and Correction (EDAC) codes and parity 
focused on protecting memory arrays (IYER et al, 2005). 

Many other fault-tolerance techniques were already proposed for protecting ICs. The 
inherent cost of the robustness can vary depending on the chosen technique. The extra 
cost can be evident as in area and power as in performance. The manufacture cost of the 
IC might also be higher when a specific robust technology is used. Each technique due 
to its different characteristics might attend to many design objectives, therefore a 
detailed selection of that fault-tolerance technique to be implemented on the target 
system should always be done before starting the design of a robust IC. 

There are fault-tolerance techniques for all design levels. They can be classified into 
low-level and high-level techniques. 

The low-level techniques involve specially those techniques applicable or 
developed at the physical, electrical, switch or transistor levels. Such techniques usually 
are based on a specific technological process like Silicon-On-Insulator (SOI) or the 
package shielding; transistor sizing; robust memory cells; or a combination of them. 

Otherwise, high-level techniques are those able to be used at the logical or gate; RT 
or micro-architectural; algorithmic; or systemic levels. They are typically based on 
hardware or software redundancy like Triple Modular Redundancy (TMR); Time 
Redundancy (TR) in hardware or software; self-checking circuits; parity; EDAC codes 
like Hamming Code or Reed-Solomon Code; or even a combination of them. 

Robust memory cells are suggested in (CALIN; NICOLAIDIS; VELAZCO, 1996; 
ZHANG; SHANBHAG, 2005) and many other works. A version of TR is proposed in 
(KRISHNAMOHAN, MAHAPATRA, 2004) modifying only the CMOS flip-flop in 
such way that it samples and latches its data input at different instants within a clock 
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cycle. A fault-tolerance technique dedicated to FPGAs is presented in (LIMA; CARRO; 
REIS, 2003-a). Many concurrent checking schemes (self-checking circuits), as 
presented in (ANGHEL; NICOLAIDIS, 2000-a), combined with a retry procedure had 
already been discussed. The tolerance to SE can be achieved by a retry operation after 
the detection of an error. Several other design solutions for tolerating SE were proposed 
in (NICOLAIDIS, 1999), in which the idea is taking advantage of the temporal nature of 
transient faults and mitigating them by using TR. 

Techniques based on TR avoid the large hardware overheads of hardware 
redundancy, since the same operation is computed multiple times on the same hardware 
(IYER et al, 2005). Nevertheless, they usually incur high performance overhead and 
also require additional blocks for collecting and comparing the multiple execution 
results. 

Techniques based on any type of redundancy can fail in case of multiple faults affect 
the redundant parts at the same instant. However, these multiple faults usually have 
lower probability of occurrence. Triple or higher redundancy usually obtains a correct a 
correct answer through a majority-voting scheme (IYER et al, 2005). For double 
redundancy, the computation must restart to recover from an error. 

Fault-tolerance techniques implemented in software often determine relatively high 
performance overheads and high error-detection latency (IYER et al, 2005). Otherwise, 
techniques implemented in hardware result in lower latency. Furthermore, software-
implemented techniques generally are not able to observe a large part of hardware-level 
errors. It occurs due to masking effects as detailed in section 2.1.2.3 or even because 
some specific microprocessor registers usually cannot be accessed by software 
applications. 

Many fault-tolerance techniques are designed to protect the system against faults 
arisen in sequential elements, i.e., to mitigate direct SEUs. However, currently as a 
result of the scaling and technology issues, the techniques are also developed to protect 
the system against faults arisen in combinational circuits, i.e., to mitigate indirect SEUs. 
They are particularly based on hardware and time redundancy due to the nature of the 
target faults. 

Especially, two fault-tolerance techniques are functionally detailed in the next 
sections due to their closed characteristics to the purposes of this work. They are 
applicable at the RT level and they do not use multiple clock networks. In addition, for 
any application, they preserve the total number of clock cycles, even so under a fault 
occurrence. The TMR scheme is able to mitigate only the direct SEUs and the 
TR+CWSP scheme is able to mitigate SET and therefore possible indirect SEUs. 

3.1 Triple Modular Redundancy (TMR) 
The TMR scheme is the most traditional fault-tolerance technique due to its good 

efficiency on error detection and its simple principle. Such scheme can be considered as 
a high-level technique because it can be implemented on high-level modules. However, 
it can be modeled at lower levels. 

As shown in Figure 3.1, the TMR technique consists on the triplication of the target 
component to protect, in this case a 1-bit register. The three resulting outputs from 
triplication are connected to a voter block that compares the three received data and 
elects that of majority. If one of the three components fails or suffers a direct SEU, in 
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the case of a register, the error will not be reflected in the voter output (HENTSCHKE 
et al, 2002). 

 
Figure 3.1: Block diagram of the TMR scheme for a 1-bit register 

Observe that, in case of the register triplication, the voter block requires at least two 
registers without errors to elect a correct output.  Therefore for the TMR mechanism 
working appropriately, direct SEUs, for example, cannot occur at the same time on two 
or three registers of the triplicated target register. 

Another weakness of this technique is when a SET pulse occurs on the 
combinational block. The SET pulse might propagate itself up to the three registers of 
the TMR scheme and cause three indirect SEUs at the same time. Thus the voter block 
will not provide a correct output. By this reason, another technique which mitigates 
such faults is mandatory, as that presented in section 3.2. 

3.1.1 Area and Performance Analysis 

TMR technique implies in more than an increase of 200 % in area due to the 
component triplication. In case of the register triplication, the area related to registers is 
increased by 200 %. Furthermore, there is the voter that is implemented just with some 
OR and AND gates for each bit of the triplicated component. 

In accord to Figure 3.1 and by considering only delays of the components (i.e., 
routing and parasitic issues are negligible), the Delay of the Critical Path of a Non-
Protected Circuit (DC_P_Non-Prot_Circ) is basically affected by the Delay of the Voter 
(DVoter) when a TMR-based robustness is applied. It results in a Delay of the Critical 
Path of the Robust Circuit (DC_P_Rob_Circ): 

VoterCirc_otPrNon_P_CCirc_Rob_P_C DDD +> −  (3.1) 

3.2 Time Redundancy (TR) + Code Word State Preserving (CWSP) 
Such approach was proposed by (NICOLAIDIS, 1999) and evaluated in (ANGHEL; 

ALEXANDRESCU; NICOLAIDIS, 2000-b; LAZZARI; ANGHEL; REIS, 2005). It 
exploits the pure TR principle, in which the output of the combinational circuit is 
duplicated at the time domain generally by using the delay of buffers or inverters. The 
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two different instants of time are evaluated at two inputs of a peculiar element called 
Code Word State Preserving (CWSP). A block diagram of this scheme for a 1-bit 
register is shown in Figure 3.2. 

 
Figure 3.2: Block diagram of the TR+CWSP scheme for a 1-bit register 

The CWSP element is an asynchronous sequential circuit able to mitigate SET pulse. 
It compares the values at its two inputs. When they are identical, the value at its output 
will be updated with the value of its inputs. On the other hand, when its inputs are not 
identical, the value at its output will be preserved. 

Supposing a SET, which potentially causes an indirect SEU, occurs on a 
combinational block of a system. This SET arises at the output of the combinational 
block like that presented in Figure 3.4. The pulse shape meets the requirements of the 
set-up and hold times, i.e., the latching-window of the memory element as the vertical 
dotted lines in Figure 3.4. For a system without the TR+CWSP protection, such pulse 
gives rise to an indirect SEU at the output of the register. 

 
Figure 3.3: Timing behavior of a system without the TR+CWSP protection 

In contrast, for a robust system with the TR+CWSP protection, this indirect SEU at 
the output of the register does not occur. As Figure 3.2 and Figure 3.4 illustrate, the 
CWSP element compares, by means of its two inputs, the output of the combinational 
block with the delayed output of the same block. The output of the CWSP element 
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during the latching-window is preserved because the logic values at its two inputs are 
not equal. Thus the output of the register is not affected. 

 
Figure 3.4: Timing behavior of a system with the TR+CWSP protection 

3.2.1 Area Analysis 

Making robust a system by this TR+CWSP approach, the additional cost in area will 
be due to the buffers or inverters for implementing the delay blocks besides the CWSP 
elements. 

The circuit of the CWSP element illustrated in Figure 3.2 uses standard 
combinational logic gates. This kind of CWSP element is an identity element. In other 
words, it does not make logic operation with its two data inputs such as NOT, NOR or 
NAND gates, but just transfers the data inputs to its output mitigating eventual SETs. In 
fact, the work proposed by (NICOLAIDIS, 1999) also suggests CWSP logic elements 
like NOT, NOR and NAND gates, as shown in Figure 3.5. The designs of these circuits 
are improved at the transistor level by reducing its overall number of transistors. Figure 
3.6 illustrates these improved non-standard logic gates that keep on the same 
functionality of those from Figure 3.5. 

Implementing a TR+CWSP scheme like that of Figure 3.7 characterizes this fault-
tolerance mechanism as a low-level technique, since a peculiar non-standard gate is 
created at the transistor level to implement the CWSP element. Otherwise, a TR+CWSP 
scheme like that of Figure 3.2 can be considered as a high-level technique because only 
standard gates from any conventional library are used. In this case, the CWSP element 
is implemented at the gate level and it can be seen as a block at the RT level. 
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Figure 3.5: CWSP logic elements (NICOLAIDIS, 1999) 

 
Figure 3.6: CWSP logic gates (NICOLAIDIS, 1999) 

 
Figure 3.7: Block diagram of the TR+CWSP scheme using a non-standard gate 
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3.2.2 Performance Analysis 

From the TR+CWSP scheme illustrated in Figure 3.2 or Figure 3.7, two 
characteristics can be observed: 

• By reason of the TR principle, the delayed input of the CWSP block will be with 
the same value of its non-delayed input (i.e., the output of the Combinational 
Block) only after a given period DDelay_Block (propagation time of the Delay 
Block). 

• Based on the logic function of the CWSP block, explained in section 3.2, only if 
the values at its two inputs are identical, the value at its output will be updated 
with the value of its inputs. It would take a time interval DCWSP (propagation 
time of the CWSP block) to be completed. Otherwise, the value at its output will 
be preserved. 

Therefore, as Figure 3.8 illustrates, the value at the output of the CWSP block (i.e., 
the register input) will only modify whether the value at its non-delayed input is equal 
to the value at its delayed input by at least a period DCWSP. It usually occurs after the 
non-delayed input to reach its steady state within a clock cycle plus at least a time 
interval DDelay_Block. 

 
Figure 3.8: Functional characteristics of the TR+CWSP scheme 

Such characteristics guarantee that any SET-pulse occurrence on the Combinational 
Block, in which the pulse reaches its output (i.e., the non-delayed input of the CWSP 
block) with a width lesser than DDelay_Block − DCWSP, will be mitigated by the TR+CWSP 
scheme. Therefore, SET pulses will not arrive at the output of the CWSP block. Thus, 
the Width of the Maximum SET pulse (WMax_SET) at the output of the Combinational 
Block that is able to be mitigated is defined by: 
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CWSPBlock_DelaySET_Max DDW −<  (3.2) 

In accord to Figure 3.2 or Figure 3.7 and by not taking into account routing and 
parasitic issues, the Delay of the Critical Path of a Non-Protected Circuit (DC_P_Non-

Prot_Circ) is basically degraded by the delays of the components DDelay_Block, DCWSP and 
by an extra slack time WMax_SET + DCWSP required by the TR+CWSP scheme. It results 
in a Delay of the Critical Path of the Robust Circuit (DC_P_Rob_Circ): 

CWSPSET_MaxCWSPBlock_DelayCirc_otPrNon_P_CCirc_Rob_P_C DWDDDD ++++> −  (3.3) 

Reorganizing the DC_P_Rob_Circ by using WMax_SET: 

CWSPBlock_DelayCirc_otPrNon_P_CCirc_Rob_P_C DD2DD +⋅+> −  (3.4) 

The extra slack DDelay_Block required by such protection scheme can be explained by 
considering some issues. The non-delayed output of the Combinational Block reaches 
its steady state within a clock cycle after a stabilization period defined by DC_P_Non-

Prot_Circ – Tset-up, where Tset-up is the set-up time of the memory element or register. 
On the other hand, the delayed output of the Combinational Block reaches its steady 
state after DC_P_Non-Prot_Circ – Tset-up + DDelay_Block. In hypothesis of a SET arising at the 
non-delayed output after DC_P_Non-Prot_Circ – Tset-up + DDelay_Block + a time period slightly 
lesser than DCWSP, in such way that both outputs of the Combinational Block do not 
achieve the same value by at least DCWSP. Even so, there will be enough time, i.e., 
DDelay_Block or around WMax_SET + DCWSP, to allow a correct updating of the CWSP output 
before the latching-window. 

The TR+CWSP scheme allows also mitigating the called timing fault as a result of 
such extra slack established. Timing faults are due to fabrication process variations that 
can escape from the detection of production tests. They cause an enlargement of the 
delays of circuit paths (ANGHEL; NICOLAIDIS, 2000-a). By using the TR+CWSP 
scheme, timing faults will be mitigated whether they provoke enlargements of the 
delays of circuit paths at a maximum time variation up to DDelay_Block. On the other hand, 
if there is a timing fault, the mechanisms to mitigate SETs may not work any more, 
since there will not be enough time slack to mitigate them. 



4 DESIGN OF A ROBUST MICROPROCESSOR 

As emphasized in chapter 3, commercial microprocessors typically use protection 
mechanisms such as parity and EDAC codes in order to mitigate SEs (IYER et al, 
2005). These techniques are essentially focused on protecting memory arrays. As a 
result of this, some commercial systems can have their individual registers vulnerable to 
SEs. Former works (LIMA et al, 2000-a, 2000-b; COTA et al, 2001) dedicated special 
attention to implement an EDAC technique, the Hamming Code, on memory arrays and 
also on individual microprocessor registers of a microcontroller version from the Intel 
8051 family. EDAC codes are relatively efficient for groups of memory elements or 
memory arrays like caches and perhaps register files. It is because the cost of the coding 
circuit can be amortized over the array. However, applying such codes to individual 
microprocessor registers could require a significant amount of overheads 
(HENTSCHKE et al, 2002; IYER et al, 2005) and thus other fault-tolerance 
mechanisms are necessary. 

Another issue is that due to the current technology trends, protection mechanisms 
against indirect SEUs should be soon considered in IC designs (SHIVAKUMAR et al, 
2002). The usual techniques like parity and EDAC codes are generally dedicated to 
mitigate direct SEUs, thus most commercial architectures result susceptible to indirect 
SEUs and other fault-tolerance techniques become mandatory. 

Recently, two commercial microprocessors, MIPS and 8051, were protected in the 
work (LAZZARI; ANGHEL; REIS, 2005) with the aim of avoiding direct and indirect 
SEUs. The architectures were developed by using a commercial IC design flow through 
EDA tools. An extra special layout tool was used to implement non-standard gates 
similar to those CWSP gates from Figure 3.6 in section 3.2.1 for indirect SEU 
mitigation. In order to mitigate direct SEUs a TMR version that requires three clock 
signals was implemented. Such TMR version becomes the IC design flow more 
complex due to the extra networks of clock trees. The main goal of the work 
(LAZZARI; ANGHEL; REIS, 2005) is to evaluate the special tool of automatic layout 
generation. By this reason, few results in area and performance of the microprocessor 
implementations are presented. Furthermore, the fault-tolerant systems were not 
functionally verified. 

The purpose of this present design is to follow activities and steps of an IC design 
that speed up the time-to-market and save development cost. In this way, some initial 
design constraints and final goals were established: 

• Making robust to Soft SEEs or SEs, i.e., direct SEUs and also indirect SEUs, a 
commercial 8-bit microprocessor from the M68HC11 microcontroller family 
(FREESCALE, 2002); 
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• Using a IC design flow through conventional steps of commercial EDA tools; 

• Starting from a high-level design language such as VHDL, creating functional 
blocks at the RT level, implementing through standard cells of any library and 
achieving a GDSII stream file for a future IC manufacture; 

• Guaranteeing the functionality of such microprocessor by applying fault-
tolerance techniques that ensure the reliability and reusability of their many 
system applications (hardware or software); 

• The fault-tolerant mechanisms should be developed at high level as blocks at the 
RT level by using only standard gates, i.e., not adding in the design flow non-
standard gates developed by full-custom layout tools; 

• The implemented fault-tolerance techniques should require just one clock signal; 

• For any application, the techniques should preserve the total number of clock 
cycles, even so under a fault occurrence; 

• Previous cost evaluation of the robustness in the target microprocessor before the 
IC manufacture by means of estimated results in area, performance and also 
power. 

An overview of the target microprocessor to be protected is shown in section 4.1. 
Design details of the developed fault-tolerant architecture are discussed in section 4.2. 
The design steps performed through a typical IC design flow are presented in section 
4.3. The front-end design of microprocessor versions is detailed in section 4.4 and the 
back-end design is shown in 4.5. Finally, in section 4.6 some characteristics of the 
designed fault-tolerant architecture are emphasized. 

4.1 The Target Microprocessor 
Popular commercial microcontrollers are commonly mass-produced for electronic 

systems or embedded systems. Such systems have a wide range of applications in 
instrumentation, automation, control, telecommunication or even domestic appliances. 
Mass-produced ICs cost very little per unit due to the amortization of engineering costs 
over large number of volumes, high yields from many production runs and other 
economy-of-scale factors (VAHID; GORDON-ROSS, 2001). The most known mass-
produced microcontrollers at the industry are from Freescale M68HC11, Intel 8051 and 
Microchip PIC families. These microcontrollers and their microprocessors are also 
largely used as cores or parts of SOCs. 

In a microcontrolled system, as illustrated in Figure 4.1, there is a microprocessor or 
a Central Processor Unit (CPU), generally, an on-chip volatile memory just for data 
(stack, context or variables) and a non-volatile program memory accessed directly by 
the microprocessor, i.e., without another memory level. This kind of system typically 
has simple architectures and generally exclude features like multipliers, floating-point 
units, caches, deep pipelines and branch predictors (VAHID; GORDON-ROSS, 2001). 

In the present work, the target is to make robust a Motorola or today Freescale 
M68HC11 microprocessor. It is a CISC architecture with 8 data bits and 16 address bits. 
All software instructions are executed in their programmed sequence, i.e., instructions 
are analyzed and data are processed in a sequential nature. The M68HC11 CPU can 
execute all M6800 and M6801 instructions (source and object-code compatible) and 



 

 

41 

 

more than 90 new instruction opcodes. Since more than 256 instruction opcodes exist, a 
multiple-page opcode map is used in which some new instructions are specified by a 
page-select prebyte before the opcode byte (FREESCALE, 2002). Actually, this 
microprocessor can execute up to 308 different instructions. 

 
Figure 4.1: Illustration of a typical microcontrolled system 

The architecture of the M68HC11 CPU considers all peripherals, on-chip devices, 
input/output (I/O) and memory locations to be treated identically as locations or 
addresses in the 64-Kbyte memory map (16-bit address bus). Thus, there are no special 
instructions for I/O that are separate from those used for memory. In addition, there is 
no execution-time penalty for accessing an operand from an external memory location 
comparing to a location within the microcontroller (FREESCALE, 2002). Such kind of 
CPU sometimes is called von Neumann architecture. The CPU can be either reading an 
instruction or reading/writing data from/to addresses of the memory map. Both 
operations cannot occur at the same time, since the instructions and data use the same 
signal pathways and memory map. It is different from Harvard architectures, in which 
the CPU can read both an instruction and data from the memory at the same time. In 
Harvard architectures, data and program memories are located separately by using 
different signal pathways and memory maps. 

The main innovations of the M68HC11 CPU compared to the earlier M6801 and 
M6800 CPUs (FREESCALE, 2002) are: 

• The inclusion of a second index register (Y); 

• New instructions of bit manipulations that allow accessing bits in some memory 
localizations in the 64-Kbytes address space; 

• Two new instructions that do a division 16 by 16 bits; 

• Transfer instructions from the indexation register to the 16 bit double 
accumulator; 

• Updated instructions for easier complete arithmetic operations. 

The M68HC11 CPU support four data types: bit data; 8 bits and 16 bits signed and 
unsigned integers; 16 bits unsigned fractions and 16 bits addresses (FREESCALE, 
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2003). Six addressing modes can be used to access the memory: immediate, direct, 
extended, indexed, inherent and relative. 

Seven CPU registers are visible for the programmer or software designer 
(FREESCALE, 2003). Figure 4.2 shows such registers and in the following paragraphs 
they are briefly described: 

• Accumulators A and B: are general-purpose 8-bit accumulators used to hold 
operands and results of arithmetic calculations or data manipulations. Some 
instructions treat the combination of these two 8-bit accumulators as a 16-bit 
double accumulator (accumulator D); 

• Index Registers X and Y: are 16-bit index registers used for indexed addressing 
mode. In the indexed addressing mode, the contents of a 16-bit index register are 
added to an 8-bit offset, which is included as part of the instruction, to form the 
effective address of the operand to be used in the instruction; 

• Stack Pointer SP: is the pointer of a program stack supported automatically by 
the CPU. This stack may be located anywhere in the 64-Kbyte address space and 
may have any size up to the amount of data memory available in the system. At 
any given time, the stack pointer register holds the 16-bit address of the next free 
location on the stack; 

• Program Counter PC: is a 16-bit register that holds the address of the next 
instruction to be executed; 

• Condition Code Register CCR: contains five status indicators, two interrupt 
masking bits and a STOP disable bit. The five status flags reflect the results of 
arithmetic and other operations of the CPU as it performs instructions. The five 
flags are half carry (H), negative (N), zero (Z), overflow (V) and carry/borrow 
(C). The interrupt request (IRQ) mask (I bit) is a global mask that disables all 
maskable interrupt sources. The XIRQ mask (X bit) is used to disable interrupts 
from a certain pin. The STOP disable (S) bit is used to allow or disallow the 
STOP instruction. 

 
Figure 4.2: CPU registers visible to the programmer (FREESCALE, 2003) 
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Figure 4.3 shows a simplified diagram with the main functional blocks in a version 
of the M68HC11 architecture. Such CPU is basically organized into 6 blocks: 

• Branch Coder: codes the next address for branch; 

• Control Unit: generates the next values to State, Address and PC registers based 
on the current instruction code and state; 

• Interruption Decoder: decodes an interruption; 

• Operation Coder: codes an operation to Registers and ALU based on the 
current instruction code and state; 

• ALU (the Arithmetic Logic Unit): executes the arithmetic and logic operations; 

• Registers: include all 18 internal registers or sets of flip-flops dispersed on the 
CPU area. They totalize 187 1-bit flip-flops. The registers are: 8-bit A, 16-bit 
Address, 16-bit ALU, 8-bit B, 8-bit CCR, 4-bit Counter4, 1-bit D_Prefix, 8-bit 
Datain, 16-bit Load_Addr, 8-bit Opcode, 16-bit PC, 8-bit Prev_Data, 16-bit 
Reg_Addr, 16-bit SP, 5-bit State, 16-bit X, 1-bit Y_Prefix, 16-bit Y. 

 
Figure 4.3: Main functional blocks of the M68HC11 architecture 

4.2 Fault-Tolerant Circuit Design 
In the architecture of a M68HC11 microprocessor core, the unique existing 
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event, are the 18 individual registers dispersed on the core area. The remaining area 
corresponds to the combinational blocks. 

The fault-tolerant version design of the M68HC11 microprocessor is based on 
applying fault-tolerance techniques on its vulnerable elements to Soft SEEs. Since the 
objective is the IC manufacture not a FPGA implementation, the overall microprocessor 
circuit would be potentially susceptible to direct SEUs on its sequential elements and to 
indirect SEUs through SETs on its combinational blocks, as discussed in 2.1.2. The 
implemented fault-tolerance techniques must be able to mitigate such faults. 

There are fault-tolerance techniques based on detection circuits like those presented 
in (ANGHEL; NICOLAIDIS, 2000-a) that require retry procedures for correction. 
Applying on susceptible IC elements such techniques can be disadvantageous at the 
cycle-timing aspect of microprocessor software applications. Typically, in a clock cycle, 
a functional operation of the circuit is performed. The same clock cycle is generally also 
used to monitor an eventual fault and to process the detection hardware task. In the next 
clock cycle, based on the result of the detection, it is performed a decision hardware 
task. If a fault is detected, extra clock cycles are generated in order to execute the error 
correction task, or in other words to retry the functional procedure of the previous clock 
cycle. A fault-tolerance technique that maintains, even under an eventual fault, the 
number of cycles of a software execution is quite desirable. It is to avoid unexpected 
overheads in performance and to guarantee the reusability of the system design. 
Furthermore, the fault-tolerance technique implementation in the circuit would be 
simplified and less arduous due to the absence of retry procedures and unexpected extra 
cycles that need not be predicted. 

Another issue is that some fault-tolerance techniques like those proposed in 
(NICOLAIDIS, 1999; ANGHEL; NICOLAIDIS, 2000-a; KRISHNAMOHAN; 
MAHAPATRA, 2004) require more than one clock to evaluate the data signal at 
different time instants. In this way, these TR versions also require building trees for 
multiple clocks in order to avoid eventual clock skew. Thus, an extra cost in area and 
power to allocate the additional clock networks is inherent. Moreover, the design 
complexity increases and the compatibility with standard systems can be affected as a 
result of the exigency of support and supply circuits for multiple clocks. 

In order to avoid direct SEU, a traditional fault-tolerance technique due to its 
efficient error detection is the TMR approach presented in section 3.1. It might be costly 
in area and power. However, it can sometimes provide better results in area than EDAC 
techniques like Hamming Code. In the work (HENTSCHKE et al, 2002) both 
techniques were compared by using arithmetic circuits with pipeline and register files. 
Results indicate that TMR is more appropriated to protect single registers like those in 
pipelines, control and data-path circuits. On the other hand, as already emphasized at the 
beginning of this chapter, Hamming Code is more suitable to protect groups of storage 
cells like RAMs. Another valorous detail of the TMR technique is that it protects 
against errors on all bits of a register. Furthermore, the circuit critical path is only 
affected by the delay of the voter, no unexpected extra clock cycles can occur and just 
one clock is necessary. The TMR implementation at the RT level makes simple, since 
descriptions of systems at this level usually have their sequential elements in modular 
components. 

Applying TMR is enough just to mitigate direct SEUs on sequential elements, 
nevertheless covering indirect SEUs due to SETs on combinational blocks is necessary 
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another fault-tolerance technique. A TR version presented in section 3.2 can be an 
adequate alternative to mitigate indirect SEUs. It uses the special CWSP element 
proposed by (NICOLAIDIS, 1999) to tolerant SET pulses. Such approach has as main 
virtue to work with only one clock. Additionally, it does not require retry procedures 
that could result in unexpected extra clock cycles. This technique can also be developed 
at the RT level by using standard combinational logic gates to build the CWSP element 
as a component. Figure 3.2 illustrates this approach. 

4.3 Integrated Circuit Design Flow 
Typical integrated circuit design flows developed at semiconductor companies are 

discussed in (SMITH, 1997; DAVIS et al, 2000; BRÜNING, 2006). Such design flows 
show the sequence of usual steps to design a complex IC such as a microprocessor. 
They are based on circuit models at high-level of abstraction and standard cells of a 
technology to cope with the current high complexity of the circuits. Otherwise, low-
level models and full-custom designs are more accurate but they are more onerous and a 
large number of engineers or a lot of time would be required to design an IC. 

Two major design parts can be considered in the design flows presented in (SMITH, 
1997; DAVIS et al, 2000; BRÜNING, 2006): front-end design which is the logical 
design; and back-end design which is the physical design. Normally, different engineers 
handle the front-end and back-end design, even so there is some overlap between these 
two design parts. The front-end and back-end parts can be well defined by Figure 4.4 
published in (SMITH, 1997). The steps of this typical design flow are briefly presented 
below: 

 
Figure 4.4: A typical IC design flow (SMITH, 1997) 
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• Design entry: the initial entry into the design flow, either using a hardware 
description language (HDL) or schematic entry; 

• Logic synthesis: by using an HDL (VHDL or Verilog) and a logic synthesis 
tool to produce a description of the logic cells and their connections known as 
netlist; 

• System partitioning: divide a large system into IC-sized pieces. This step is 
especially important for even more complex systems composed of many 
functional units or blocks. If a functional block is too large to fit in one piece, a 
partition of the function into pieces may have to be done. Common or standard 
parts are allocated into different IC-sized pieces; 

• Pre-layout simulation: check to see if the design functions correctly; 

• Floorplannig: arrange the blocks of the netlist on the chip; 

• Placement: decide the locations of cells in a block or unit of the IC; 

• Routing: make the connections among cells, blocks or units; 

• Extraction: determine the resistance and capacitance of the interconnect; 

• Post-layout simulation: check to see if the design still works with the added 
loads of interconnects. 

Typically, the steps 1 to 4 in Figure 4.4 are tasks of the front-end design and steps 5 
to 9 of the back-end design. However, there might be some overlaps. The system 
partitioning, for instance, is usually performed by considering both logical and physical 
factors.  

4.3.1 The Developed Design Flow 

Based on the design flows (SMITH, 1997; DAVIS et al, 2000; BRÜNING, 2006) 
and fundamentally on that suggested by the EDA tools (CADENCE, 2002), in the 
present work, a design flow illustrated briefly in Figure 4.5 was developed. Nowadays, 
these commercial EDA tools for simulation, synthesis, partitioning, floorplanning, 
placement, routing, extraction, verification and analysis are amply used by 
semiconductor industries essentially because they support engineers to faster design 
even more complex systems. In addition to EDA tools from (CADENCE, 2002), a logic 
simulator from (MENTOR, 2004) was also used in this work. 

By means of several different steps, this IC design flow starts from a VHDL 
description of the target circuit at RT level and achieves an equivalent representation at 
the physical level. This physical representation used by foundries in an IC manufacture 
process is a stream file known as Graphical Design System II (GDSII). It contains the 
geometry information of the IC physical design. An equivalent file format known as the 
Caltech Intermediate Form (CIF) is also usual. 

In the present work, the design flow in Figure 4.5 starts from a VHDL description of 
the target architecture (step 1) presented in section 4.1. As the front-end logical design 
discussed in section 4.4, this description was worked at the RT level in order to make 
robust the architecture. 

At step 2 of this design flow, an initial verification by a behavioral simulation, 
detailed in chapter 5, was performed based only on the VHDL code worked at the RT 
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level without a logic synthesis. Thus, this code characterizes the behavior of a system 
with circuits logically non-simplified and with no physical information. It requires a 
single logic simulator tool able to check VHDL code syntax, compile VHDL code and 
simulate data streams on the system. As the circuit information evaluated by this tool is 
simple, it requires very little execution time. Furthermore, this step 2 occurs ahead of 
running EDA tools that demand a larger processing and design time. It allows speeding 
up the correction of eventual design errors detectable at the RT level. 

 
Figure 4.5: The developed design flow 

At step 3, it was done a logic synthesis of the circuits described in the worked 
VHDL code. Depending on the complexity of the target circuit, some design steps can 
be simplified. The step relating to the system partitioning from Figure 4.4 was not worth 
performing because the target system of this work is composed of few functional blocks 
that are not too large. By this reason and due to step 2 from Figure 4.5, unlike the design 
flow from Figure 4.4, another verification simulation was not performed thereupon the 
logic synthesis. On the other hand, a new verification simulation was worth performing 
after step 4 from Figure 4.5, since the available EDA tool platform allows easily 
arranging the logic synthesizer tool together with this step 4. 

Then, at step 4 from Figure 4.5, the back-end physical design discussed in section 
4.5 starts by using standard cells from the AMS 0.35 µm CMOS technology 
(AUSTRIAMICROSYSTEM, 2003). This target technology uses 4 layers of metal and 
allows a power supply (vdd) of 3.3 V. At this step 4, various design steps could be 
assigned due to the practical software resources provided by the EDA tools. The step 4 
arranges the technological mapping, floorplanning, timing analysis, placement, clock-
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tree generation and global routing. At step 5, a first set of preliminary estimated results 
in area, performance and power could be analyzed before the final routing. It can be 
useful to evaluate quickly but superficially the IC design viability for a manufacture. 

The arrangement done at step 4 makes easy to run another verification experiment 
(step 6) as a pre-layout simulation, since it is before the detailed or final routing step 
(step 7). This verification allows the correction of eventual design errors occurred up to 
this step. Details about step 6 are presented in chapter 5. 

Afterwards, at step 8, a circuit extraction by taking parasitic elements was 
performed. At step 9, the GDSII file was created from the generated final standard cell 
layout. At step 10, a Design-Rule Check (DRC) was performed. It is the major check 
that is typically used before a fabrication. Finally, at steps 11 and 12, a more accurate 
verification and analysis of the post-layout design could be done due to the extracted 
parasitic information. 

During the development of an IC design, it is quite common the front-end and back-
end designers do not succeed at the phases of verifications or checks. It usually occurs 
due to design errors such as logical errors, timing or geometry violations. By this 
reason, every design step can loop to every other step in order to fix design details or to 
adjust new sets of constraints. 

4.4 Front-End Logical Design 
In the IC design of this work, fault-tolerance mechanisms were implemented in the 

target microprocessor at the RT level. In accord to section 4.2, the TR+CWSP technique 
was used to protect the combinational blocks of the microprocessor. The TMR makes 
robust the microprocessor registers and elements of the TR+CWSP scheme. 

In order to obtain the costs of the robustness in the target architecture, three 
microprocessor versions were developed: 

• The Non-Protected version which is the reorganized architecture of the CPU 
without any fault-tolerance mechanism; 

• The TMR version that is just protected by applying TMR on the registers and 
thus it mitigates only direct SEUs; 

• The TMR+TR+CWSP version that is the robust version to direct and indirect 
SEUs by using TMR and the TR+CWSP scheme. 

4.4.1 Non-Protected Version or Susceptible to Direct and Indirect SEUs 

In this design, a VHDL description (THIBAULT, 2000) of the M68HC11 CPU was 
initially used. It differs from the standard CPU (FREESCALE, 2002) only by not 
implementing two instructions of division 16 by 16 bits (fractional and integer). 

Such M68HC11 VHDL description (THIBAULT, 2000) was developed by using 
high-level resources of the VHDL. It presents a quite behavioral characteristic, i.e., 
there is a unique VHDL architecture with many concurrent processes. As Figure 4.6 
illustrates, in which E_i is the clock signal of the system, combinational and sequential 
logics are not described in individual processes. Furthermore, the typical separation of a 
digital system between operative and control parts is not clearly organized. 
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process (E_i, tsc_i, state, address_i) 
begin 
 if (E_i'event and E_i = '1') then 
  if (tsc_i = '0') then 
   if (state = LOAD1) then 
    load_addr <= address_i; 
   end if; 
  end if; 
 end if; 
end process; 

Figure 4.6: A process from the original VHDL description 

Before starting the implementation of the fault-tolerance techniques, the target 
system description need be adapted in a practical way. It must allow that designers 
know identifying combinational and sequential elements easier and thus applying 
uniformly the fault-tolerance techniques. Such practice in principle should be a usual 
rule in any description of digital system. However, digital systems can be developed by 
designers with different backgrounds. Occasionally, hardware descriptions are worked 
by using excessive high-level resources of the languages in which synthesis tools do not 
succeed in implementing. Furthermore, basic rules of structure and indentation of the 
description frequently are not considered. 

In the present design, the microprocessor description (THIBAULT, 2000) was 
adequately reorganized in such way that each one of its sequential elements (18 
registers) was individually separated from its combinational blocks in accord to Figure 
4.7. The description was also structured by transforming the main functional blocks 
such as those from Figure 4.3 into VHDL components. 

 
Figure 4.7: Combinational and Register blocks in the Non-Protected version 

Some tips, which were developed in this present design with the intention of making 
easy the fault-tolerance implementation in the CPU, are presented below: 

4.4.1.1 Analysis of Sequential Logics and Attached Combinational Logics 

The identification of sequential logics and the separation of eventual attached 
combinational logics in VHDL processes as that from Figure 4.6 can be summarized 
into the following steps: 
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• Identifying all probable sequential logics in the original VHDL description by 
searching for sensitive processes to the clock signal(s) of the system. An 
example is shown in Figure 4.6, in which E_i is the clock signal of the system; 

• Removing all combinational logic from identified original processes. It results 
for each one of the processes a VHDL process purely sequential (Figure 4.8); 

process (E_i, address_i) 
begin 
 if (E_i'event and E_i = '1') then 
  load_addr <= address_i; 
 end if; 
end process; 

Figure 4.8: A VHDL process purely sequential 

• Creating a VHDL signal for interconnection between the combinational logic 
and sequential process. It should be done in each one of those identified 
processes. In Figure 4.9, the new signal called “address_i_signal” replaces the 
former “address_i”; 

process (E_i, address_i_signal) 
begin 
 if (E_i'event and E_i = '1') then 
  load_addr <= address_i_signal; 
 end if; 
end process; 

Figure 4.9: VHDL process purely sequential with the new interconnection signal  

• Generating another VHDL process as illustrated in Figure 4.10 that characterizes 
only the combinational logic from the original process (Figure 4.6). Notice that 
as seen in Figure 4.10, the “else” construction is included in all “if” structures. It 
is because by means of the VHDL synthesis tools, any construction such as “if” 
or “case” can also implement sequential logics such as latches. Whenever not all 
options of the tested signals are evaluated, latches will be created. Since the 
intention is originally creating a pure combinational logic like a multiplexer, the 
“else” construction is included in order to avoid latches; 

process (state, address_i, tsc_i, load_addr) 
begin 
 if (tsc_i = '0') then 
  if (state = LOAD1) then 
   load_addr_signal <= address_i; 
  else 
   load_addr_signal <= load_addr; 
  end if; 
 else 
  load_addr_signal <= load_addr; 
 end if; 
end process; 

Figure 4.10: A VHDL process purely combinational 

• Analyzing reports of results provided by the synthesis tool with the purpose of 
verifying if all sequential logics were actually identified and if none extra latch 
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was implemented due to the creation of the new VHDL processes for the 
combinational logics. 

4.4.1.2 Modeling All Registers in a Unique Reusable Component 

After the design steps from section 4.4.1.1, all sequential elements of the target 
microprocessor, which are 18 registers, can be arranged in a practical way. All 18 
registers can be modeled by a unique reusable parameterized VHDL component (Figure 
4.11), in which the unique required parameter is a VHDL generic that assign the number 
of bits of the target register to be instantiated. Reset and enable ports could be also 
implemented in this VHDL component, it was not included in the next figures just to 
simplify the illustrations. 

Note that this approach requires a unique VHDL architecture and therefore a unique 
VHDL file to describe all 18 registers of the system. Such unique architecture was 
instantiated in 18 different points of the VHDL description (in the top VHDL 
architecture or inside functional blocks) where were described the 18 registers. It makes 
easy the implementation of the fault-tolerance mechanisms. For all registers, it is 
required to instantiate just once the VHDL components that model the fault-tolerance 
techniques (the TMR and TR+CWSP techniques, in this present design). 

Furthermore, this practice of structuring the VHDL description also allows 
improving the visibility, manipulability and reusability of the VHDL code. All this 
reduces the susceptibility to designer’s errors, since the individual protection of the 
registers would involve the creation of many VHDL processes in different files. 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity RegisterComponent is 
 generic 
 ( 
  number_of_bits   : integer 
 ); 
 port 
 ( 
  clock       : in std_logic; 
  data_in      : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_out      : out std_logic_vector((number_of_bits - 1) downto 0) 
 ); 
end RegisterComponent; 
architecture RTL of RegisterComponent is 
begin 
Register: 
 process (clock, data_in) 
 begin 
  if (clock'event and clock = '0') then 
   data_out <= data_in; 
  end if; 
 end process; 
end RTL; 
Figure 4.11: The unique reusable parameterized VHDL component for all registers 
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4.4.2 TMR Version or Robust to Direct SEUs 

Based on reorganized Non-Protected version of the microprocessor previously 
presented in 4.4.1, the TMR version was structured as Figure 4.12. A VHDL component 
that characterizes the voter circuit illustrated in Figure 3.1 was created as Figure 4.13 
and Figure 4.14. 

 
Figure 4.12: Combinational and Register blocks in the TMR version 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity VoterComponent is 
 generic 
 ( 
  number_of_bits   : integer 
 ); 
 port 
 ( 
  data_in_0     : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_in_1     : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_in_2     : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_out      : out std_logic_vector((number_of_bits - 1) downto 0) 
 ); 
end VoterComponent; 
architecture RTL of VoterComponent is 
begin 
Voter: 
 process (data_in_0, data_in_1, data_in_2) 
 begin 
  data_out <= ((data_in_0 or data_in_1) and (data_in_1 or data_in_2) and 
(data_in_0 or data_in_2)); 
 end process; 
end RTL; 

Figure 4.13: Voter component 
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library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
package fault_tolerance_mechanisms is 
 
 component VoterComponet 
  generic 
  ( 
   number_of_bits : integer 
  ); 
  port 
  ( 
   data_in_0   : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_in_1   : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_in_2   : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_out    : out std_logic_vector ((number_of_bits - 1) downto 0) 
  ); 
 end component; 
 
end package fault_tolerance_mechanisms; 
 

Figure 4.14: Package of the fault-tolerance mechanisms (1) 

The TMR version of the unique reusable component detailed in Figure 4.11 is 
presented in Figure 4.15 and Figure 4.16. The registers of the microprocessor were 
triplicated by including the “generate” construction of the VHDL in the unique reusable 
register component. The voter component was instantiated in the register component by 
connecting its three inputs to the three outputs of the triplicated register. 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
library work; 
use work. fault_tolerance_mechanisms.all; 
 
entity RegisterComponent is 
 generic 
 ( 
  number_of_bits   : integer 
 ); 
 port 
 ( 
  clock       : in std_logic; 
  data_in      : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_out      : out std_logic_vector((number_of_bits - 1) downto 0) 
 ); 
end RegisterComponent; 
 

Figure 4.15: TMR parameterized component for each one of the registers (part 1) 
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architecture RTL of RegisterComponent is 
 type type_data_in is array (0 to 2) of std_logic_vector((number_of_bits - 1) 
downto 0); 
 signal signal_data_in  : type_data_in:=(others => (others=>'0')); 
begin 
Redundant_Registers: 
 for i in 0 to 2 generate 
 Register: 
  process (clock, data_in) 
  begin 
   if (clock'event and clock = '0') then 
    signal_data_in(i) <= data_in; 
   end if; 
  end process; 
 end generate; 
Voter_Block: 
 VoterComponent 
 generic map 
 ( 
  number_of_bits 
 ) 
 port map 
 ( 
  data_in_0     => signal_data_in (0), 
  data_in_1     => signal_data_in (1), 
  data_in_2     => signal_data_in (2), 
  data_out      => data_out 
 ); 
end RTL; 
 

Figure 4.16: TMR parameterized component for each one of the registers (part 2) 

4.4.3 TMR+TR+CWSP Version or Robust to Direct and Indirect SEUs 

The TMR+TR+CWSP version of the microprocessor was built following the scheme 
illustrated in Figure 4.17. The output of a combinational block, which originally is 
connected to the input of a unique register, is shared with three delay and CWSP blocks 
that have their outputs towards the inputs of the triplicated register. A voter block 
compares the three register outputs and results that of majority to the input of the next 
combinational block. Note that not only the registers are protected by the TMR but also 
the elements of the TR+CWSP scheme. Otherwise, these elements of the TR+CWSP 
scheme would be unprotected against SETs, as section 4.6.3 better explains. 

Such TMR+TR+CWSP version was based on the Non-Protected and TMR versions 
detailed respectively in sections 4.4.1 and 4.4.2. Additionally, a CWSP VHDL 
component in accord to Figure 3.2 was created as Figure 4.18, Figure 4.20 and Figure 
4.21 show. A dummy delay block was also modeled as a VHDL component. This 
component characterized in Figure 4.19, Figure 4.20 and Figure 4.21 was used by the 
synthesis tools to implement the target propagation time for the delay blocks. In other 
words, it is to define the place in the circuit for setting the timing constraints required by 
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the synthesis tools to implement the delays. Details about these constraints are discussed 
in section 4.5 and 4.6.1. 

 
Figure 4.17: Combinational and Register blocks in the TMR+TR+CWSP version 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity CWSPcomponent is 
 generic 
 ( 
  number_of_bits   : integer 
 ); 
 port 
 ( 
  data_in      : in std_logic_vector((number_of_bits - 1) downto 0); 
  delayed_data_in   : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_out      : out std_logic_vector((number_of_bits - 1) downto 0) 
 ); 
end CWSPcomponent; 
 
architecture RTL of CWSPcomponent is 
 signal signal_data_out  : std_logic_vector((number_of_bits - 1) downto 0); 
begin 
Register: 
 process (data_in, delayed_data_in, signal_data_out) 
 begin 
  signal_data_out <= ((delayed_data_in and signal_data_out) or (data_in and 
delayed_data_in) or (signal_data_out and data_in)); 
 end process; 
 data_out <= signal_data_out; 
end RTL; 
 

Figure 4.18: CWSP block component 
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library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity DelayComponent is 
 generic 
 ( 
  number_of_bits   : integer 
 ); 
 port 
 ( 
  data_in      : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_out      : out std_logic_vector((number_of_bits - 1) downto 0) 
 ); 
end DelayComponent; 
 
architecture RTL of DelayComponent is 
begin 
DelayBlock: 
 process (data_in) 
 begin 
  data_out <= data_in; 
 end process; 
end RTL; 
 

Figure 4.19: Delay block component 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
package fault_tolerance_mechanisms is 
 
 component VoterComponet 
  generic 
  ( 
   number_of_bits : integer 
  ); 
  port 
  ( 
   data_in_0   : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_in_1   : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_in_2   : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_out    : out std_logic_vector ((number_of_bits - 1) downto 0) 
  ); 
 end component; 
  
 

Figure 4.20: Package of the fault-tolerance mechanisms (2) (part 1) 
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 component DelayComponet 
  generic 
  ( 
   number_of_bits : integer 
  ); 
  port 
  ( 
   data_in    : in std_logic_vector ((number_of_bits - 1) downto 0); 
   data_out    : out std_logic_vector ((number_of_bits - 1) downto 0) 
  ); 
 end component; 
 component CWSPcomponent 
  generic 
  ( 
   number_of_bits : integer 
  ); 
  port 
  (  
   data_in    : in std_logic_vector((number_of_bits - 1) downto 0); 
   delayed_ data _in : in std_logic_vector((number_of_bits - 1) downto 0); 
   data_out    : out std_logic_vector((number_of_bits - 1) downto 0) 
  ); 
 end component; 
end package fault_tolerance_mechanisms; 

Figure 4.21: Package of the fault-tolerance mechanisms (2) (part 2) 

The TMR+TR+CWSP version of the unique reusable component detailed in Figure 
4.11 is presented in Figure 4.22 and Figure 4.23. The CWSP and delay block 
components were instantiated in the register component from Figure 4.15 and Figure 
4.16. 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
library work; 
use work.fault_tolerance_mechanisms.all; 
 
entity RegisterComponent is 
 generic 
 ( 
  number_of_bits   : integer 
 ); 
 port 
 ( 
  clock       : in std_logic; 
  data_in      : in std_logic_vector((number_of_bits - 1) downto 0); 
  data_out      : out std_logic_vector((number_of_bits - 1) downto 0) 
 ); 
end RegisterComponent; 

Figure 4.22: TMR+TR+CWSP component for each one of the registers (part 1) 
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architecture RTL of RegisterComponent is 
 type type_data_in is array (0 to 2) of std_logic_vector((number_of_bits - 1) 
downto 0); 
 signal delayed_signal  : type_data_in; 
 signal tr_signal    : type_data_in; 
 signal signal_data_in  : type_data_in:=(others => (others=>'0')); 
begin 
Redundant_Registers: 
 for i in 0 to 2 generate 
 Delay_Block: 
  DelayComponent 
  generic map ( number_of_bits) 
  port map (data_in, delayed_signal(i)); 
 CWSP_Block: 
  CWSPcomponent 
  generic map ( number_of_bits) 
  port map (data_in, delayed_signal(i), tr_signal(i) ); 
 Register: 
  process (clock, data_in) 
  begin 
   if (clock'event and clock = '0') then 
    signal_data_in(i) <= tr_signal(i); 
   end if; 
  end process; 
 end generate; 
Voter_Block: 
 VoterComponent  
 generic map (number_of_bits) 
 port map (signal_data_in(0), signal_data_in(1), signal_data_in(2), data_out); 
end RTL; 

Figure 4.23: TMR+TR+CWSP component for each one of the registers (part 2) 

The kind of CWSP element implemented at all inputs of the CPU registers was the 
called Identity block suggested by (NICOLAIDIS, 1999) and shown in Figure 3.2. 
However, logic blocks of CWSP like those illustrated in Figure 3.5 could be used to 
replace the last logic gate of the target combinational block (the nearest gate from the 
output of the combinational block). It could decrease penalties in area, performance and 
power. Nevertheless, the implementation and adaptation in the RT-level description of 
the design would be onerous. The original combinational blocks from the Non-Protected 
version would be modified. Furthermore, there could be a different logic block of 
CWSP for each one of the original combinational blocks. 

4.5 Back-End Physical Design 
The physical design steps are well-defined problems with some complexity that 

typically require CAD resources in order to solve them. By this reason, the physical 
design flow depends so much on the available EDA tools. Table 4.1, Table 4.2 and 
Table 4.3 summarize all steps, including also logical design steps, of the design flow 
presented in Figure 4.5 by means of the tools used in each one. The tables show the 
CAD resources like platforms and commands utilized in the designs of this work. 
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Additionally, software scripts based on these tables were created with the aim of 
organizing and easily executing command sets of the design steps. 

In the front-end logical design of this work, VHDL codes at the RT level were 
developed (step 1 from Table 4.1), verified by simulation (steps 2 and 3) and 
afterwards logically synthesized (step 6). It was supported by a logic simulator from 
(MENTOR, 2004) and a logic synthesizer that provide, as output results, logic 
descriptions of the target circuits with no physical information. 

Table 4.1: The developed design flow (part 1) 

Tool Design Step 
Kind Command 

Platform 
(Command) 

1 VHDL Description of 
the Target Circuit Any Editor - - 

2 
Compilation of the 

Target VHDL 
Description 

Compiler vlib 
vcom 

3 Behavioral Simulation Simulator vsim 
run 

Mentor 
ModelSim 

(vsim) 

4 Technological 
Information Setup Reader read_tlf 

read_lef  

5 
Importation of the Target 

VHDL Description  
and I/O Pad Cells 

Reader read_vhdl 

6 Logic Synthesis Synthesizer do_build_generic 

7 Constraint Setting Reader 

set_operating_condition 
set_wire_load_mode 
set_port_capacitance 

set_drive_cell 
set_clock ideal_clock  

set_clock_root 
set_path_delay_constraint 
set_floorplan_parameters 
set_clock_tree_constraints 

8 Technological Mapping Synthesizer 
9 Floorplanning Floorplanner 

10 Placement Placer 
do_optimize 

11 Clock-Tree Generation Placer do_build_clock_tree 
12 Global Routing Router do_route 
13 Area Analysis Analyzer report_area 
14 Timing Analysis Analyzer report_timing 
15 Power Analysis Analyzer report_power 

16 Preliminary  
Circuit Extraction Analyzer write_sdf 

17 Netlist Generation Synthesizer write_verilog 
write_vhdl 

Cadence 
PKS 

(pks_shell) 

The back-end physical design starts by including just physical information in these 
resulting logic descriptions. Such physical information comes from a technology library. 
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In this work, it was the AMS 0.35 µm CMOS technology that uses 4 layers of metal 
(AUSTRIAMICROSYSTEM, 2003). 

By following the steps of the design flow detailed in Table 4.1, at steps 4 and 5, the 
technological information, the I/O pad cells and VHDL descriptions of the target 
circuits are loaded in a software platform. Such platform labeled as PKS (CADENCE, 
2002) was utilized for the initial development of the physical design. Note, however, 
that step 6 is a logical design step. It was arranged together with the physical design 
steps in order to make easy the development of the design. This approach was feasible 
because the PKS software platform has also integrated a logic synthesizer. 

At step 7, initial design constraints are defined. The same initial constraints were 
used in the three microprocessor design versions mentioned in section 4.4. The 
operating conditions of the circuits were set in accord to the typical options of the 
technology library. These options consider a temperature of 25 °C and a power supply 
(vdd) of 3.3 V. All input ports of the circuit versions were connected to output buffers 
for modeling the drive capability of external drivers. These output buffers are BU24P 
cells from the target technology. It is a pad-limited output buffer cell with the strongest 
drive strength of the library (around 24 mA). Furthermore, capacitances based on the 
input loads from input buffers were specified at all output ports of the circuit versions. 
These input buffers are ICP cells that have input capacitance of 4.737090 pF. It is a pad-
limited CMOS input buffer cell which can provide the typical input capacitance of a 
pad. An initial timing constraint at the clock period used for the timing analysis was 333 
ns. This preliminary value comes from the typical clock period of a commercial system 
that: uses the target architecture of this work; and respects the lower speeds required by 
the compatible data and program memories habitually used in such applications 
(FREESCALE, 2002). The falling edge of the clock was set preceding the rising edge, 
since the architectures were designed by using the negative edge of the clock. As 
mentioned in section 4.4.3, delay constraints were also set in order to implement the 
buffers for the delay blocks. More details about the values used in these delay blocks are 
discussed in section 4.6.1. Other constraints were set at this step, such as the floorplan 
and clock-tree constraints that are detailed in the following paragraphs. 

At step 8, the generic logic cells of the logic descriptions are mapped to standard 
cells of the target technology. At step 9, the floorplanning step is performed in order to 
estimate sizes and set the initial relative locations of the blocks in the IC (SMITH, 
1997). It also allocates the space for the clock and power wiring and decides on the 
location of the I/O, power and ground pads. Concerning the initial floorplan parameters 
set at step 7 and illustrated in Figure 4.24, the initial aspect ratio of 1 was set as a 
constraint. In other words, the chip area should initially have a square shape (y = x, in 
Figure 4.24). The left, right, top and bottom distances (x0, x1, y0 and y1 in Figure 4.24) 
from the I/Os to the core were defined all equally as 746.200 µm. This dark gray area 
detailed in Figure 4.24 between the I/Os and the core is the optimized space for placing 
and routing symmetrically the power and ground rings and 52 pad cells required by the 
three microprocessor versions. Values lower than 746.200 µm were tried but the tools 
could not attain their aims successfully. The initial utilization of the core rows (look at 
Figure 4.24 the core rows, where the standard logic cells are placed) was set to reach 
around 70 % of the row area. The remaining row area of 30 % is for the routing 
finishing successfully and it is just occupied with special cells known as filler cells. This 
initial utilization was the highest value which the floorplanner succeeds for the three 
microprocessor versions. The number of core rows is determined by the floorplanner in 
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accord to the design. More details about the initial floorplan parameters are presented in 
section 6.1.1. 

 
Figure 4.24: Initial floorplan parameters for the three microprocessor versions 

At step 10, the placement tool defines the locations of the standard cells within the 
IC and sets aside the space for the interconnect to each standard cell (SMITH, 1997). 
The placement assigns each standard cell to a position in a row or core row as 
mentioned in previous paragraph. Note that steps 8, 9 and 10 are integrated at the same 
software command. In order to minimize the circuit path delays, this approach tries to 
optimize the choice and placement of the standard cells based on a circuit timing 
analysis. 

At step 11, in order to avoid clock skew, a clock tree is built by an EDA tool based 
on some initial constraints set at step 7. In other words, buffers or inverters are added in 
the wires of the clock network for balancing the clock distribution. A minimum clock 
delay of 3.00 ns and a maximum of 3.50 ns were initially assigned. In addition, a 
maximum skew was set to 0.32 ns. Such values were deduced from some preliminary 
simulation experiments with the target robust architecture using higher values for these 
clock-tree constraints. 

At step 12, the global routing tool determines where the interconnections between 
the placed standard cells and blocks will be situated (SMITH, 1997). Only the routes to 
be used by the interconnections are decided at this step, not the actual locations of the 
interconnections within the wiring areas. At this step 12, a physical design information 
file known as Design Exchange Format (DEF) is created to be used at following design 
steps.  

At steps 13, 14 and 15, analysis tools provide preliminary estimated results in area, 
performance and power before the final layout adjustments. These design results can be 
seen through report files generated by the tools. An IC preliminary view can be also 
seen at these steps, as Figure 6.2, Figure 6.3 and Figure 6.4 in chapter 6 illustrate for the 
three microprocessor versions. Area results show the total circuit area but they do not 
detail about the wiring and routing issues. Performance results are estimated by a static 
timing analysis tool. Power results are based on default values defined by a power 
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analysis tool at primary inputs and outputs of circuit sequential elements. As 
emphasized in section 4.3.1, these pre-layout design results are not as accurate as the 
post-layout design results, but they can allow an initial evaluation of the IC design. 

At step 16, preliminary delay information of logic gates and interconnects based on 
the technology library was generated and stored in a Standard Delay Format (SDF) file. 
At step 17, post-synthesis structured descriptions (VHDL and Verilog netlists) were 
created. They are constituted of gates relating to the standard cells from the technology 
library. 

In Table 4.2, steps 18, 19 and 20 perform the pre-layout verification simulations of 
the circuits, as the design flow in Figure 4.5 shows. It uses the pre-layout SDF 
information from step 16. 

Table 4.2: The developed design flow (part 2) 

Tool Design Step 
Kind Command 

Platform 
(Command) 

18 Technology Library 
Compilation Compiler 

vlib 
vcom 
vmap 

19 Netlist Compilation Compiler vlib 
vcom                                                                    

20 Pre-Layout Gate-Level 
Simulation Simulator 

vsim 
(with sdf file) 

run 

Mentor 
ModelSim 

(vsim) 

21 Technological 
Information Setup Reader INPUT LEF 

INPUT CTLF 

22 Netlist Importation Reader INPUT VERILOG 
INPUT DEF 

23 
Insertion of Corner Cells, 

Power and Ground  
Pad Cells 

Reader INPUT DEF 
ADD ROW 

24 I/O Placement Placer IOPLACE 
25 Power Ring Planning Planner CONSTRUCT RING 
26 Insertion of Filler Cells Placer SROUTE ADDCELL 

27 Detailed or Final 
Routing Router CONNECT RING 

WROUTE 

28 Area Analysis Analyzer REPORT SUMMARY 
REPORT WIRES 

29 Circuit Extraction Extractor, 
Analyzer 

REPORT RC  
(rspf file) 

REPORT DELAY 
(sdf file) 

30 Netlist Generation Synthesizer OUTPUT VERILOG 
OUTPUT DEF 

31 GDSII-File Generation Synthesizer OUTPUT GDSII 

Cadence 
SE P&R 
(seultra) 

At steps 21 and 22, the technology information and the netlists, DEF and Verilog 
files, from step 12 and 17 are read by the physical design tool. In addition to the I/O pad 
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cells, inserted at step 5 for the functional pins of the IC, other special pads are inserted 
at step 23. At step 24, these special cells defined as corner cells, power and ground pad 
cells are placed in the designs. The corner cells give continued to the power and ground 
interconnects (pad rings) among the pad cells that are placed around the core. 

At step 25, two power rings are constructed around the core area of the circuit. One 
of them for the power supply (vdd) and the other one for the ground (gnd). Both rings 
were built with a width of 75.000 µm. At step 26, filler cells are added in order to fill 
gaps among the standard logic cells placed on the core of the design and among corner 
and pad cells. As emphasized at step 9, such filler cell areas are the spaces for the 
routing finishing successfully. 

At step 27, the power rings are initially connected to the cells. After this, all wires 
are routed by using a router tool. In other words, the standard logic cells, corner and pad 
cells are joined by wires or interconnections. It includes also the routing of the clock, 
power and ground interconnections. The width, mask layer and exact location of the 
interconnections are defined by the router (SMITH, 1997). These interconnections can 
be built by 4 different layers of metal. As emphasized in previous paragraphs, it is due 
to the characteristics of the technology used in this work. The final layout illustrations 
of the target circuits can be also seen at this step, as Figure 6.2, Figure 6.3 and Figure 
6.4 in chapter 6 show for the three microprocessor versions. 

The length and position characteristics of each interconnect for each net is known 
after the detailed routing (SMITH, 1997). Thus, at step 28, results in area are generated 
with the wiring details. And at step 29, parasitic capacitance and resistance associated 
with each interconnect, via and contact can be calculated. It is generated by a circuit-
extraction tool that provides a Reduced Standard Parasitic Format (RSPF) file. 
Additionally, a SDF file can be also generated based on the post-layout information. At 
steps 30 and 31, post-layout netlists (Verilog, DEF and GDSII files) are created for the 
next design steps. 

At step 32 from Table 4.3, the GDSII files from the previous step are imported to a 
software platform able to check the circuits. At step 33, a Design-Rule Check (DRC) is 
performed to ensure that nothing has gone wrong in the process of assembling the 
standard logic cells and routing (SMITH, 1997). It checks for shorts, spacing violations, 
or other layout design-rule problems between standard logic cells. Other check like the 
Layout Versus Schematic (LVS) could also be performed to ensure that the extracted 
electrical schematic from the physical layout is the same to the designed netlist or HDL 
code. Another usual check that could be used is a formal verification. It would extract a 
Boolean description of the function of the layout and would compare that to a known 
good HDL description. 

At steps 34 and 35, a post-layout verification simulation of the circuits at the gate 
level is performed by using the post-layout SDF information. In order to estimate the 
dynamic power consumption, at steps 36 and 37, the switching activities of the circuits 
are analyzed by counting and collecting changes of state on all nodes of the circuits. In 
addition, the toggle coverage allows a view of the testbench effectiveness used in the 
verification experiments. After the simulations of verification based on benchmarks, 
Value Change Dump (VCD) files, which contain the switching activities of the circuits, 
are created for the next design steps. At steps 38, 39, 40, 41 and 42, final post-layout 
results in area, performance and static and dynamic power consumptions are generated 
based on the post-layout information represented by Verilog, DEF, RSPF, SDF and 
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VCD files. The VCD files were converted to Toggle Count Format (TCF) files due to 
the requirements to perform the power analysis through the used software platform. By 
using report files, the EDA tools arrange all final design results. They are presented in 
chapter 6 of this work. 

Table 4.3: The developed design flow (part 3) 

Tool Design Step 
Kind Command 

Platform 
(Command) 

32 GDSII-File Importation Reader 

33 DRC Checker 

From a Virtuoso 
Command Interface 
Window (Diva Tool) 

Cadence   
IC        

(icfb) 

34 Netlist Compilation Compiler vlib 
vcom                                                                    

35 Post-Layout Gate-Level 
Simulation Simulator vsim 

(with sdf file) 

36 Toggle-File Generation Synthesizer vcd file 
run 

37 Toggle Coverage Analyzer toggle report 

Mentor 
ModelSim 

(vsim) 

38 Technological 
Information Setup Reader read_tlf 

read_lef  

39 Netlist Importation Reader 

read_verilog 
read_def 
read_wdb 
read_spf 
read_sdf 

40 Timing Analysis Analyzer report_timing 

41 Toggle-File Importation Reader lpsvcd2tcf.exe 
read_tcf 

42 Power Analysis Analyzer     report_power 

Cadence 
PKS 

(pks_shell) 

4.6 Some Fault-Tolerant Circuit Characteristics 
Some characteristics of the robust microprocessor by using the TMR+TR+CWSP 

scheme are presented below: 

4.6.1 The Maximum Width of SETs 

As defined in section 3.2.2, there is a maximum width of SET pulse arisen at the 
output of the combinational block that is able to be mitigated by the TR+CWSP scheme. 
It is based on the propagation time of the CWSP and Delay blocks from Figure 4.17. 
The delay of the CWSP blocks are based on their logic circuits, otherwise the Delay 
blocks are defined by any sequence of buffers or inverters. By this reason, the Delay 
blocks are used in the design as adjustment elements to achieve the target maximum 
SET width. In this work, the delays of these blocks were implemented through timing 
constraints readable by the synthesis tools, as emphasized previously in section 4.4.3 
and 4.5. 

In section 2.1.2.3 was discussed that in micrometer technologies the duration of a 
SET pulse is typically a few hundreds of picoseconds. Note that in the Non-Protected 
microprocessor version, it might diffuse itself and make SEs. The target technology, 
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AMS 0.35 µm (AUSTRIAMICROSYSTEM, 2003), establishes delays of basic standard 
logic gates typically around 10 ps and 2 ns. See that a typical SET (e.g. 100 ps) can 
propagate itself through a basic standard logic gate (e.g. 10 ps), since pulses of widths 
larger than the delay of a logic gate usually are not able to suffer electrical masking. 
Based on these issues, in the TMR+TR+CWSP microprocessor design, the Delay blocks 
from Figure 4.17 were defined in order to achieve a maximum width of SET able to be 
mitigated around 1 ns. Such value covers slackly the requirements of a typical SET 
occurrence on this robust circuit based on this target technology. However, adjusting 
this width for another desired value is easily made by using CAD resources. If a larger 
width of SET is required, larger overheads are attained. Otherwise, optimized width can 
be achieved by decreasing its value. Thus, lesser overheads are attained, since fewer 
buffers or inverters are used to implement the Delay blocks. 

Furthermore, as discussed in section 3.2.2, the TR+CWSP approach also mitigates 
timing faults. Therefore, enlargements of the circuit paths up to around 1 ns will be 
mitigated. However, in case there are such faults, the robust circuit may not be able to 
mitigate SET pulses any more. It is because there will not be enough time slack to 
mitigate them. 

There is another important related issue detailed also in section 2.1.2.3. A SET pulse 
that arises inside a combinational block can result at the output of this block with a 
width larger than the original one. It can occur due to the different delays of the 
propagation paths of the combinational circuit. In this case, the TR+CWSP scheme may 
not work because the allowed maximum width of SET will be overcome. However, it is 
a low-probability event. Experiments were done by (ANGHEL; ALEXANDRESCU; 
NICOLAIDIS, 2000-b) in order to evaluate such effects. The results showed that the 
scheme achieves a high error correction efficiency (around 97 %) and it can be 
improved further by increasing the Delay blocks. 

4.6.2 Multiple SEUs 

A SET can start at any moment inside a clock cycle period of microprocessor 
software applications. The TR+CWSP technique mitigates SETs inside each clock 
cycle. In case of several SETs (more than one SET) occur inside a clock cycle, the 
technique may not work. It is because there could be some confusion in the comparison 
between the delayed and non-delayed outputs of the affected combinational circuit. In 
sections 2.1.2.3 and 2.1.2.4, a low-probability multiple event is detailed. A unique SET 
pulse on an internal node of a combinational circuit can sometimes create multiple 
pulses at an output bit of this combinational circuit as a result of the delay difference 
among the circuit paths. 

Furthermore, in accord to the topology of the circuit, a unique SET can also achieve 
a unique or several bits of the registers (i.e., a unique or several potential indirect SEUs) 
or even not cause any consequence (i.e., an electrical, logical or latching-window 
masking). At any moment during the use of the microprocessor, several SETs can also 
occur at the same time on any bit of a combinational or sequential circuit (i.e., several 
potential indirect or direct SEUs). The TMR+TR+CWSP scheme protects all bits of the 
registers, hence MBUs or SEUs can occur at same time and on any data bit of the 
registers that they will be mitigated. However, SEUs cannot occur at the same time on 
the redundant parts of a triplicated register, as section 4.6.3 explains. 
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4.6.3 SETs on the Elements of the Fault-Tolerance Mechanisms 

As affirmed in section 3.1, the fault-tolerant systems based only on the TMR 
protection are susceptible to indirect SEUs. It is because a SET can propagate itself up 
to the three registers of the triplicated one. Thus, in case of a triple indirect SEU, the 
voter block is not able to detect differences among the values stored in the triplicated 
register. As result of this, it is mandatory the use of dedicated fault-tolerance techniques, 
like the TR+CWSP scheme, in order to avoid indirect SEUs. 

On the other hand, SET occurrences on the Delay or CWSP blocks are not mitigated 
for the TR+CWSP mechanisms as those SETs that can occur on combinational blocks. 
By this reason, note in Figure 4.17 that the branch formed by the Delay, CWSP and 
Register blocks is triplicated based on the TMR principles. Thus, a SET occurrence on 
one branch of the triplicated one could provoke an indirect SEU on one register of the 
triplicated one. However, this error would not propagate because the Voter block would 
proceed in the same way if a direct SEU had occurred on that register. In other words, it 
would elect the value of majority among the three stored in the triplicated register. 

As defined in section 3.1, considering the three registers of a triplicated register, 
observe that the Voter block requires at least two registers without errors to elect a 
correct output. Therefore, for the mechanism working correctly, direct SEUs or SET 
pulses, which potentially would cause indirect SEUs on the registers, cannot occur at 
the same time on two or three branches of the triplicated one. 

The Voter block is a combinational circuit that can be considered as a part of the 
Next Combinational Block illustrated in Figure 4.17. Thus, if a SET happened on the 
Voter block, it would be mitigated in the same way as those SETs that can occur on 
combinational blocks. 

4.6.4 Other Remarks 

Another issues related to design of the fault-tolerant circuit are emphasized below: 

• There are combinational circuits that do not achieve sequential elements, i.e., 
those combinational circuits in which their outputs are directly connected at 
outputs of the core (output pads of the chip). Such combinational circuits are 
susceptible to SET effects. In the target microprocessor of this work, it is the 
case in two situations. The outputs of the registers called Address and ALU are 
connected to combinational circuits (voter blocks) that achieve directly output 
pads. Thus, SET effects on these combinational circuits may cause undesired 
transient results at their outputs. These circuits correspond to a small part of the 
core area, therefore such effects have a low-probability occurrence. On the other 
hand, a fault-tolerance approach like the TR+CWSP scheme could be applied on 
this circuits to reduce these effects; 

• SET pulses arisen at input pins of the fault-tolerant system could be also taken 
account of. These pulses can be erroneously considered as good inputs to 
internal registers. The scheme TR+CWSP is able to mitigate these events, 
however the allowed maximum width of SET must be lesser than a typical pulse 
at input pins of the chip such as data pins or interruption pins. It is to prevent bad 
detection by part of the TR+CWSP scheme. Such condition is not difficult to 
meet for the target architecture of this work. The maximum SET width is around 
1 ns as detailed in 4.6.1. It will be lesser than the usual minor widths of signals 
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required by the inputs of this CPU and provided by the outputs of its 
conventional external peripherals. For this architecture, the widths of these 
signals are usually larger than 10 ns. In future or advance architectures, this 
condition may be critical; 

• The combinational circuit (buffers and inverters) that defines the clock tree of 
the system is susceptible to SETs. As this circuit does not achieve data inputs of 
registers but specific clock inputs of the registers, it requires another protection 
approach. The effects of a SET on this circuit can be a larger clock skew for a 
certain register. Thus, an unbalance on the clock network can be characterized 
and registers may be induced to store values wrongly; 

• The target architecture in this work does not present latches. Note, however, that 
these components are memory elements too. Consequently, in robust IC designs 
composed also by latches, dedicated fault-tolerance techniques should be also 
used to protect such elements. These techniques can be similar to those used for 
flip-flops; 

• In this work, the target system to protect was the microprocessor core (CPU). In 
a design scenario of a fault-tolerant microcontroller similar to Figure 4.1, the 
volatile memory resources vulnerable to SEUs are basically registers dispersed 
on the CPU and a data memory (RAM). The program memory usually is non-
volatile and in principle it is not susceptible to SEUs because requires typically 
higher currents to modify its bits. About the microcontroller protection, the CPU 
registers would follow the same TMR+TR+CWSP approach implemented in this 
work. The data memory could be protected against direct SEUs by using parity 
or EDAC codes. As emphasized at the beginning of this chapter, it is because 
such codes are relatively cheaper for memory arrays similar to the data memory. 
Regarding possible indirect SEUs, it could be mitigated by using the TR+CWSP 
approach applied on the elements of the data memory or another specific 
technique for memory arrays such as that presented in (HENES-NETO; WIRTH; 
KASTENSMIDT, 2006). 
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5 DESIGN VERIFICATION SIMULATION OF A ROBUST 
MICROPROCESSOR 

Incorrect operations or errors in a digital system can be detected by using a testing 
scheme. Some typical errors that may occur in this kind of system can be classified 
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). Design errors are, for instance, 
incomplete or inconsistent specifications; incorrect mappings between different levels 
of design; or violations of design rules. Fabrication errors are those which occur 
during fabrication due to, for example, wrong components; incorrect wiring; or short 
caused by improper soldering. Fabrication defects are not directly attributable to a 
human error, rather, they result from an imperfect manufacturing process such as short, 
opens, improper doping profiles, mask alignment errors, poor encapsulation, etc. 
Physical failures occur during the lifetime of a system due to component wear-out or 
environment factors like temperature, humidity, vibrations, electrical noise and the 
radiation-induced effects. Fabrication errors, fabrication defects and physical failures 
are consequences of physical faults that can be permanent, intermittent or transient. 

The initial testing of an IC is performed by simulation within a CAD environment. 
At this stage, the designer is verifying the functionality and the performance of the 
intended circuit (GROCHOWSKI et al, 1997). In fact, the designer is looking for 
eventual design errors. Many of the production tests, during the IC manufacture, are 
based on this initial testing. 

In this work, the testing experiments are concerned about such design errors. It is 
because these errors precede the fabrication of the IC. As mentioned in chapter 1, the 
steps of the IC manufacturing stage will be performed on the future. Moreover, some 
kinds of physical failures (i.e., the Soft Errors (SEs) due to direct or indirect SEUs) need 
be also considered in the testing experiments. The effects of these physical faults on the 
IC can be represented by logical faults based on the fault model discussed in chapter 2. 

The fault-tolerance techniques implemented in the target microprocessor as on-line 
testing mechanisms (self-checkers) need be also tested by a different testing experiment, 
such as a fault injection, in order to avoid eventual design errors in their circuits. The 
issue is that the absence of faults in the circuit under test, i.e., in the target 
microprocessor for this work, might hide design errors in the self-checking circuits. It is 
because testing schemes like these self-checkers work different when the circuit under 
test is at presence of faults. Thus, a means of performing such tests is emulating the 
physical failures that these on-line testing circuits are able to mitigate through a fault 
injection experiment. 

The design verification testing in order to detect design errors is typically performed 
by a testing experiment that uses a model of the designed system. Design verification 
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simulation or logic simulation usually determines the time evolution of the signals in the 
model as responses to applied input sequences (ABRAMOVICI; BREUER; 
FRIEDMAN, 1990). The verification is done by comparing the results obtained by 
simulation with the expected results provided by the specified design behavior. In the 
present work, a model of the target microprocessor was designed in accord to sections 
4.4 and 4.5. In sections 5.1, 5.2, 5.3 and 5.4 is explained details about the design 
verification simulations developed for this target circuit. 

In addition to these experiments to detect eventual design errors, naturally, there are 
others such as those verification methods briefly discussed in section 4.5: DRC, LVS, 
formal verification, etc. Furthermore, there are some testing steps performed during or 
after an IC fabrication that are mandatory. The called production tests usually are based 
on test vectors applied at circuit inputs by tester equipments. They have the purpose of 
checking essentially whether there are permanent physical failures, fabrication defects 
or even fabrication errors (when the IC is part of a system on some kind of board). By 
means of the difference between the behavior of the target circuit in the presence of a 
fault and the fault-free circuit behavior, one can derive a test for that fault 
(ABRAMOVICI; BREUER; FRIEDMAN, 1990). Basically, the outputs of the fault-
free circuit are compared with outputs of the faulty circuit.  Such test can be also 
performed by simulation as a further verification step to find design errors before an IC 
fabrication. Other post-fabrication testing approaches are redesigning circuit parts to 
improve the accessibility to hard-to-test elements as a design-for-testability 
(LUBASZEWSKI; HUERTAS, 2004). Another approach of design-for-testability such 
as Built-in Self-Tests (BISTs), tester equipments to apply test vectors are not required 
due to the on-chip test generation and evaluation. BISTs are performed through signals 
specifically created to test the circuit, unlike the on-line self-checkers that are also 
classified as a design-for-test approach but they are performed through functional 
signals of the circuit under test. 

5.1 Types of Design Verification Simulation 
By means of simulator tools, the circuits can be simulated to verify their 

characteristics at different design levels. Thus, the level of simulation corresponds to the 
level of modeling employed to represent the simulated system (ABRAMOVICI; 
BREUER; FRIEDMAN, 1990). From a high-level to a low-level simulation, the 
simulations become more accurate, but they also become progressively more complex 
and take longer to run (SMITH, 1997): 

• Behavioral simulation considers circuits modeled with black boxes or 
components without delays. In each clock cycle, the signals of the circuit are 
updated at the clock event, not during the clock cycle. It occurs before the logic 
synthesis of the circuit without any technological or physical information; 

• Functional simulation or unit-delay simulation ignores timing and includes a 
unit of delay. It sets delays in the circuit components to a fixed value like 1 ns. 
This simulation occurs after the logic synthesis and technological mapping; 

• Gate-level simulation or logic simulation can also be used to check the timing 
performance of an IC. A logic gate or logic cell is treated as a black box usually 
modeled by a function that determines the delay through the cell. This simulation 
can be called as pre-layout simulation when includes logic-cell delays but no 
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interconnect delays. Setting all delays to a unit value, it becomes as a functional 
simulation. On the other hand, this simulation can also be called as post-layout 
simulation when considers, after physical design, delays of logic cells and also 
interconnects; 

• Switch-level simulation considers circuits modeled with transistors as switches 
(on or off). This simulation may use a large possible set of discrete voltage 
values or the value of a node may be allowed to vary continuously. It can 
provide more accurate timing predictions than the gate-level simulation, but 
takes longer time of execution; 

• Transistor-level simulation or circuit level simulation is perhaps the most 
accurate, but also the most complex and time-consuming. It requires models of 
transistors, describing their non-linear voltage and current characteristics. This 
simulation usually is used to analyze the analog, rather than the digital, behavior 
of circuit voltages. 

Different parts of the system can be simulated by different levels of simulation 
(SMITH, 1997). Critical blocks can be simulated by more accurate low-level 
simulations. On the other hand, as mentioned above, there is a cost in run time against 
accuracy. Low-level simulation like switch-level and transistor-level simulations take 
longer time and are almost impracticable for large circuits such as a microprocessor. 
Indeed, switch-level and transistor-level design simulations are often used in full-
custom designs of specific small circuits. 

5.1.1 The Developed Types of Design Verification Simulations 

In this work, as detailed in section 4.3.1 by the design flow from Figure 4.5, three 
different stages of simulations for verification were developed for each one of the three 
microprocessor versions (Non-Protected, TMR and TMR+TR+CWSP versions 
designed in accord to sections 4.4 and 4.5): 

• Behavioral simulation simulates the behavior of the VHDL codes that describe 
the microprocessor versions at the RT level; 

• Pre-layout gate-level simulation simulates logically the resulting VHDL 
netlists of logic gates that characterizes the microprocessor versions after the 
synthesis steps. It uses the SDF information from before the final routing; 

• Post-layout gate-level simulation simulates again logically the netlists of gates 
but uses the SDF file with the final routing information; 

These three stages of simulation were performed by using a CAD logic simulator 
from (MENTOR, 2004). In order to run these design verification simulations, stimuli 
need be generated at the inputs or internal signals of the microprocessor versions. This 
task can be supported by a testbench, as section 5.2 discusses. Moreover, the resulting 
responses at the outputs or other signals of these circuits need be checked with the aim 
of detecting eventual design errors. By this reason, as section 5.3 presents, a check 
approach through a functional testing experiment was performed at these three stages 
of simulation. Additionally, only at the post-layout gate-level simulation, a fault 
injection experiment was done as section 5.4 details. 

Since in this work the target circuit was a microprocessor that inherently denotes a 
complex circuit, a design flow based on high-level models and standard cells was 
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mandatory as discussed. Thus, the switch-level and transistor-level simulations, cited at 
the beginning of this section 5.1, would be practically unfeasible due to the circuit 
complexity. Furthermore, the standard cells were in principle well designed by 
technology providers. Regarding the functional simulation, it would not be worth 
performing due to the characteristics of the available CAD platform. As explained in 
section 4.3.1, it was well replaced by a pre-layout simulation in order to develop a faster 
design flow. 

5.1.1.1 Timing Verification by Static Timing Analysis 

Timing verification targets at determining whether the timing constraints imposed to 
the design may be satisfied or not. It can be performed by using circuit simulation or by 
timing analysis (GÜNTZEL, 2000). 

Vector-based simulations (or dynamic simulations), like the functional simulation 
and the gate-level simulation detailed at the beginning of this section 5.1, can check if 
the design functions correctly (SMITH, 1997). However, in order to find the longest 
delays of the circuits, they require test vectors that active the critical circuit paths. It is 
not usually a simple task by considering the current design complexity. To cope with 
this in an easier way, a static timing analysis is quite suitable. 

A static timing analysis checks the timing performance based on circuit topology 
and technology information and timing analysis algorithms. It analyzes the logic in a 
static manner by computing the delay times for each path. It is static because does not 
require the creation of a set of test-vectors (stimuli) that, as mentioned above, would be 
onerous for a large circuit (SMITH, 1997). 

In this work, in accord to section 4.3.1 by the design flow from Figure 4.5, two 
different stages of static timing analysis were developed for each one of the three 
microprocessor versions (defined in sections 4.4 and 4.5): 

• Pre-layout static timing analysis estimates the performance through the critical 
path in the microprocessor models generated before the final routing; 

• Post-layout static timing analysis estimates again the critical path delay of the 
circuits but after the final routing and circuit extraction. 

Such analyses were performed through a CAD analyzer from (CADENCE, 2002). 
This timing-analysis tool basically identifies the longest delays among the paths of the 
circuit. It also checks the set-up and hold time requirements in accord to timing 
constraints. The tool reports all this information in text files. 

5.2 Modeling of System for Simulation 
In order to perform the testing experiments in the microprocessor versions of this 

work, whose models are characterized by VHDL codes or netlists detailed in chapter 4, 
a system like Figure 5.1 composed of the target CPU and other peripherals was 
modeled as a testbench in VHDL. 

Based on this modeling of system, the CPU can execute machine codes of 
instructions compiled from a software application or benchmark. These program codes 
are allocated in another instance defined as the program memory. In accord to function 
of the executed instructions, the CPU requires the temporary use of memory resources 
to manipulate the instruction operations. These resources are defined in another instance 
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as the data memory. The CPU accesses such program and data memories essentially by 
using an address bus and a data bus. The address bus indicates the desired position in 
the memory to be accessed by the CPU. On the other hand, based on these address bus, 
the data bus is used by the CPU to read/write codes from/to that position in the memory. 

In addition, other peripherals support the design verification simulation: a clock 
generator provides the clock signal to the system; and an interface device that offers 
information about the signals of the system to a logic simulator. This information is 
treated by the simulator terminal that prints it in an interface window with the designer. 

 
Figure 5.1: Diagram of the system modeled as a testbench in VHDL 

5.2.1 Functional Behavior of the Modeled System 

The testbench emulates the functional behavior of an actual system based on this 
CPU. All execution steps of a benchmark can be seen by means of the logic simulator. 
The benchmarks must be described in assembly language of the M68HC11 family 
(FREESCALE, 2002). Thus, they can be compiled by means of the standard assembler 
tool provided by Freescale. As a result, the assembler generates an output file that 
contains the program codes of the compiled benchmark. By using this output file, the 
VHDL testbench can access the program codes as whether it was the program memory 
of the system illustrated in Figure 5.1. 

Figure 5.2 illustrates, through the main signals of the system, an instruction of a 
certain benchmark being executed. The illustrated instruction is the JSR that makes the 
current execution jumping to a subroutine. Its operation code (opcode) is 0xBD at the 
extended addressing mode. It uses 2 operands and 6 clock cycles. In this example, the 
operands are 0xF8 and 0x44 that represent, as 0xF844, the initial address of the 
subroutine. 

The execution of this instruction starts at state 0x01 when the CPU requests to the 
program memory the address 0xF851. This address is based on the previous executed 
instruction and indicates the position in the program memory where opcode 0xBD is 
stored. This opcode is read by the CPU through the data bus. In the two following states 
(0x03 and 0x0F), the operands (0xF8 and 0x44) are read from the program memory in 
the same way that opcode 0xBD. 

During state 0x1E, the CPU builds address 0xF844 to jump. Furthermore, the 
address to return (0xF854) after the subroutine execution is calculated and stored in the 
program counter (PC). At state 0x13, the address to return (0xF854) is saved in the 
stack. As the stack is allocated in the data memory, 0xF8 and 0x54 are written in the 
data memory by means of the write_data bus and the rw signal. The location in the data 
memory where 0xF8 and 0x54 are positioned depends on the current address (0x00FB) 
pointed by the stack pointer (SP). The SP always points to the next empty position in 
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the stack. Thus, 0xF8 and 0x54 are written in the address 0x00FB and 0x00FA of the 
data memory. 

At its last state (0x01), the JSR instruction finishes by putting the address 0xF844 on 
the address bus. It is to request to the program memory the opcode of the next 
instruction (0x36), i.e., the opcode of the first instruction of the subroutine. 

 
Figure 5.2: Execution of the JSR instruction by simulation 

5.3 Functional Testing by Simulation 
A functional testing experiment was performed at each one of the three simulation 

stages discussed in 5.1.1: behavioral, pre-layout gate-level and post-layout gate-level. 
The goal of this simulation experiment is testing functionally each one of the three 
designed microprocessor versions (Non-Protected, TMR and TMR+TR+CWSP) 
detailed in section 4.4. 

The target circuits can be exercised through stimuli made by executions of 
benchmarks. It is possible by using the testbench presented in section 5.2. New 
benchmarks were created based on two software applications from (THIBAULT, 2000; 
FREESCALE, 2002). One of these applications converts hexadecimal codes to their 
ASCII characters and prints the output results in the interface device from Figure 5.1 to 
be seen by the designer. The other one application is a program for automatic control of 
a motor. It generates a PWM signal of constant frequency and variable duty cycle and it 
also prints output results like the current speed and direction in the interface device. 

5.3.1 Benchmark Design 

As these two base benchmarks detailed above do not contain all microprocessor 
instructions, the stimuli would not achieve the whole of the circuit. In this manner, the 
microprocessor versions would not be completely tested. In order to check the functions 
specified by all microprocessor instructions, five new benchmarks were created by 
including instructions that are not present in the two base benchmarks. 

The benchmarks should use all 306 different microprocessor instructions through the 
six addressing modes. Note that thus all 18 existing microprocessor registers would be 
used too. It was not 308 instructions because two instructions of division are not 
implemented, as emphasized in sections 4.1 and 4.4.1. 

The additional instructions in the new benchmarks must follow the functional 
coherence of the two base benchmarks. Any value manipulated by an instruction in one 
of these base benchmarks must be used by the first instruction added in one of the new 
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benchmarks. As the target CPU employs a sequential instruction processing without any 
type of pipeline, a bundle of new instructions in sequence can be inserted to be tested. 
Logic links through the manipulation of values must be established among the first 
added instruction, its former and latter instructions and so on. The last instruction added 
in the new benchmark must be able to give continuity to the remaining processing 
without altering the functional execution of the base benchmark. It is to preserve the 
same output results calculated by this base benchmark.  Indeed, no new features are 
inserted in the five new benchmarks but whether an added instruction not working 
correctly, the benchmark execution shall be broken.  

All added instructions to be tested were arranged in five groups. Thus, each one of 
the five benchmarks tests a different set of instructions. It emulates a habitual 
characteristic of the target software applications that almost in totality do not use all 
microprocessor instructions. In addition, it divides the simulation time in parts 
facilitating the management of the design tasks. 

Another benchmark issue is about the values of inputs and operands used by the 
instructions. It depends quite on the design specification of the software applications. 
Therefore, there can be many combinations due to different specifications of software 
applications. The option by values that have all their bits used by the instructions can be 
good. The coverage of all value possibilities would be an arduous design task. 

5.3.2 Benchmark Analysis 

A statistics resource to estimate the quality of the stimuli or test vectors induced by 
the created benchmarks is to use a toggle test. It checks which circuit nodes toggle as a 
result of applying input stimuli. There is a strong correlation between high-quality test 
vectors and high toggle coverage (SMITH, 1997). Table 5.1 shows the toggle coverage 
for each one of the five benchmarks labeled as HNO, HLC, HLB, AOR and ALO on 
each one of the three microprocessor versions. 

Table 5.1: Toggle coverage of the benchmarks on the microprocessor versions 

Circuits: Non-Protected TMR TMR+TR+CWSP 

Total Node 
Count: 10988 12480 17155 

Benchmarks 
Toggled   

Node 
Count 

Toggle 
Coverage 

Toggled   
Node 
Count 

Toggle 
Coverage 

Toggled   
Node 
Count 

Toggle 
Coverage 

HNO 5430 49.42 % 6619 53.04 % 9468 55.19 % 

HLC 5756 52.38 % 6839 54.80 % 9644 56.22 % 

HLB 5776 52.57 % 7017 56.23 % 10064 58.67 % 

AOR 6228 56.68 % 7794 62.45 % 10938 63.76 % 

ALO 6288 57.23 % 7942 63.64 % 11261 65.64 % 

Note in this Table 5.1 that the toggle coverage does not achieve 100 % especially 
because not all microprocessor instructions are present in each one of the benchmarks. 
However, as all these microprocessor instructions were arranged in the five 
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benchmarks, there is a trend for the overall toggle coverage of this functional testing. By 
using the five benchmarks in sequence, as a unique program, the toggle coverage shall 
approach to 100 %. It is an excellent sign of which these testing experiments achieve 
almost the whole of the target circuits. It will not attain 100 % due to the values of the 
inputs and operands or even due to unreachable parts of the circuits. 

5.3.3 Benchmark Simulation Characteristics 

About the clock cycles used by the five benchmarks, Table 5.2 shows the total 
number of clock cycles required to run once the complete benchmark execution. This 
table shows also the number of clock cycles to execute the program main loop by 
considering a set of fixed inputs. It is to be used by the power analysis that requires the 
periodic part of the benchmark. In addition, by using a typical clock period of 333 ns as 
initially defined for the timing analysis in section 4.5, Table 5.2 illustrates the 
equivalent times to the clock cycles (run time). 

Table 5.2: Clock cycles of the benchmarks 

 Simulation of the Program Main Loop Total Simulation 

Benchmarks Clock Cycles Run Time Clock Cycles Run Time 

HNO 393 130.869 µs 404 134.532 µs 

HLC 393 130.869 µs 613 204.129 µs 

HLB 393 130.869 µs 1448 482.184 µs 

AOR 721215 240.164595 ms 729632 242.967456 ms 

ALO 721215 240.164595 ms 731648 243.638784 ms 

5.3.4 Required Processing Time 

Regarding the processing time required by these testing experiments, the highest one 
among those simulations performed through a machine Sun Blade 2000 from Sun 
Microsystems was around 3 hours. Such processing time correspond to the simulation 
tasks that execute the post-layout gate-level simulations. It includes also the processing 
time to convert the generated VCD file to a TCF file. As discussed in section 4.5, this 
TCF file is required at the power analysis. In contrast, the processing time at the pre-
layout gate-level simulations was around 1 hour and 30 minutes. 

The time resolutions used at the post-layout and pre-layout gate-level simulations 
due to the technology-library requirements were 1 ps. On the other hand, at the 
behavioral simulations, the time resolution was 1 ns. It is the default of the simulator. 
As the circuit component models do not have delays at these behavioral simulations, a 
higher value for the time resolution can be used to speed up the simulation processing 
times. At the behavioral simulations, such processing times were lower than 5 minutes. 

5.3.5 Verification of Functional Testing Results 

In order to verify whether the benchmark executions attain the functional goals 
specified by their instructions, the output values generated by such functional testing 
were monitored. If any instruction was not working correctly, these resulting output 
values would be corrupted. 
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These output values are results due to the functional characteristics programmed in 
the benchmarks. In this way, they were previously specified to be attained by means of 
instructions. Therefore, they were known before the benchmark executions. Thus, 
golden values (i.e., values that are considered the correct output values) could be 
defined for each benchmark. An illustrative example can be given by the HNO 
benchmark that was designed to obtain a golden value 0x04d2, consequently its 
instructions must be processed to result such output value 0x04d2. As all benchmark 
instructions are executed in sequence, whether an instruction fails, this golden value will 
not be obtained or even the execution will be interrupted. 

The output values monitored in benchmark executions (i.e., the benchmark output 
results) were stored by the testbench in text files. In this way, they could be compared 
with the defined golden values (i.e., the specified benchmark output results) in order to 
detect eventual differences and thus eventual design errors. Such verification process of 
design simulation results can be illustrated by Figure 5.3. It was performed until the 
design simulation results matched the golden results. 

 
Figure 5.3: Verification process of functional testing simulation results 

Table 5.3 summarizes all functional testing simulations performed in order to detect 
eventual design errors in the implemented microprocessor versions. 

Detection of Eventual Design Errors 
in Instruction Circuits Implemented in 
Microprocessor Version under Test 

Benchmark 
Execution by 

Microprocessor 
Version  

under Test 

Benchmark 
Output 
Results 

Specified 
Benchmark 

Output 
Results 

Text Files 
of Design 

Simulation 
Results 

Text Files 
of Design 

Golden 
Results 

Design Error 
Diagnostic 

Files 
Match? 

Microprocessor 
Instructions 

Work Properly! 

Design Error 
Correction 

Yes 

No 

Verification of Functional Testing Results 
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Table 5.3: All functional testing simulation approaches 

Functional
Testing 

Approach 
Simulation Stage 

Microprocessor 
Version  

Under Test 

Executed 
Benchmark 

1 HNO 
2 HLC 
3 HLB 
4 AOR 
5 

Non-Protected 

ALO 
6 HNO 
7 HLC 
8 HLB 
9 AOR 

10 

TMR 

ALO 
11 HNO 
12 HLC 
13 HLB 
14 AOR 
15 

Behavioral simulation 

TMR+TR+CWSP 

ALO 
16 HNO 
17 HLC 
18 HLB 
19 AOR 
20 

Non-Protected 

ALO 
21 HNO 
22 HLC 
23 HLB 
24 AOR 
25 

TMR 

ALO 
26 HNO 
27 HLC 
28 HLB 
29 AOR 
30 

Pre-layout gate-level simulation 

TMR+TR+CWSP 

ALO 
31 HNO 
32 HLC 
33 HLB 
34 AOR 
35 

Non-Protected 

ALO 
36 HNO 
37 HLC 
38 HLB 
39 AOR 
40 

TMR 

ALO 
41 HNO 
42 HLC 
43 HLB 
44 AOR 
45 

Post-layout gate-level simulation 

TMR+TR+CWSP 

ALO 

5.4 Fault Injection by Simulation 
Fault injection experiments were performed through the post-layout gate-level 

simulation discussed in section 5.1.1. The goal of this simulation experiment is to verify 
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by testing functionally the fault-tolerance mechanisms implemented in each one of the 
designed robust microprocessor versions (TMR and TMR+TR+CWSP) detailed in 
section 4.4. The target physical faults (SETs) were represented by rectangular transient 
logic pulses injected at certain circuit nodes. In fact, the target faults are direct and 
indirect SEUs. However, these two types of faults can be induced by SET pulses, as 
discussed in chapter 2. 

As the target faults have a timing nature, these fault injection experiments require a 
type of simulation like the post-layout gate-level simulation that considers circuit 
models based on delays of logic gates and interconnects. The resulting circuit models of 
the three microprocessor versions are represented by VHDL netlists. On the other hand, 
the delays of logic gates and interconnects are defined by SDF files. 

Furthermore, the target faults by nature occur during the use of the circuit. In this 
way, they need be injected during the simulation of the circuit. By using the same 
framework of simulation utilized by the functional testing detailed in section 5.3, SET 
pulses were injected during the execution of a benchmark. 

In order to inject the SET pulses on the target circuit models, the VHDL netlists of 
the microprocessor versions were internally modified by insertion of specific VHDL 
components able to inject such faults. Indeed, a unique reusable parameterized VHDL 
component labeled as SET Injector was developed to inject SET pulses of adjustable 
width on any circuit node or signal and at any instant during each clock cycle of any 
benchmark. Such injected SET characteristics can be adjusted by parameters (VHDL 
generic) in the SET Injector component. In this way, this component can inject SETs of 
distinct characteristics on different parts where it is instantiated in the VHDL netlists. 

5.4.1 Instants of the SET Injection 

By using the SET Injector, one SET pulse was programmed to occur in each clock 
cycle of a benchmark. Since in this fault injection simulation, the goal was detecting 
eventual design errors in the circuits of the fault-tolerance mechanisms (on-line self-
checkers) implemented in the target microprocessor. In other words, it was to verify 
whether these self-checkers mitigate appropriately SETs and SEUs in accord to the 
constraints of their features. Only those SETs, which respect the maximum width 
tolerated by the robust microprocessor and occur at instants at which they potentially 
would provoke SEs, need be injected. 

Note that, as all injected SETs were fitted in these conditions, the self-checkers were 
able to cover all injected faults. In this way, these self-checkers were functionally tested 
through a fault injection simulation, but a measure of quality by the fault coverage of 
them was not able to be evaluated. To obtain this fault coverage, a more complex fault 
simulation based on probabilistic methods is required, as section 5.4.5 emphasizes. On 
the other hand, such self-checkers are typically considered efficient, as discussed in 
section 3.1 and 4.6. 

5.4.2 Widths of Injected SETs 

The SET Injector models SETs like rectangular pulses. Regarding the widths of 
injected SETs, some issues were considered in accord to section 4.6.1: 

• The width of SETs is typically around hundreds of picoseconds; 
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• The TMR+TR+CWSP microprocessor version mitigates SETs of widths up to 
around 1 ns as a result of the timing constraints implemented in the Delay blocks 
from Figure 4.17; 

• Moreover, there is the electrical masking effect of SETs by logic gates. In the 
target technology (AUSTRIAMICROSYSTEM, 2003), the delays of basic 
standard logic gates are typically around 10 ps and 2 ns. 

Thus, in this simulation experiment, pulses of 100 ps and 1 ns were injected to 
evaluate extremities of widths tolerated by the robust microprocessor.  

5.4.3 Target Circuit Nodes for the SET Injection 

Ten SET injection simulation approaches were performed by considering different 
circuit nodes. In each approach, the HNO benchmark detailed in 5.3, which uses all 18 
existing microprocessor registers, was executed under SET injections in order to 
functionally test all implemented fault-tolerance mechanisms. 

• SET Injection Approach 1: it was performed on the Non-Protected 
microprocessor version just to verify whether the shapes of the injected SETs 
effectively provoke SEs. SET pulses were injected at the microprocessor register 
inputs (node A in Figure 5.4). Since all 18 microprocessor registers totalize 187 
flip-flops, 187 SET pulses of 1 ns were injected in each clock cycle of the 
benchmark. Figure 5.5 illustrates a SET injected on this Non-Protected version 
in order to cause a SE on a bit of a microprocessor register. In this way, the SET 
meets the set-up and hold time requirements to avoid the latching-window 
masking discussed in section 2.1.2.3. Note that this fault injected on node A 
effectively results in a SE at the register output. The value 0 should be stored and 
not the value 1 from the faulty output of the combinational block; 

• SET Injection Approach 2: it was the same that SET Injection Approach 1 
except SET pulses of 100 ps were injected; 

 
Figure 5.4: Target circuit nodes in the Non-Protected version 

 
Figure 5.5: SET injected on the Non-Protected microprocessor version 
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• SET Injection Approach 3: it was performed on the TMR microprocessor 
version. SET pulses were injected only at one input of a triplicated flip-flop 
(node B in Figure 5.6) in such way that they were stored by one flip-flop. It was 
to emulate the occurrence of a direct SEU on only one flip-flop. Thus, the voter 
block functionality could be tested. In the same way that SET Injection 
Approach 1, 187 SET pulses of 1 ns were injected in each clock cycle of the 
benchmark in order to test all 187 voters. Figure 5.7 illustrates a SET injected on 
this TMR microprocessor version that provokes a direct SEU on a flip-flop. By 
reason of the TMR protection implemented in this circuit, the faulty output of 
this triplicated flip-flop (value 1 in register 1) is not propagated to the voter 
output (value 0). Thus, a SE does not occur due to this injected fault; 

• SET Injection Approach 4: it was the same that SET Injection Approach 3, but 
the SET pulse was injected only on the node C from Figure 5.6; 

• SET Injection Approach 5: it was also the same that SET Injection Approach 
3, but the SET pulse was injected only on the node D from Figure 5.6; 

 
Figure 5.6: Target circuit nodes in the TMR version 

 
Figure 5.7: SET injected on the TMR microprocessor version 

• SET Injection Approaches 6, 7 and 8: these approaches were respectively the 
same that SET Injection Approaches 3, 4 and 5, but they were performed on the 
TMR+TR+CWSP microprocessor version and in accord to Figure 5.8; 

• SET Injection Approach 9: it was performed on the TMR+TR+CWSP 
microprocessor version. SET pulses were injected at the outputs of the 
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combinational blocks (node A in Figure 5.8). It emulated SETs that potentially 
would provoke indirect SEUs on the flip-flops. Thus, the TR+CWSP mitigation 
scheme could be tested. In the same way that SET Injection Approach 1, 187 
SET pulses of 1 ns were injected in each clock cycle of the benchmark. Figure 
5.9 illustrates a SET injected on the TMR+TR+CWSP microprocessor version 
that potentially would cause an indirect SEU on a bit of a microprocessor 
register. Observe that, as there is the TR+CWSP scheme implemented in this 
circuit, the faulty output of the combinational block (transient value 1 on node 
A) is not propagated to the three inputs of the triplicated register (value 0 on 
nodes B, C and D). Consequently, the three outputs of this triplicated register 
and the voter output are not reached by the fault. Therefore, a SE does not occur 
due to this injected fault; 

• SET Injection Approach 10: it was the same that SET Injection Approach 9 
except SET pulses of 100 ps were injected. 

 
Figure 5.8: Target circuit nodes in the TMR+TR+CWSP version 

 
Figure 5.9: SET injected on the TMR+TR+CWSP microprocessor version 

5.4.4 Verification of Fault Injection Results 

In order to verify whether the implemented self-checkers work properly at 
benchmark executions under faults, the fault injection simulations were performed by 
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using the same verification process detailed in section 5.3.5. However, just the HNO 
benchmark was executed through the post-layout gate-level simulation discussed in 
5.1.1. 

In addition, the values stored in all 18 microprocessor registers and all outputs of the 
voter blocks were also monitored in each clock cycle of the benchmark. By using a 
fault-free functional testing simulation of the Non-Protected microprocessor (i.e., a 
simulation without SET injection), the golden values of the microprocessor registers in 
each clock cycle were stored by the testbench in text files. In this way, the monitored 
values in the microprocessor versions under SETs could be compared with ideal values 
from a correct benchmark execution. Such verification process of design simulation 
results can be illustrated by Figure 5.10. 

 
Figure 5.10: Verification process of fault injection simulation results 

In each SET Injection Approach mentioned in section 5.4.3 was injected 187 SET 
pulses by clock cycle. Since a HNO benchmark execution requires 404 clock cycles (as 
detailed in Table 5.2), 75548 faults were injected in each one of the ten approaches. In 
section 5.4.1 was discussed that all these injected faults were covered by the 
implemented self-checkers. Thus, whether there were not design errors in these self-
checkers, all injected faults would be mitigated and therefore the monitored values 
would match the golden values. 
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Table 5.4 summarizes all fault injection simulations performed in order to detect 
eventual design errors. The target circuit-node labels are in accord to Figure 5.4, Figure 
5.6 and Figure 5.8. 

Table 5.4: All fault injection simulation approaches 

SET 
Injection 
Approach 

Simulation Stage 
Microprocessor 

Version  
Under Test 

Executed 
Benchmark 

Injected 
SET  

Width 

Target 
Circuit 
Node 

Fault-Free HNO - - 
1 HNO 1 ns A 
2 

Non-Protected 
HNO 100 ps A 

3 HNO 1 ns B 
4 HNO 1 ns C 
5 

TMR 
HNO 1 ns D 

6 HNO 1 ns B 
7 HNO 1 ns C 
8 HNO 1 ns D 
9 HNO 1 ns A 

10 

Post-layout gate-level 
simulation 

TMR+TR+CWSP 

HNO 100 ps A 

5.4.5 Some Remarks about Fault Coverage of On-Line Self-Checkers 
Fault simulation is also widely used for evaluation of the test by checking the fault 

coverage or the percentage of faults detected by a set of input stimuli 
(LUBASZEWSKI; HUERTAS, 2004). It can be used to measure qualitatively the 
effectiveness of tests such as the on-line detectors or self-checkers. 

The fault simulation developed in this work is not able to obtain such fault coverage, 
as explained in section 5.4.1. Even so the fault-tolerance mechanisms implemented in 
the target microprocessor through the TMR and TR+CWSP on-line testing schemes are 
typically considered efficient, a more accurate estimation of efficiency would be useful. 
On the other hand, it would incorporate an inherent complexity in the fault simulation, 
since the target faults by nature have characteristics quite peculiar. Note that faults like 
the SETs can have different transient shapes. Furthermore, they can occur on any circuit 
part and at any instant during the use of the circuit. Even though such physical faults 
can be represented through logical faults based on fault models as that discussed in 
section 2.1.2, the simulation process would be complex too. See that the logical faults 
would be modeled like rectangular transient pulses. Therefore, the injected faults would 
be not just logical levels, they could have different widths, occur on any circuit node 
and at any instant. 

Due to these different possibilities of SET behaviors on the circuits, methods more 
advanced based on non-deterministic or probabilistic fault simulation are required in 
order to evaluate the fault coverage of a robust circuit. Evaluation resources like 
(MASSENGILL et al, 2000; LIMA et al, 2001-a; ALEXANDRESCU; ANGHEL; 
NICOLAIDIS, 2002; NEVES et al, 2006-a, 2006-b) might offer some answers 
concerning the effectiveness of mitigation techniques against indirect and direct SEUs 
on the circuits. However, these works and other many ideas about this issue even lack 
advances to become in consolidated and practical analysis tools for large circuits. This 
issue could be progress faster whether commercial tools become further easily available, 
even so they need improvements. A usual better means of evaluation can be performed 
through radiation ground test experiments on prototypes of the target circuits. 



6 DESIGN RESULTS OF A ROBUST 
MICROPROCESSOR 

A preliminary assessment of the designed circuit characteristics is mandatory ahead 
of the IC fabrication. Furthermore, the design of the robust architectures always entails 
extra costs that need be considered. Accurate estimated design results of the IC features 
can be attained by using advanced CAD resources. 

In this work, design results especially in area, performance and power were 
generated in accord to the IC design flow detailed in chapter 4. It is based on the 
standard cells from the AMS 0.35 µm CMOS technology (AUSTRIAMICROSYSTEM, 
2003). In accord to section 4.5, the same initial constraints were adjusted for the three 
designed microprocessor versions. 

Such design results are shown in the following sections. The costs of the robustness 
added in the Non-Protected microprocessor version are evaluated through the TMR 
and TMR+TR+CWSP microprocessor versions. In fact, as the TMR version mitigates 
only direct SEUs and TMR+TR+CWSP version mitigates direct and indirect SEUs, the 
overheads to protect the target CPU against such faults can be analyzed.  

6.1 Area Analysis 
Regarding IC design results in area, there are many issues which can be analyzed 

such as the final floorplan characteristics after the tool decisions; the number of 
standard logic cells, filler cells, corner cells, pad cells (I/O, power and ground); the 
clock-tree elements; the lengths of the routed wires; and obviously the area dimensions 
in each one of these former issues. In the following sections, results about these design 
issues for the three microprocessor versions are presented and compared. 

6.1.1 Floorplan Characteristics 

As detailed in section 4.5, initial floorplan parameters are set as constraints in order 
to the floorplanner tool achieves them. However, the final achieved floorplan 
parameters may not be exactly the same of those initially set. It is because the 
floorplanning task depends also on some designed circuit characteristics like the total 
number of required standard cells. This and other characteristics are not known when 
the initial floorplan parameters are set. Thus, the floorplanning algorithms can meet 
values that differ from those initial decided parameters, but they approach to them. 

Table 6.1 presents the floorplan characteristics achieved for the three designed 
microprocessor versions. As defined in section 4.5, the initial core row utilizations were 
set to reach final core utilizations around 70 %. The initial aspect ratio was set to attain 
a square IC area, i.e., the value 1. Furthermore, initially, the left, right, top and bottom 
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I/O to core distances (x0, x1, y0 and y1 in Figure 6.1) were all equally set to 746.200 
µm in order to define the optimized area required for the routing. 

Table 6.1: Floorplan characteristics 

 Non-Protected TMR TMR+TR+CWSP 

Initial Core Row Utilization 75.30 % 73.30 % 64.00 % 

Final Core Row Utilization 70.48 % 70.85 % 70.97 % 

Number of Core Rows 48 58 69 

w Side Length of the Core 635.600 µm 754.600 µm 896.000 µm 

h Side Length of the Core 624.000 µm 754.000 µm 897.000 µm 

Initial Core Aspect Ratio 1.0000 1.0000 1.0000 

Final Core Aspect Ratio 1.0186 1.0008 0.9989 

Final Core Area 0.39661440 mm2 0.56896840 mm2 0.80371200 mm2 

Left, Right, Top and Bottom 
I/O to Core Distances 746.200 µm 746.200 µm 746.200 µm 

x Side Length of the Chip 2128.000 µm 2247.000 µm 2388.400 µm 

y Side Length of the Chip 2116.400 µm 2246.400 µm 2389.400 µm 

Final Chip Aspect Ratio 1.0055 1.0003 0.9996 

Final Chip Area 4.50369920 mm2 5.04766080 mm2 5.70684296 mm2 

Based on these initial constraints, the following final design results were obtained 
(Table 6.1): the final core utilization; the number of rows; and the final core and chip 
dimensions in accord to Figure 6.1. These final results were adjusted with the aim of 
placing and routing successfully all cells of the designs, as explained in section 4.5. The 
final I/O to core distances (x0, x1, y0 and y1) are the same values initially defined as 
746.200 µm. Note that the Non-Protected chip has around 4.504 mm2 and the 
TMR+TR+CWSP chip around 5.707 mm2. An area overhead evaluation among the 
three microprocessor versions is presented in section 6.1.3. 

 
Figure 6.1: Core and chip areas 
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Microprocessor-version illustrations as an IC preliminary view (before the final 
layout adjustments, i.e., before step 7 from the design flow in Figure 4.5) and the final 
IC layout are presented in Figure 6.2, Figure 6.3 and Figure 6.4 by a scale of 
approximately 28:1. Note that, in the preliminary view, the final routing and pad cells of 
power and ground were not defined yet. The axes h and y are in relation to Figure 6.1. 

  
Figure 6.2: Non-Protected IC version: preliminary view (left) and final layout (right) 

  
Figure 6.3: TMR IC version: preliminary view (left) and final layout (right) 

  
Figure 6.4: TMR+TR+CWSP IC version: preliminary view (left) and final layout (right) 
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At the final layouts from Figure 6.2, Figure 6.3 and Figure 6.4, the wires routed in 
four metal layers are represented by the following colors: blue (MET1), red (MET2), 
green (MET3) and  yellow (MET4). 

6.1.2 About Standard Logic Cells and Other Types of Cells 

In Table 6.2 all types of cells used by the designed circuits are listed. The number of 
cells (columns “Count”) and the area totalized by each type of cell are presented. 

The sequential and combinational logic cells indicated in Table 6.2 are classified as 
parts of the standard logic cells. In the target technology of this work, the sequential 
logic cells are memory cells like flip-flops and latches. However, in the designed 
circuits, such cells are only flip-flops. The combinational logic cells are logic gates like 
NOT, NOR, NAND, XNOR, buffers or circuits of logic gates like half adders, full 
adders, majority (AB+AC+BC), multiplexers, AND+OR+NOT blocks, 
OR+AND+NOT blocks. 

Table 6.2 shows also the gaps among the standard logic cells which are basically 
occupied with core-filler cells. The filler cell areas are the spaces for the routing 
finishing successfully. Information about corner cells is also shown. They are placed at 
each corner of the chips. As explained in section 4.5, it is to continue the pad ring 
sequence among I/O, power and ground pad cells that are placed around the core at the 
yellow area detailed in Figure 6.1. Periphery-filler cells are placed at the vacant spaces 
among corner and pad cells. Observe that the total number of cells in the Non-Protected 
chip is 6412 and in the TMR+TR+CWSP chip is 11994. Furthermore, Table 6.2 shows 
the area between the core and pad cells (row “Region for Routing”). It is the dark blue 
area detailed in Figure 6.1. This region is used for routing the power and ground rings 
and the interconnects among the core and the pad cells. 

Table 6.2: About standard logic cells and other types of cells (1) 

 Non-Protected TMR TMR+TR+CWSP 

Cells Count Area (µm2) Count Area (µm2) Count Area (µm2) 

Combinational Logic 3211 228501.00 3363 249958.80 5772 417271.40 

Sequential Logic 187 51051.00 561 153153.00 561 153153.00 

Core Filler 2754 117062.40 3690 165856.60 5329 233287.60 

Corner 4 463488.64 4 463488.64 4 463488.64 

I/O Pad 46 1565840.00 46 1565840.00 46 1565840.00 

Power Pad 3 102120.00 3 102120.00 3 102120.00 

Ground Pad 3 102120.00 3 102120.00 3 102120.00 

Periphery Filler 204 188717.76 232 358236.96 276 551856.48 

Region for Routing - 1684798.40 - 1886886.80 - 2117705.84 

Total Chip 6412 4503699.20 7902 5047660.80 11994 5706842.96 

Based on Table 6.2, Table 6.3 details the number of cells (columns “Count”) and the 
area about some sets of chip regions. The row “Logic” represents the sum of 
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combinational and sequential logic cells. As this sum can be obtained at initial design 
steps, preliminary estimated results in area, as emphasized in sections 4.3.1 and 4.5, can 
be evaluated based on this information. Results about the core are shown in row “Core”. 
The row “Filler” sums the core and periphery cells. The row “Pad” totalizes the pad 
cells. The row “Periphery” shows information for the “Periphery Cell Area” from 
Figure 6.1 that is occupied by corner, pad and filler cells. Moreover, the row “I/O to 
Core Region” indicates the region between I/Os and core. It is the yellow area plus the 
dark blue area from Figure 6.1. The existing cells in these yellow and dark blue areas 
are the periphery cells (corner, pad and filler cells) that do not determine the total area 
of this “I/O to Core Region”. It is because there is a part of this region used for routing 
where there are not cells. As discussed in the former paragraph, this part is that 
represented by the “Region for Routing” from Figure 6.1. 

Table 6.3: About standard logic cells and other types of cells (2) 

 Non-Protected TMR TMR+TR+CWSP 

Cells Count Area (µm2) Count Area (µm2) Count Area (µm2) 

Logic 3398 279552.00 3924 403111.80 6333 570424.40 

Core 6152 396614.40 7614 568968.40 11662 803712.00 

Filler 2958 305780.16 3922 524093.56 5605 785144.08 

Pad 52 1770080.00 52 1770080.00 52 1770080.00 

Periphery 260 2422286.40 288 2591805.60 332 2785425.12 

I/O to Core Region 260 4107084.80 288 4478692.40 332 4903130.96 

Based on the information from Table 6.2, Figure 6.5 illustrates the percentages of 
the core utilization by filler, sequential and combinational cells. 
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Figure 6.5: Core utilization 
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Observe in Figure 6.5 that the combinational logic cells prevail on the three 
microprocessor versions as in number of cells as in area. The count of standard logic 
cells (sequential and combinational logic) is a little higher than 50 % of the total core 
cells on the three architectures. The final core utilization indicated in Table 6.1 can be 
seen through this figure. It is represented by the area of the standard logic cells that use 
around 71 % of the core area. In consequence, around 29 % of the core area is required 
for the routing finishing successfully (the core-filler cell areas). 

See also that the core area on the Non-Protected version is defined around 0.397 
mm2 in Table 6.1 or Table 6.3. Note in Figure 6.5 that a part of 12.87 % of this area 
corresponds to 3.04 % of the total core cell count. This part is the sequential logic area 
composed of storage components (flip-flops) that are inherently susceptible to SEU. It is 
protected by the TMR on the robust microprocessor versions, i.e., this part is triplicated 
on these robust versions. Observe that the percentage of SEU susceptible cell area in the 
TMR+TR+CWSP version (19.06 %) is not so higher than in the Non-Protected version 
(12.87 %). 

Figure 6.6 is also based on Table 6.2 and analyzes the chip utilization by means of 
the typical circuit regions. Note that the biggest region on the three versions is around 
37 % of the chip area. It is that required for routing (dark blue area detailed in Figure 
6.1). Another big region is that related to the I/O pad cells that are big cells by nature. 
See also as the core area is small compared to the chip area. It is around 9 %, 11 % and 
14 % of the overall chip area respectively on the three architectures. In the robust 
microprocessor versions, note that the fault-tolerance mechanisms are implemented in 
these small chip parts (core areas). 
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Figure 6.6: Chip area utilization 
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6.1.3 Costs in Area against Robustness 

The TMR and TMR+TR+CWSP microprocessor versions use additional areas to 
obtain robustness. By using the area results presented in Table 6.2 and Table 6.3, the 
costs in area of these robust microprocessor versions can be evaluated based on the 
results of the Non-Protected version. Figure 6.7 and Figure 6.9 illustrate the percent 
overheads in number of cells to implement the fault-tolerance mechanisms in the Non-
Protected version. Figure 6.8 and Figure 6.10 show such overheads in area. 
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Figure 6.7: Percent increase in number of cells at chip areas (1) 
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Figure 6.8: Percent increase in chip areas (1) 
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Figure 6.9: Percent increase in number of cells at chip areas (2) 
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Figure 6.10: Percent increase in chip areas (2) 

Observe in Figure 6.7 and Figure 6.8 that the number of sequential logic cells and 
the area increase by 200 % in the TMR and TMR+TR+CWSP microprocessor versions. 
It is justified because the TMR technique is applied to protect all sequential logic cells 
in both versions. Thus, as discussed in section 3.1.1, it inherently triplicates the target 
components to be protected. In these TMR-based designs detailed in section 4.4.2 and 
4.4.3, the 187 sequential logic cells (flip-flops) from the Non-Protected version become 
3 × 187 = 561 flip-flops as emphasized in Table 6.2. 

On the other hand, note that the number of combinational logic cells increases by 
4.73 % and their area by 9.39 % in the TMR version. It is a result of the voter 
implementations that are circuits purely combinational. Furthermore, it is also due to the 
additional clock-tree elements (buffers and inverters) that are discussed in section 6.1.4. 
Since there are the 187 flip-flops in the Non-Protected microprocessor version, there are 
187 1-bit voter circuits in the TMR and TMR+TR+CWSP versions. In addition, there 
are the CWSP and delay blocks in the TMR+TR+CWSP version which are built by 
using combinational logic cells in order to mitigate SETs of widths up to around 1 ns. 
Therefore, due to the voter, CWSP and delay circuits for each one of the microprocessor 
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registers and due to the additional clock-tree elements, the number of combinational 
logic cells rises in 79.76 % and their area in 82.61 % in the TMR+TR+CWSP version. 

Figure 6.7 and Figure 6.8 also show increases in the core- and periphery-filler cells. 
The number of core fillers rises because the final core row utilization is almost the same 
in the three microprocessor versions. It is around 71 % as detailed in Table 6.1. As the 
area of combinational and sequential logic cells expands in the TMR and 
TMR+TR+CWSP versions, the 71 % of row utilization in these versions is bigger in 
area than the 71 % of row utilization in the Non-Protected version. Thus, as Figure 6.5, 
Figure 6.7 and Figure 6.8 explain, the 29 % of core-filler area in the robust versions are 
bigger than the 29 % in the Non-Protected version. 

See in Figure 6.7, Figure 6.8, Figure 6.9 and Figure 6.10 that as the I/O pins required 
by the robust versions are the same used in the Non-Protected version, there are not 
increases (0 %) in the corner and pad cells. By this reason and since the I/O to core 
distances (Table 6.1) are maintained in the three microprocessor versions but the core 
areas increase respectively by 43.46 % and 102.64 % in the TMR and TMR+TR+CWSP 
version (Figure 6.10). The consequence is that the periphery-filler area (Figure 6.8), the 
region of routing (Figure 6.8) and the I/O to core region (Figure 6.10) grow too. Note, 
however, that due to these issues, the total chip area increases are about four times 
lesser than those in core areas. In the TMR version, it grows by 12.08 % and in the 
TMR+TR+CWSP version by 26.71 %, as Figure 6.8 illustrates. Figure 6.9 and Figure 
6.10 also detail the increases in logic cells (combinational and sequential) and in filler 
cells (core and periphery). 

6.1.4 Clock-Tree Elements 

To avoid clock skew, a clock tree was created by an EDA tool to meet the same 
initial constraints in each microprocessor version (detailed in section 4.5, step 7). The 
clock-tree elements that build balanced clock networks in the target circuits are 
presented in Table 6.4. Observe that a total number of 38 combinational logic cells are 
added in the Non-Protected version to build the clock tree. In the TMR+TR+CWSP 
version, 107 combinational logic cells are added. 

Table 6.4: Clock-tree elements 

 Non-Protected TMR TMR+TR+CWSP 

Cells Count Area (µm2) Count Area (µm2) Count Area (µm2) 

Buffers 25 3494.40 49 7007.00 96 13904.80 

Inverters 13 582.40 11 509.60 11 509.60 

Total 38 4076.80 60 7516.60 107 14414.40 

Figure 6.11 illustrates the contributions of the clock-tree elements in relation to the 
total number of combinational logic cells, core cells and chip cells (columns “Count”). 
Furthermore, it shows the contributions in relation to the total combinational, core and 
chip areas. See that in the Non-Protected version 1.03 % of the core area is due to the 
clock-tree elements. In the TMR+TR+CWSP version these clock-tree elements 
represent 0.25 % of the chip area. Observe, however, that the actual areas used by the 
clock trees in the microprocessor versions are bigger than those shown in Figure 6.11 in 
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relation to core and chip areas. It is because this figure does not consider the area due to 
the interconnects among buffers and inverters of the clock tree. 
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Figure 6.11: Clock-tree element ratios to total combinational, core or chip elements 

6.1.4.1 Costs in Clock-Tree Elements against Robustness 

Based on the Non-Protected version, the extra costs in combinational logic cells to 
build the clock tree in the TMR and TMR+TR+CWSP versions are those detailed in 
Figure 6.12. Note that the number of clock-tree elements (combinational logic cells) 
increase by 57.89 % in the TMR version. It is a consequence of the flip-flop triplication 
from the TMR technique. As there are more flip-flops, i.e., more circuit nodes requiring 
the clock signal, there is a bigger clock tree. In the TMR+TR+CWSP version, the area 
due to the clock-tree cells rises in 253.57 %. Such growth is higher than those 84.38 % 
in the TMR version because the sequential and combinational logic area in the 
TMR+TR+CWSP version is higher than the logic area in the TMR version. Thus, due to 
the higher circuit complexity and larger core area in the TMR+TR+CWSP version, the 
distances of its circuit paths are larger. Therefore, more clock-tree elements are required 
to the clock signal reach successfully all nodes of the circuit. 
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Figure 6.12: Percent increase in clock-tree elements 

6.1.5 Routing Issues 

The designed circuits can be routed by using wires in four metal layers in accord to 
the target technology (AUSTRIAMICROSYSTEM, 2003). MET1 and MET3 layers are 
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used preferentially in horizontal routing. Otherwise, MET2 and MET4 layers are 
preferential in vertical routing. The wires used by the routing can be classified into 
special and regular wires. Special wires are those for power and ground 
interconnections. Regular wires are for interconnections among the cells. In Table 6.5, 
some information about the circuit routing can be seen such as the number of vias 
(connections between metal layers) and segments in the nets, besides the total length of 
wires and wire length per layer. See that the total length of all wires generated by the 
routing for the Non-Protected version is about 45.049 cm and for the TMR+TR+CWSP 
version about 66.864 cm. 

Table 6.5: Routing issues 

 Non-Protected TMR TMR+TR+CWSP 
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Based on Table 6.5, Figure 6.13 shows that in the three microprocessor versions the 
special wires correspond to around 12 % of the total wire length and the regular wires 



 

 

96 

around 88 %. On the other hand, Figure 6.14 emphasizes that MET3 predominates in 
the regular wire length (around 42 %) and in the total wire length (around 37 %). In the 
special wire length, MET1 is predominant (around 91 %). 
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Figure 6.13: Total wire length through the regular and special wires 
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Figure 6.14: Total wire length through the layers 

6.1.5.1 Costs in Routing Issues against Robustness 

In relation to Non-Protected version, the extra costs in wire length can be seen in 
Figure 6.15 for the TMR and TMR+TR+CWSP versions. Observe that the total length 
of all wires generated by the routing is increased by 17.14 % for the TMR version and 
in 48.42 % for the TMR+TR+CWSP version. Wires in MET1 have the highest increases 
in length in the TMR+TR+CWSP version. In Figure 6.16, the extra costs in vias and 
segments are illustrated. Note that in the TMR and TMR+TR+CWSP versions the total 
number of vias increases respectively by 9.82 % and 48.85 %. The total number of 
segments of interconnections is grown by 8.84 % in the TMR version and by 51.78 % in 
the TMR+TR+CWSP version. 
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Figure 6.15: Percent increase in wire lengths 
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Figure 6.16: Percent increase in vias and segments 

6.2 Performance Analysis 
Results about performance of the three microprocessor versions are discussed in this 

section. Performance generally refers to the maximum clock frequency at which the 
designed circuit can operate. By using a static timing analysis through an EDA tool, the 
critical path delay of the circuits can be obtained. As detailed in sections 4.5 (step 7) and 
5.1.1.1, based on the same initial constraints in each microprocessor version, the static 
timing analysis was performed at two steps: pre-layout and post-layout. 

In Table 6.6, results from the pre-layout and post-layout static timing analysis are 
presented respectively by the preliminary and final estimations of the worst arrival times 
in the microprocessor versions. Worst arrival time is defined as the time at which the 
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signal arrives at the other end of the worst circuit path from where this path starts. The 
maximum frequency is obviously the inverse ratio of this time. 

Observe that the maximum frequency achieved by the Non-Protected version is 
around 14.40 MHz and by the TMR+TR+CWSP version around 12.77 MHz. Otherwise, 
a CPU from the M68HC11E family designed by Freescale (FREESCALE, 2002) 
achieves a nominal speed of 3 MHz. However, this comparison might be unfair, since 
this Freescale’s design is implemented through a different fabrication process. It uses a 
HCMOS technology probably from a generation older than the AMS 0.35 µm CMOS 
technology (AUSTRIAMICROSYSTEM, 2003) used in the microprocessor versions of 
this present work. Furthermore, this Freescale’s implementation considers a power 
supply (vdd) of 5.0 V unlike the 3.3 V used in the circuits of this work. The nominal 
speed of 3 MHz recommend by Freescale respects also the lower speeds typically 
required by the compatible data and program memories that are habitually used in 
commercial applications based on this CPU. 

Table 6.6: Timing analysis results 
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Preliminary Estimation 36.01 27.77 38.86 25.73 39.74 25.16 

Final Estimation 69.45 14.40 75.93 13.17 78.29 12.77 

Figure 6.17 shows the contributions from the circuit-extraction information that are 
added in the preliminary estimations. Note that the worst arrival times at the final 
estimation are around 95 % higher than the preliminary estimation and the maximum 
frequencies are around 49 % higher. It occurs because at the preliminary estimation 
there are not details about the final routing. See that a performance analysis based only 
on preliminary estimation can be critical due to such differences. 
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Figure 6.17: Circuit-extraction information contribution at the worst arrival time 
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6.2.1 Costs in Performance against Robustness 

Figure 6.18 illustrates the costs in performance to implement the robustness in the 
Non-Protected microprocessor version. Observe that in TMR version, the worst arrival 
time rises in 9.33 % basically due to the voter block discussed in section 3.1.1. In the 
TMR+TR+CWSP version, the critical path delay is affected in 12.73 %. In accord to 
sections 3.1.1, 3.2.2 and 4.6.1, it is a result of the defined maximum SET width 
constraint (around 1 ns), the buffers for the delay blocks and the combinational logic 
gates for the CWSP elements and voter blocks. Furthermore, these timing degradations 
in the TMR and TMR+TR+CWSP versions are also due to the extra interconnects 
(wires) generated by reason of the additional components. 

9.33%
12.73%

-8.54%
-11.32%

Worst Arrival Time Maximum Frequency

TMR TMR+TR+CWSP

 
Figure 6.18: Timing degradation 

6.3 Power Analysis 
Estimations about the power consumption or in other words the power dissipation in 

the designed circuits are presented in this section. By using the circuit frames generated 
for the gate-level netlists of the three microprocessor versions, a power analysis through 
an EDA tool is able to estimate the power consumption in the circuits. The estimations 
consider the same initial constraints in each microprocessor version to specify input 
drivers and output loads, as detailed in sections 4.5 (step 7). 

In order to calculate the power dissipation in the cells, the power analysis tool takes 
into account the internal load capacitive power dissipation and the short circuit power 
dissipation, which are obtained from a look-up table in the technology library. 
Furthermore, the leakage power dissipation is also considered. It is obtained from a 
leakage power annotation in the technology library. About the power consumed by nets 
of wires or interconnects, the tools calculates the power dissipation due to the net 
capacitance and the capacitances of the pins driven by the nets (CADENCE, 2002). 

The leakage power consumption is defined as the static power estimation of the 
circuit. Regarding the power consumption inside the cells and in the nets, it is defined as 
the dynamic power estimation. Such estimation inherently requires computing the 
switching activity of circuit internal nodes unlike the static power estimation. The 
power analysis tool uses a probabilistic technique to propagate the switching activities 
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from the nodes containing the asserted values. If none of the logic nodes in the circuit 
contain assertion values, the tool assumes default values at the primary inputs and 
outputs of sequential elements (CADENCE, 2002). 

As mentioned in sections 4.3.1 and 4.5, a preliminary pre-layout power analysis and 
a more accurate final post-layout power analysis were performed. The preliminary pre-
layout evaluation is based on PKS analysis (CADENCE, 2002), a power analysis 
without stimulating dynamically the circuit inputs is considered. Only default values 
defined by the power analysis tool itself are fixed at the primary inputs and outputs of 
the sequential cells. On the other hand, in the final post-layout evaluation of power, the 
switching activity created by stimuli of benchmarks at circuit inputs is considered. More 
accurate power results can be obtained because actual toggle count values from the 
benchmark switching activity are used by the power analysis tool. 

Five benchmarks detailed in section 5.3 were considered in this final evaluation. 
Observe that the dynamic power estimation due to each one of these benchmarks 
indicates more accurately the dynamic power consumed by a part of the circuit (i.e., by 
a certain amount of nodes achieved by the stimuli of the benchmark). Habitual software 
applications normally do not use all parts of the circuit. It can be seen by the toggle 
coverage shown in Table 5.1 for each one of the benchmarks. These benchmarks use all 
microprocessor instructions and each one has a toggle coverage around 49 % and 66 %. 
However, note that the power analysis tool propagates probabilistically the switching 
activity to other nodes in order to achieve the whole of the circuit. On the other hand, in 
accord to section 5.3, a more accurate estimation could be obtained by using the five 
benchmarks in sequence, as a unique program. Thus, practically all circuit nodes would 
be attained. Nevertheless, the simulation and analysis tools would require memory 
resources and processing time that would be quite onerous to execute this task. In this 
way, a probabilistic approach is a sufficient analysis. 

Table 6.7 shows the static power estimation through the leakage power 
consumption, moreover, the dynamic power estimation by means of the power 
consumption inside the cells and in the nets. The leakage power in the Non-Protected 
microprocessor version corresponds roughly 0.24 µW and in the TMR+TR+CWSP 
version approximately 0.50 µW. See that the preliminary pre-layout power analysis (the 
PKS estimation discussed at the former paragraphs) indicates a total power consumed 
by the Non-Protected version about 0.301 mW and around 0.506 mW by the 
TMR+TR+CWSP version. The dynamic power due to the five benchamrks considers 
the periods of the program main loops detailed in Table 5.2. Observe that the Non-
Protected version consumes around 3.4 mW by using each one of the five benchmarks 
and the TMR+TR+CWSP version around 5.1 mW. 

In Figure 6.19, the percent distribution of the power components from Table 6.7 is 
shown for each benchmark and the PKS estimation. Note that the component related to 
the power consumption of cells corresponds to around 55 % of the overall consumption 
and the component due to wires or interconnects among cells approximately 45 %. The 
component related to the leakage power is a quite small part of the overall power. It is 
around 0.09 % for the PKS estimation and approximately 0.009 % for the benchmarks. 
In these results, the dynamic power consumption predominance is justified as a typical 
characteristic of technologies like that used in the designed circuits (CMOS, channel 
length of 0.35 µm). The static power component can constitute a significant portion of 
the total power consumption in more recent technologies based on lesser channel 
lengths (KIM et al, 2003). 
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Table 6.7: Power results 
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Figure 6.19: Total power through its components 

6.3.1 Costs in Power against Robustness 

By means of the TMR and TMR+TR+CWSP microprocessor versions, the extra 
costs in power due to the robustness applied in the Non-Protected microprocessor 
version can be analyzed based on the results from Table 6.7. In addition, observe that in 
the Non-Protected version, 88.54 % of the total leakage power and around 33 % of the 
total power consumption (dynamic power + static power) are due to the core area. Thus, 
the remaining 11.46 % of the total leakage power and the 67 % of the total power are 
consumed by the “Region for Routing” and “Periphery Cell Area” from Figure 6.1. 

Figure 6.20 illustrates the increases in leakage power dissipation. It increases around 
49 % in the TMR version and approximately 106 % in the TMR+TR+CWSP version. 

49.39%

105.90%

Leakage

TMR TMR+TR+CWSP

 
Figure 6.20: Percent increase in static power 

On the other hand, Figure 6.21 shows that the total dynamic power consumption in 
the TMR version elevates around 23 % by using each one of the benchmarks and 
around 49 % in the TMR+TR+CWSP version. The less accurate PKS estimation 
indicates increases by roughly 38 % and 68 % respectively. In Figure 6.22 is denoted 
that such results are practically the same in respect to the increases in total power 
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consumptions. It is explained by the dynamic power consumption predominance seen in 
Figure 6.19 and emphasized at the beginning of this section 6.3. Note that, as discussed 
in section 4.4, such increases in the TMR and TMR+TR+CWSP versions are basically 
due to the triplications of registers, inclusions of voters, additional clock-tree elements 
and required interconnects. Additionally, in the TMR+TR+CWSP version, the increases 
are also a result of the insertions of CWSP elements, delay blocks, additional clock-tree 
elements and their required interconnects. 
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Figure 6.21: Percent increase in dynamic power 
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Figure 6.22: Percent increase in total power 
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7 CONCLUSIONS AND FINAL REMARKS 

Inherently the implementation of any fault-tolerance mechanism involves additional 
overheads that claim a preliminary analysis before the IC manufacture. In the present 
work, fault-tolerance techniques were explored in such way that the most adequate ones 
for the target microprocessor were employed. Those techniques that use multiple clock 
networks and do not preserve the total number of clock cycles were avoided in order to 
conserve the standard microprocessor characteristics as detailed in section 4.2. The 
main goal was to evaluate the extra costs in area, performance and power due to such 
robustness implemented in this target circuit. 

The work also explained the basic design steps to develop at the RT level a robust 8-
bit microprocessor to SEs. By using a typical IC design flow, the front-end logical 
design and back-end physical design were developed. The design started from a VHDL 
description and achieved a GDSII stream file for manufacture. In addition, functional 
testing and fault injection simulations based on benchmark executions were performed 
in order to detect eventual design errors. Two robust microprocessor versions based on 
fault-tolerance techniques were designed. A microprocessor version protected by the 
TMR technique mitigates only direct SEUs. Another version mitigates direct and 
indirect SEUs as a result of the TMR and TR+CWSP protection techniques. 

Furthermore, the present work showed the viability of the CWSP element 
implementation by using a design flow based only on standard logic gates of any 
library. It determines that a robust circuit by means of CWSP elements is also able to be 
developed at the RT level without requiring specific non-standard gates or even full-
custom layout tools for the CWSP element design. In this way, the TMR and 
TR+CWSP protection schemes could be modeled as a unique reusable VHDL 
component which allows saving design time and development cost. 

Results detailed in chapter 6 and published in (BASTOS; KASTENSMIDT; REIS, 
2006-a, 2006-c, 2006-d) show the cost in area, performance and power to make robust 
the target microprocessor. The main design results are correlated in Figure 7.1 by means 
of their percent increases. 

To protect such target microprocessor only against direct SEUs (TMR version), the 
core area increases by 43.46 % (9.39 % in combinational cell area and 200 % in 
sequential cell area). It results in a performance degradation of 9.33 % and a power 
consumption growth around 23 % for the target benchmarks. The static power grows by 
49.39 %. The total length of all wires generated by the routing is increased by 17.14 %. 
Moreover, the extra cost in area due to the insertions of buffers and inverters to build 
the clock tree is + 84.38 %. 
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On the other hand, to protect the target microprocessor against direct and indirect 
SEUs (TMR+TR+CWSP version that mitigates SETs of widths up to around 1 ns), the 
core area practically doubles or it increases by 102.64 % (82.61 % in combinational cell 
area and 200 % in sequential cell area). It results in a performance degradation of 12.73 
% and a power consumption growth around 49 % for the target benchmarks. The static 
power grows by 105.90 %. The total length of all routed wires is increased by 48.42 %. 
Furthermore, the extra cost in area due to the clock-tree elements is + 253.57 %. 

Note also in Figure 7.1 that the increases in the chip areas are around four times 
lesser than in the core areas (TMR version: 12.08 %; and TMR+TR+CWSP version: 
26.71 %), since the required I/O pins and the I/O to core distances are the same in the 
three microprocessor versions, as explained in section 6.1.3. The total chip area of the 
TMR+TR+CWSP version is around 5.707 mm2. Note that such area is equivalent to 
approximately the following square: ��. 
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Figure 7.1: Correlation among design results 

As illustrated by these results, the implemented fault-tolerance techniques induce 
considerable overheads in area, performance and power. However, it is the required cost 
to protect the target microprocessor at the RT level without modifying its standard 
characteristics. In this way, due to the maintenance of compatibility between the 
standard non-protected architecture and the robust versions, the reliability and 
reusability of their existing hardware and software applications are guaranteed. 
Furthermore, these fault-tolerance techniques are simple and fast to be implemented by 
using the RT level. All these design issues trend to reduce the time-to-market and 
development cost. On the other hand, other protection technique solutions might 
improve these results but they cannot maintain such characteristics of simplicity, 
compatibility and robustness. Alternative solutions could be aggregating compensation 
techniques that maintain these characteristics and decrease these costs due to the 
robustness. An alternative solution to reduce the dynamic power consumption was 
proposed in (BASTOS; KASTENSMIDT; REIS, 2005-b). By using just some bytes of 
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the data memory and simple adjustments in the software applications, this low-power 
technique decreases the dynamic power consumption without penalties in area and 
performance. 

There are many future works that can be done based on the present work. The 
developed front-end logical design could be implemented by using a nanometer 
technology. In addition, other microprocessor versions able to mitigate smaller and 
larger SET widths than that maximum SET width allowed in the present design could be 
also implemented. The design results of these new microprocessor versions could be 
compared with the present results that are based on a micrometer technology. Thus, the 
differences of costs due to the robustness in different technologies and SET widths 
could be evaluated. 

To detect eventual design error, usual verification approaches such as timing 
analysis, functional testing and fault injection by simulation, and DRC were performed 
in the three designed microprocessor versions. Before the IC fabrication, other 
traditional checks like LVS and formal verification could be also performed to certify 
further these designs. Moreover, the suitable test vectors to detect eventual permanent 
faults based on the stuck-at fault model could be generated by simulation. Such faults 
could be injected in the designed circuit models, one at each simulation. Thus, by 
comparing the circuit outputs in simulations under fault with fault-free simulations, the 
test vectors that detect faults could be found. During the IC manufacture, such test 
vectors could be used at the circuit inputs by tester equipments. 

As emphasized in section 4.6, the redundant parts of a triplicated register being 
attacked at the same time are susceptible elements of the designed robust 
microprocessor. Furthermore, the combinational circuit that defines the clock tree and 
the voter circuits that achieve directly output pads of the chip are also vulnerable. In 
order to improve the fault coverage, such parts of the robust circuit even susceptible to 
faults could be protected by using other fault-tolerance techniques, even so nowadays 
such circuit debilities have typically low probabilities of inducing errors. 

Even though the implemented fault-tolerance techniques are typically considered 
efficient, an evaluation of those mentioned circuit debilities through fault injection 
experiments able to obtain the fault coverage could be performed. As discussed in 
section 5.4.5, it would require complex non-deterministic methods due to the peculiar 
characteristics of SETs. Since the main future goal of this work is manufacturing the 
three designed microprocessor versions, radiation ground test experiments could be 
performed on the prototypes of these target circuits to evaluate the effectiveness of the 
implemented fault-tolerance mechanisms. 
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APPENDIX PROJETO DE UM MICROPROCESSADOR 
ROBUSTO A SOFT ERRORS 

Resumo da Dissertação em Português 

O avanço das tecnologias de circuitos integrados (CIs) levanta importantes questões 
relacionadas à confiabilidade e à robustez de sistemas eletrônicos. A diminuição da 
geometria dos transistores, a redução dos níveis de tensão, as menores capacitâncias e 
portanto menores correntes e cargas para alimentar os circuitos, além das freqüências de 
relógio elevadas, têm tornado os CIs mais vulneráveis a falhas, especialmente àquelas 
causadas por ruído elétrico ou por efeitos induzidos pela radiação. 

Os efeitos induzidos pela radiação conhecidos como Soft Single Event Effects (Soft 
SEEs) podem ser classificados em: Single Event Upsets (SEUs) diretos em nós de 
elementos de armazenagem que resultam em inversões de bits; e pulsos transientes 
Single Event Transients (SETs) em qualquer nó do circuito. Especialmente SETs em 
circuitos combinacionais podem se propagar até os elementos de armazenagem e podem 
ser capturados. Estas errôneas armazenagens podem também serem chamadas de SEUs 
indiretos. 

Falhas como SETs e SEUs podem provocar erros em operações funcionais de um 
CI. Os conhecidos Soft Errors (SEs) são caracterizados por valores armazenados 
erradamente em elementos de memória durante o uso do CI. SEs podem produzir sérias 
conseqüências em aplicações de CIs devido à sua natureza não permanente e não 
recorrente. Por essas razões, mecanismos de proteção para evitar SEs através de técnicas 
de tolerância a falhas, no mínimo em um nível de abstração do projeto, são atualmente 
fundamentais para melhorar a confiabilidade de sistemas. 

Nos dias atuais, a complexidade dos circuitos através de System-On-Chips (SOCs), 
o usual time-to-market e as restrições orçamentárias de projeto têm levado projetistas a 
investigar técnicas de tolerância a falhas e fluxos de projeto mais versáteis. A 
reusabilidade de IPs de hardware desenvolvidos em alto nível e fluxos de projeto para 
CIs baseados em ferramentas de CAD auxiliam engenheiros a enfrentar tais exigências. 
Por outro lado, algumas técnicas de tolerância a falhas podem implicar em modificações 
indesejadas em características padrões de um sistema, especialmente quando o alvo é a 
reusabilidade de sistemas baseados em arquiteturas padrões como microprocessadores 
comerciais. Por exemplo, algumas técnicas exigem redes de relógio adicionais para 
detecção de falhas e ciclos de relógio extras para correção de falhas. A fim de 
economizar tempo de projeto e custo de desenvolvimento, deseja-se geralmente que as 
técnicas escolhidas não somente garantam a confiabilidade e reusabilidade de suas 
aplicações de hardware e software. Também se deseja que elas sejam facilmente ou no 
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mínimo aplicáveis no nível de projeto alvo e que elas se adaptem a cores comerciais 
padrões.  

Microprocessadores tais como algumas arquiteturas AMD, IBM e Intel (LIMA et al, 
2000-a, 2000-b; COTA et al, 2001; IYER et al, 2005) geralmente são protegidas contra 
SEUs diretos, mas não usualmente contra SEUs indiretos. As condições tecnológicas e a 
redução dos transistores tendem a exigir proteções também contra tais SEUs indiretos 
(SHIVAKUMAR et al, 2002). 

O propósito deste trabalho de dissertação é robustecer a SEs um microprocessador 
comercial 8-bits da família M68HC11 (FREESCALE, 2002) para a fabricação futura de 
um IC. A fim de economizar tempo de projeto, algumas restrições iniciais de projeto 
foram estabelecidas. O projeto do circuito tolerante a falhas deveria ser desenvolvido 
em alto nível como o nível RT. As técnicas de tolerância a falhas implementadas não 
deveriam usar múltiplas redes de relógio. Para qualquer aplicação, as técnicas deveriam 
preservar o número total de ciclos de relógio, mesmo que sob uma ocorrência de falha. 
Tais restrições iniciais mantêm as características da arquitetura padrão e assim a 
reusabilidade de aplicações do microprocessador. Além disto, estas restrições 
economizam custo de desenvolvimento. 

SETs em circuitos combinacionais do microprocessador, que podem potencialmente 
causar SEUs indiretos, são  aliviados através do uso de uma técnica de Redundância no 
Tempo (TR). O trabalho em (NICOLAIDIS, 1999) sugere mas não implementa uma 
abordagem de TR baseada em um elemento especial chamado Code Word State 
Preserving (CWSP) como aquele da Figura 1 (a). Um outro trabalho (ANGHEL; 
ALEXANDRESCU; NICOLAIDIS, 2000-b) avalia essa abordagem em área e 
performance através do uso de simples circuitos de teste, como somadores e 
multiplicadores, e portas não-padronizadas, tais como aquelas da Figura 1 (b), para 
implementar os elementos CWSP. Em (LAZZARI; ANGHEL; REIS, 2005), a mesma 
avaliação é feita para dois microprocessadores, MIPS e 8051, mas um gerador 
automático especial de layout implementa as portas não-padronizadas que caracterizam 
os elementos CWSP. A fim de aliviar SEUs diretos, em (LAZZARI; ANGHEL; REIS, 
2005) uma versão da técnica de Redundância Modular Tripla (TMR) que exige três 
sinais de relógio foi também implementada. No presente trabalho de dissertação foi 
implementada uma alternativa mais simples e rápida para projetar por meio do uso de 
apenas portas padrões, como aquela da Figura 1 (a), e sem uma ferramenta de layout 
extra como aquela apresentada em (LAZZARI; ANGHEL; REIS, 2005).  As definidas 
restrições iniciais de projeto são encontradas através desta alternativa. A meta foi 
avaliar os custos em área, performance e também potência e outros resultados de projeto 
dessa abordagem de tolerância a falhas no microprocessador alvo. Além disto, os 
elementos do esquema TR+CWSP e os registradores do microprocessador foram 
protegidos de acordo com a Figura 1 (c) através do uso de uma versão da técnica TMR 
que exige apenas um sinal de relógio para aliviar os SEUs diretos. 

A fim de obter os custos da robustez implementada na CPU alvo através do uso de 
apenas portas padrões, três versões do microprocessador foram desenvolvidas baseadas 
em uma descrição VHDL M68HC11 (THIBAULT, 2000): versão Não-Protegida, que 
é a arquitetura reorganizada da CPU sem qualquer mecanismo de tolerância a falhas; 
versão TMR que é somente protegida por TMR nos registradores e assim ela alivia 
apenas SEUs diretos; e versão TMR+TR+CWSP que é a versão robusta a SEUs 
diretos e indiretos através do esquema TMR+TR+CWSP. As três versões foram 
implementadas usando um fluxo de projeto para CIs baseado em células padrões em 



 

 

119 

 

tecnologia CMOS (AMS 0.35 µm, 4 níveis de metal, 3.3V) 
(AUSTRIAMICROSYSTEM, 2003) e ferramentas de CAD (CADENCE, 2002; 
MENTOR, 2004) para simulação, síntese, posicionamento, roteamento, extração, 
verificação e análise. 

 
Figura 1: Um esquema de proteção TR+CWSP através de portas padrões (a) e através 

de portas não-padronizadas (b). Em (c), o esquema de proteção TMR+TR+CWSP usado 

Três abordagens de simulação para verificação do projeto foram desenvolvidas para 
cada uma das versões do microprocessador com o objetivo de detectar eventuais erros 
de projeto. Um experimento para testagem funcional foi realizado através de simulações 
de verificação comportamental e simulações de verificação pré-layout e pós-layout no 
nível de portas. Um experimento de injeção de falhas foi feito por meio das simulações 
de verificação pós-layout no nível de portas. Além disso, uma análise de timing estática 
e um DRC foram realizados através de ferramentas de CAD. 

A Tabela 1 mostra os resultados de projeto estimados das três versões do 
microprocessador que foram desenvolvidas. 

Tabela 1: Resultados dos projetos em área, performance e outros 

Versões do Microprocessador 

Não-Protegida TMR 
Protegida contra 

SEUs Diretos 

TMR+TR+CWSP 
Protegida contra 

SEUs Diretos e Indiretos 

Área do Core (mm2) 

0,397 0,569 + 43,32 % 0,804 + 102,52 % 

Pior Tempo de Chegada (ns) 

69,45 75,93 + 9,33 % 78,29 + 12,73 % 

Comprimento Total das Conexões (mm) 

450,49 527,72 + 17,14 % 668,64 + 48,43 % 

Área Exigida pelos Elementos da Árvore do Relógio (µm2) 

4076,8 7516,6 + 84,38 % 14414,4 + 253,57 % 

Consumo de Potência Leakage (µW) 

0,2440 0,3645 + 49,39 % 0,5024 + 105,90 % 
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Observe na Tabela 1 que para a implementação TMR+TR+CWSP a performance foi 
afetada em 12,73 % como um resultado da restrição do máximo pulso de SET (cerca de 
1 ns), os buffers para o bloco de Atraso (para produzir a comparação pelo princípio da 
TR) e as portas para os blocos CWSP e Votador. O esquema de proteção da Figura 1 (c) 
implementado em todos os registradores aumentou a área em 102,52 % e a potência 
estática em 105,90 %. O comprimento total de todas as conexões geradas pelo 
roteamento foi aumentado em 48.43 %. Os custos extras em área devido as inserções de 
buffers e inversores para construir a árvore do relógio são também detalhados na Tabela 
1. A versão Não-Protegida é constituída de 3211 células padrões combinacionais 
(+79,76 % para versão TMR+TR+ CWSP) e de 187 células padrões seqüenciais (+200 
% para versão TMR+TR+CWSP). A área das células combinacionais da versão 
TMR+TR+CWSP corresponde a 51,90 % da area do core, a área de células seqüenciais 
19,05 % e a área de células filler 29,05 % (ou seja, o espaço para o roteamento finalizar 
com sucesso). O layout final com pads da versão de CI TMR+TR+CWSP resultou em 
uma área total de cerca de 5,707 mm2. 


