
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

ENGENHARIA DE COMPUTAÇÃO

EDUARDO DE MELO LEONARDI

Hardware Implementations of Trellis based
Decoders for Linear Block Codes

Final Report presented in partial fulfillment of the
requirements for the degree of Computer Engineer

Dipl.-Ing. Stefan Scholl
Advisor

Prof. Dr. Valter Roesler
Coadvisor

Porto Alegre, Dezember 2013

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Prof. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do curso: Prof. Marcelo Götz
Bibliotecário-Chefe do Instituto de Informática: Alexsander Borges Ribeiro

“Success is not the position you stand
but the direction in which you look.”

ACKNOWLEDGEMENTS

I thank my tutor Dipl.-Ing. Stefan Scholl for conducting my work at the University
of Kaiserslautern. I would also like to thank Prof.Dr.Ing Nobert Wehn for the amazing
work structure of the Microelectronic Systems Design Research Group and my co-advisor
Prof.Dr. Valter Roesler for his suggestions which certainly added value to this work.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 77

LIST OF FIGURES . 88

ABSTRACT . 1010

RESUMO . 1111

1 INTRODUCTION . 1212
1.1 Motivation . 1212

2 CHANNEL CODING . 1414
2.1 Basics . 1414
2.2 Block Codes . 1515
2.2.1 Generator Matrix . 1616
2.2.2 Parity Check Matrix . 1616
2.3 Convolutional Codes . 1717
2.3.1 Introduction to Convolutional Codes . 1717
2.3.2 The Difference between Block Codes and Convolutional Codes 1818

3 DECODING OF LINEAR BLOCK CODES 2020
3.1 Soft-input Decoding . 2020
3.2 The Word Correlating Decoder . 2222
3.3 The Viterbi Algorithm . 2222
3.3.1 Trellis Diagram for Linear Block Codes 2222
3.3.2 The Viterbi Algorithm Using a Trellis Diagram. 2323
3.4 The (MAX)-Log-MAP Algorithm . 2525

4 BLOCK CODES DECODER ARCHITECTURES 2727
4.1 The Viterbi Decoder . 2727
4.2 Recursion Unit . 2727
4.3 Survival Memory and Traceback . 3131
4.4 Doubling the Throughput . 3232
4.5 Quantization . 3333
4.6 Modulo Normalization . 3535
4.7 The MAX-Log-MAP Decoder . 3636
4.8 FPGA Implementation . 3838

5 IMPLEMENTATION RESULTS . 4040
5.1 Viterbi Decoder . 4040
5.2 MAX-Log-MAP Decoder . 4343
5.3 Validation of the Work . 4646

6 CONCLUSION . 4747
6.1 Future Work . 4747

REFERENCES . 4949

APPENDIX A ALGORITHMS EXAMPLES 5151
A.1 An Example of Viterbi Algorithm for Block Codes 5151
A.2 An Example of Max-Log-Map Algorithm for Block Codes 5353
A.3 A Convolutional Code Example . 5555

APPENDIX B RELATED WORK . 5757
B.1 Article published at the Advances in Radio Sciences Journal 5757

APPENDIX C VHDL CODE . 6464
C.1 Block Codes Trellis Decoders Package 6464
C.2 Viterbi Decoder Top Level . 6969
C.3 MAX-Log-MAP Top Level . 7272

LIST OF ABBREVIATIONS AND ACRONYMS

ACS Add Compare Select

APP A-Posteriori-Probability

CS Compare Select

FEC Forward Error Correction

FSM Finite State Machine

FER Frame Error Rate

FPGA Field-Programmable Gate Array

LLR Logarithmic Likelihood Ratio

LUTs Look Up Tables

MAP Maximum a Posteriori

ML Maximum Likelihood

PCM Parity Check Matrix

PN Permutation Network

RAM Random Access Memory

RU Recursion Unit

SISO Soft-Input Soft-Output

SNR Signal to Noise Ratio

TS Trellis States

VA Viterbi Algorithm

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

LIST OF FIGURES

2.1 A digital communication system. 1414
2.2 A convolutional encoder. 1717
2.3 The FSM representation of a convolutional encoder. 1818
2.4 A Trellis diagram for convolutional codes. 1818

3.1 LLR as function of Pr(yk|tk = 1). 2121
3.2 PDFs for each modulated symbol using a BPSK 2121
3.3 A Trellis diagram for a linear block code [11]. 2323
3.4 Metrics used in the LLR calculation of Λk [22]. 2626

4.1 Block diagram of a Trellis decoder for block codes. 2727
4.2 Recursion unit for a generic block code. 2828
4.3 ACS unit . 2929
4.4 Control of the switches. (a) Control = 1→ swap inputs. (b)Control =

0→ do not swap inputs. 2929
4.5 Two permutation networks with 4 inputs. (a) Butterfly permutation

network. (b) Banyan permutation network. 3030
4.6 An 8x8 Banyan PN construction example. 3131
4.7 Number of switches used by the Benes and the Banyan PN 3232
4.8 SMU architecture. 3232
4.9 Data processing of the Viterbi decoder using: (a) one survivor mem-

ory and sequential processing (b) two survivor memories and parallel
processing . 3333

4.10 The quantization process. 3434
4.11 VA FER for the Extended Hamming (32,26) code considering differ-

ent quantizations. 3434
4.12 The MAX-Log-MAP decoder architecture. 3636
4.13 MAX-Log-MAP decoder data processing. 3737
4.14 A compare select binary tree. 3737
4.15 Controlling state machine of the Viterbi Decoder. 3939
4.16 Controlling state machine of the MAX-Log-MAP Decoder. 3939

5.1 Area occupied by each component of the Viterbi decoder 4141
5.2 Viterbi decoder’s registers as function of the number of Trellis states. 4242
5.3 Viterbi decoder throughput as function of the number of Trellis states. 4242
5.4 MAX-Log-MAP decoder LUTs usage as function of the number of

Trellis states. 4343

5.5 MAX-Log-MAP decoder’s registers as function of the number of
Trellis states. 4444

5.6 MAX-Log-MAP decoder throughput as function of the number of
Trellis states. 4545

A.1 A Viterbi Algorithm for Block Codes Example. 5252
A.2 A Max-Log-Map Algorithm for Block Codes Example. 5454
A.3 A convolutional decoder example. 5656

ABSTRACT

Forward error correction based on convolutional codes or block codes is an essen-
tial part in today’s communication systems. If convolutional codes are used, mostly the
graphical trellis representation of a code is used in decoding. Efficient trellis based decod-
ing algorithms can then be used, such as the Viterbi algorithm (VA)[33] or the maximum a
posteriori algorithm (MAP)[44].

However, it is shown in [11] that a linear binary block code can also be represented by
a Trellis diagram. Then, the efficient VA and MAP can also be applied to block codes.

This work presents two new architectures for the VA and MAP for block codes and
their implementation on FPGA. First, we construct a Viterbi decoder and show how a
Banyan permutation network can be used to solve the time variance problem of a Trellis
diagram for block codes. Afterwards, we use part of the presented to design a MAX-Log-
MAP decoder for linear block codes. To our best knowledge they are the first hardware
implementations of these kind.

We present implementation details for FPGA designs (Xilinx Virtex 6) of VA and
MAP decoders for different trellis sizes. The FPGA designs are analyzed and compared,
regarding resource consumption and data throughput. For a 64 state trellis the VA con-
sumes 2800 LUTs and achieves a throughput of 140 Mbit/s, the MAP consumes 6800
LUTs at 70 Mbit/s.

Keywords: FEC, viterbi algorithm, MAP algorithm, block codes.

RESUMO

Implementações em Hardware de Decodificadores baseados em Treliça para
Códigos Bloco Lineares

Correção de erro do tipo FEC (do Inglês Forward Error Correction) baseados em códi-
gos bloco ou convolucionais é uma importante parte dos sistemas de comunicação atuais.
Se códigos convolucionais são usados, normalmente a representação em treliça do código
é utilizada na decodificação. Dessa forma, eficientes algoritmos de decodificação podem
ser utilizados, como o algoritmo de Viterbi (VA)[33] e o máximo a posteriori (MAP)[44].

Contudo, é mostrado em [11] que códigos bloco lineares também podem ser represen-
tados por um diagrama em treliça. Assim, os algoritmos VA e MAP também podem ser
utilizados na sua decodificação.

Esse trabalho apresenta duas novas arquiteturas para o VA e o MAP para códigos
bloco e suas implementações em FPGA. Primeiro, nós construímos um decodificador
Viterbi e mostramos como uma rede de permutação de Banyan pode ser usada para resol-
ver o problema da variancia no tempo discreto de um diagrama em treliça para códigos
bloco. Depois disso, nós reusamos a unidade de recurção do decodificador Viterbi para
implementar um decodificador MAX-Log-MAP para códigos bloco. Para o nosso melhor
conhecimento, elas são as primeiras implementações em hardware desse tipo.

Nós apresentamos detalhes de implementação em FPGA (Xilinx Virtex 6) do decodi-
ficador Viterbi e MAP para diferentes tamanhos de treliça. As implementações em FPGA
são analisadas e comparadas, considerando o uso de recursos e vazão de dados. Para um
diagrama em treliça com 64 estados, o VA consome 2800 LUTs com uma vazão de 140
Mbit/s. Já o MAP consome 6800 Luts a 70 Mbit/s.

Palavras-chave: FEC, Viterbi, MAP.

12

1 INTRODUCTION

In recent years, there has been an increasing demand to reliably transmit data over
noisy communication channels at high transmission rates. Shannon stated that by using
error correcting codes, it is possible to reliably transmit data over noisy channels, as long
as the information rate is lower than the channel capacity. The error codes add redundancy
to the input message and exploit this redundancy when decoding the received message.
The aim of channel coding is to find error correcting codes that allow quick and reliable
transmission of data.

1.1 Motivation

Two important error correcting codes exist to transmit data over noisy channels: block
codes and convolutional codes. An important difference between these two codes is that
if convolutional codes are used, usually the graphical trellis representation is used in de-
coding. Efficient trellis based decoding algorithms can than be used, such as the Viterbi
Algorithm (VA)[33] and the Maximum a Posteriori (MAP)[44] algorithm. These both al-
gorithms applied to convolutional codes are particulary suitable for implementations in
hardware. The VA performs Maximum Likelihood (ML) decoding and outputs the most
probably sent codeword. According to the common literature, ML decoding achieves the
best possible error rates.

ML decoding for block codes is achievable by using word correlating decoders. But
this method is inefficient and even intractable for large codes. Back in 1978, Jack Wolf
wrote a paper [11] showing that soft decision ML decoding of any (n,k) linear binary block
code can be accomplished by using the Viterbi algorithm [33] applied to a Trellis diagram
with no more than 2n−k states, called Wolf’s trellis diagram. Thus, the ML decoding
complexity for block codes can be reduced. To our best knowledge, this idea has never
been explored to construct a physical hardware.

The aim of this thesis is to present hardware architectures of Trellis based decoders
for block codes. Trellis decoders for block codes have many different applications. Some
of their use cases are:

1. as a maximum likelihood decoder for small block codes.

2. as a component decoder for turbo product codes [55].

3. as a check node decoder for generalized LDPC codes [66].

4. as a component for soft decision decoding of Reed-Solomon codes [77] [88].

13

The Wolf’s trellis diagram is first used to develop an architecture for a Viterbi decoder.
In more powerful decoding systems, the concept of feedback - a well-known technique

in electronics – is implemented between the two component decoders The use of feedback
requires the existence of Soft-Input Soft-Output (SISO) decoding algorithms for both
component codes. An application example for SISO decoding are block turbo codes [55]
[99]. The Viterbi algorithm outputs the most likely codeword sent, but does not output
any information on the reliability of the decisions made. Thus, the VA is not suitable for
turbo code applications. The second decoder presented in this thesis is a MAX-Log-MAP
decoder for block codes, a soft output decoder which makes estimation of bits based on
the whole received block [44].

Structure of the thesis.
We first give a general overview on the basics of channel coding in Section 2. Section

3 contains decoding algorithms for linear block codes. The decoders’ architectures and
implementation issues are given in Section 4. Section 5 contains the implementation
results. Finally, Section 6 presents our conclusions and an outlook on future work.

14

2 CHANNEL CODING

This thesis deals with the topic of hardware implementations of trellis based decoders
for linear block codes. Therefore, basic knowledge of channel coding theory is needed
for its understanding. We introduce the basic concepts of channel coding in this Section.
The first section presents a brief introduction to communication systems. In the following
sections, we will discuss the structure of block codes and convolutional codes, as well as
their differences.

2.1 Basics

Figure 2.12.1 shows a generic simplified communication system. The information source
produces the message m to be transmitted. One important function of channel coding
is Forward Error Correction (FEC). In order to combat the noisy environments through
which the data must be transmitted, the channel encoder introduces, in a controlled man-
ner, redundant bits to the message m. The output of the encoder is an encoded sequence c
called codeword. Other important functions of channel coding are channel measurement
and a more uniform distribution of errors through the use of interleavers. However, in this
work we are concerned only with the FEC function of channel coding.

Information
Source

Channel
Encoder

m Digital
Modulator

c

Discrete
Channel

x

n

yrm̂Destination
Channel
Decoder

Digital
Demodulator

Figure 2.1: A digital communication system.

The discrete symbols of the codewords are not suitable to be transmitted over a phys-
ical channel. Thus, the modulator maps these discrete symbols to modulated symbols t

15

called the transmit sequence, which is suitable for the channel. Many kinds of modulation
schemes exist. One of the most common ones, the BPSK, is assumed along this thesis.

The modulated symbols enter the channel and are affected by random noise n. Dif-
ferent types of noise disturbances exist and each channel is subject to many of them.
Defining n as an additive white noise Gaussian variable with zero mean and variance σ2,
the output of the channel can be expressed as:

y = x+ n (2.1)

The demodulator processes the received symbols y and transforms them into a re-
ceived sequence r.

For each code type different decoding techniques exist. The channel decoder analyzes
the received sequence and tries to overcome the signal degradation introduced by the
channel. For this, the decoder uses the redundant information introduced by the encoder.
The choice of the decoding strategy is dependent on the application at issue and the noise
characteristics of the channel.

The decoder delivers the estimated message m̂ correspondent to the chosen codeword
c to its final destination. Ideally, m̂ should be equal to m, but the noise introduced by the
channel might cause some decoding errors.

2.2 Block Codes

In block codes, the data is encoded into blocks. An (n, κ) block code over the finite
field GF (q) is a set of qκ n-tuples called codewords. An important property of a linear
block code it forms a k-dimensional vector space. This property allows a more compact
representation for the code, as we will show in Section 2.2.12.2.1.

Definitions:

1. Let Σk be a vector over the finite fieldGF (q), containing the k-tuple messagesm of
a block code and Σn be an alphabet over the same field containing blocks of length
n.

2. The Hamming distance between two strings of equal length is the number of posi-
tions at which the corresponding symbols are different.

3. The Hamming weight of a codeword is equal to the non-zero components of the
codeword.

4. The minimum Hamming weight ωmin of a code is the smallest Hamming weight of
any non-zero codeword c ∈ C.

Associated with the code is an encoder. The encoding function is an injective mapping
C : Σκ → Σn which encodes each message mi individually to a different codeword ci.
There should be an one-to-one correspondence between a message m and its codeword.
Hence, among all the 2n words w ∈ Σn, only 2k are codewords. The length of the code is
the number n, whereas dimension of the code is called κ. The code rate is R = κ/n and
designates the percentage of information bits transmitted in relation to the total number
of bits.

16

An important property of a block code is its minimum distance dmin. It is defined as
the minimum number of amendments which may transform one codeword into another.
More formally, the minimum distance can be expressed as:

dmin = min
m1,m2∈Σk,m1 6=m2

∆(C(m1), C(m2)) (2.2)

where C is the encoding function and ∆(C(m1), C(m2)) denotes the Hamming distance
between the codewords c1 and c2.

The minimum distance is a measurement of how capable the code is of detecting or
correcting errors. A code with minimum distance dmin is capable of detecting (dmin − 1)
errors or correcting (dmin − 1)/2 errors. An easier way to find the code’s minimum
distance is to take its minimum Hamming weight, since a linear block code satisfies
dmin = wmin.

2.2.1 Generator Matrix

A block code can be represented as a list. For large κ, this representation is too
complex to store and decode. Here, we present a more compact representation for a linear
block code.

Since a block code is a κ-dimensional vector space, a set of κ linearly independent
vectors g0, g1, ..., gκ−1 of length n exists, so that every codeword c ∈ C is a linear combi-
nation of these vectors [1010]:

c = m0g0 +m1g1 + ...+mκ−1gκ−1, (2.3)

where mi ∈ GF (q) are constants and all the arithmetic is done over modulo q. Thinking
of gi as a rows of a matrix:

G =




g0

g1
...

gκ−1


 (2.4)

and letting m = [m1,m2, ...,mκ−1] be a message, from equation 2.32.3 we define an
encoding operation for block codes as:

c = mG (2.5)

Every codeword c ∈ C can be represented as a multiplication of a vector m with the
matrix G. Since the rows of G generates the (n, κ) code C, G is called the generator
matrix of C. Representing a code thus requires storing only κ vectors of length n, instead
of storing all the 2κ codewords.

2.2.2 Parity Check Matrix

The Parity Check Matrix (PCM) is especially important for the decoding process of
linear block codes. It contains information on the redundant bits and is used in many
decoding algorithms for block codes. We now present how to derivate such a matrix.

A Parity Check Matrix H for a code C is obtained by taking the generator matrix of
its dual code C⊥ [1010].

17

uk
0

vk
1

vk
0

Register Register

Figure 2.2: A convolutional encoder.

AsC⊥ is a vector space with dimension n−κ and a basis denoted by h0, h1, ..., hn−κ−1,
we build the matrix H by using these basis vectors as rows:

H =




h0

h1
...

hn−κ−1


 (2.6)

The generator matrix and the parity check matrix for a linear code satisfy:

GHT = 0 (2.7)

Hence, the parity check matrix for a code can be determined from its generator matrix
and vice versa. Moreover, a vector v ∈ Σn is a codeword of C, if and only if:

vHT = 0 (2.8)

We use Equation 2.82.8 to derive a trellis diagram for block codes in section 3.33.3.

2.3 Convolutional Codes

Although the decoding of convolutional codes is not the topic of this thesis, it is con-
venient to present the differences between block codes and convolutional codes. Con-
volutional codes are widely used and their decoding implementation issues are already
known. In addition, part of the work presented here is based on trellis based decoders for
convolutional codes, especially the work presented in [22].

2.3.1 Introduction to Convolutional Codes

In the following, we will give a brief introduction to convolutional codes.
In a convolutional code, at each time step, a stream information sequence u is divided

into groups of κ information bits uk = {u0
k, u

1
k, ..., u

κ−1
k } which are encoded to code bits

vk = {v0
k, v

1
k, ..., v

n−1
k } of length n, with k being a step time.

A convolutional encoder has m memory elements (registers) which stores data from
the past bits. Thus, the output of the decoder depends on m+ 1 past bits. The encoding is
made by the convolution of the input stream with the encoder’s impulse responses. Each
one of the n impulse responses is associated to a generating polynomial {g0, ..., gn} of
maximal degree m.

A Mealy Finite State Machine (FSM) is the most common representation of a convo-
lutional encoder. For the encoder of Figure 2.22.2, the FSM is shown in Figure 2.32.3.

18

10

01

00 11

1/
11

1/01

0/
010/11

0
/1
0

1
/1
0

1
/1
0

0
/0
0

Figure 2.3: The FSM representation of a convolutional encoder.

Convolutional Codes are not the main scope of this thesis. For those who have interest
in learning more about their operation, we provide an example of encoding and decoding
using convolution codes in Appendix A.3A.3.

2.3.2 The Difference between Block Codes and Convolutional Codes

Convolutional decoders work with streams of data which conceptually can be in-
finitely long. In practice, the stream is truncated and transmitted in blocks of fixed length.
Block code decoders work with the so-called block of codewords. Each block of data to
be transmitted has a specific length n.

In comparison to the convolutional codes, where the code performance is function
of the number of its memory elements m and the error correction is possible given the
illegal state transitions, for block codes, the code performance is function of its minimum
distance dmin and the error correction is made based on the fact that not every received
string v ∈ Σn is a valid codeword.

Trellis Diagram:
We will now discuss the differences between Trellis diagrams for block codes and for

convolutional codes. The Trellis diagram is an important tool for channel decoding. We
will give further information concerning the Trellis diagram in Section 3.33.3.

We obtain a Trellis diagram for convolutional codes by unrolling the encoder’s state
machine over discrete time. Such a diagram presents all the possible state transitions of
the convolutional encoder. Figure 2.42.4 shows a Trellis diagram for the state machine of
Figure 2.32.3. In Section 3.33.3, we present a method for constructing a Trellis diagram for
block codes. Such a diagram is a compact method of representing all of the code’s code-
words, in which every distinct path through the Trellis represents a different codeword.

00 00

10

01

00

10

11

01

00

10

11

01

00

10

11

k=0 k=1 k=2 k=3 k=4

Figure 2.4: A Trellis diagram for convolutional codes.

19

The structure of a Trellis diagram for convolutional codes is very regular. By ex-
amining the structure of the Trellis diagram shown in Figure 2.42.4 step-by-step, the same
transitions can be observed. For block codes, the structure of the trellis is time variant [11].
The transitions change at each time step. Therefore, the decoding of block codes using
a Trellis diagram is more complex. In Section 44 we present architectures of block code
decoders and explain how to overcome this problem.

20

3 DECODING OF LINEAR BLOCK CODES

This Section presents three different decoding algorithms for linear block codes. We
start by discussing the importance of soft-input decoding.

3.1 Soft-input Decoding

As shown in Section 2.12.1, the transmit sequence t is disturbed by a white noise Gaus-
sian variable n with zero mean and variance σ2.

Following [22], for an AWGN channel and considering a BPSK modulator, which maps
the binary symbols ck ∈ {0, 1} to modulated symbols tk ∈ {−1, 1}, with tk = 1 − 2ck,
the probability density function (PDF) for each output symbol results in:

p(yk|tk) =
1√

2πσ2
exp(−(yk − tk)2

2σ2
) (3.1)

Instead of using hard decisions, where each received bit is considered to be definitely
one or zero, we make the decoding based on soft decision. Soft decision decoding means
that the decoding process uses channel measurement information, i.e., it makes use of the
probability that every received code symbol has to be either one or zero. This probability
comes from the PDF and is expressed as a logarithmic likelihood ratio (LLR) [1010]:

λk(yk|tk) = ln
Pr(yk|tk = 1)

Pr(yk|tk = −1)
= ln

Pr(yk|tk = 1)

1− Pr(yk|tk = 1)
(3.2)

Alternatively, a LLR can be expressed in its inverse form:

λ̃k(yk|tk) = ln
Pr(yk|tk = −1)

Pr(yk|tk = 1)
(3.3)

The way that the LLRs are defined affects the way that the decisions of the decoding
algorithms are made. We use the LLR definition as in Equation 3.23.2 through this thesis.

Figure 3.13.1 shows λk as function of Pr(yk|tk = 1). The sign of λk is the hard decision
of yk while |λk| is a measure of reliability.

For better understanding of the LLRs consider the two PDFs plotted in Figure 3.23.2. It
shows one PDF for each possible modulated symbol tk considering a BPSK modulator.
If the signal degradation is high enough, it can happen that one modulated symbol moves
toward the other one and slightly crosses the y-axis (x = 0). In this scenario, the hard
decision of this received symbol would be the other symbol (not the one sent). But as
Pr(yk|tk) would be close to 1/2, the corresponding LLR and thus the reliability of the

21

-6

-4

-2

0

2

4

6

0 1

λ k

Pr(yk|tk = 1)

Figure 3.1: LLR as function of Pr(yk|tk = 1).

0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -3 -2 -1 0 1 2 3 4
x

tk = -1
tk = 1

pd
f(x

)

Figure 3.2: PDFs for each modulated symbol using a BPSK

22

received symbol would be close to zero. The higher the variance of the random noise
variable is, the more spread these curves are over the x-axis.

In case of soft-input decisions, the received symbols rk assume arbitrary values. Oth-
erwise they assume values in the set {−1, 1}. A lot of information that can be used in
favor of the decoder is lost if hard-decisions are used. The use of LLRs gives the decoder
a measure of how reliable each bit is.

3.2 The Word Correlating Decoder

Given a list with all the 2k codewords of a code, the correlation decoder solves the ML
criteria by finding the codeword c that maximizes the correlation between a codeword c
and the received sequence r:

max
c∈C

Pr(y|c) = max
c∈C

n−1∏

k=0

Pr(yk|ck) (3.4)

Alternatively, it is also possible to maximize its logarithm:

max
c∈C

lnPr(y|c) = max
c∈C

n−1∑

k=0

lnPr(yk|ck), (3.5)

Using the definition of LLR given in section 3.13.1, with rk being an LLR, the chosen code-
word is the one that minimizes:

n−1∑

k=0

rkck (3.6)

The decoder must then compare every codeword with the input LLRs. Hence, its
computation complexity is intractable for large k. The Viterbi Algorithm (VA) organizes
the computation in a more efficient recursive form. We used the word correlating decoder
in this thesis only to test the results generated by the VA, as they both solve the same
problem.

3.3 The Viterbi Algorithm

Before we proceed with the explanation of the Viterbi algorithm, we will describe how
to construct a Trellis diagram for linear block codes. The Viterbi algorithm uses such a
diagram to find the most likely sent codeword c given the input LLRs.

3.3.1 Trellis Diagram for Linear Block Codes

There is a graph associated with a block code. This graph is called Wolf Trellis for the
code. All the paths through the Trellis correspond to the words v that satisfy the parity
check condition: vHT = 0. In this section, we will describe a practical way of how to
build a trellis diagram for binary block codes with parity check matrixH . A more general
and detailed construction of a trellis diagram for block codes over GF (q) is presented in
[11].

A trellis for block codes is a collection of nodes belonging to states S = {S0, S1, ..., S2n−κ−1}
grouped into sets indexed by k. Si,k denote a node from a state i at step k.

Let Hk denote the k − th column of H , with H1 being the first column.
The construction algorithm then is as follows:

23

k=0 k=1 k=2 k=3 k=4 k=5
 S0

 S1

 S2

 S3

0 0 0 0

0

0

0

0

1 1 1

1

1

1

1

1

0

0

1

1

Figure 3.3: A Trellis diagram for a linear block code [11].

1. At depth k = 0 there is only one node S0,0.

2. For each step k = {0, 1, ..., n}, the collection of nodes in depth (k + 1) as well as
the connections among the states are calculated from the nodes at depth k for each
unidirectional connection αj ∈ {0, 1}, by using the following formula:

Sl,k+1 = Si,k ⊕ αjHk+1 (3.7)

The above formula shows that considering binary block codes, for zero-transition
the state is maintained, while for one-transition the next state is calculated based on
the columns of H .

3. We remove the nodes that do not have a path to the all-zero state at depth n, S0,n,
as well as the lines drawn to this nodes.

For a code with parity check matrix:

H =

[
1 1 0 1 0
1 0 1 0 1

]
=
[
h1 h2 h3 h4 h5

]
(3.8)

the corresponding Wolf Trellis diagram is shown in Figure 3.33.3.

3.3.2 The Viterbi Algorithm Using a Trellis Diagram.

A codeword c corresponds to a path through the Trellis. Due to the noise introduced
by the channel, the received sequence r may not correspond to a codeword. The VA finds
the path through the Trellis which is the closest to the received sequence r.

The Viterbi algorithm solves the maximum likelihood criteria presented in Section
3.23.2:

max
c∈C

n−1∑

k=0

lnPr(yk|ck) = min
c∈C

n−1∑

k=0

γ(yk|ck), (3.9)

where γ(yk|ck) is a branch metric.
The branch metrics are the weights of the Trellis diagram’s transitions and they are

used in the Viterbi algorithm’s decisions. A branch metric γi,lk,k+1 is assigned to each
possible state transition at time step k: Si,k → Sl,k+1.

If on the one hand, a trellis diagram for block codes is more complex, the calculation
of its branch metrics on the other hand is much simpler.

24

Branch Metrics

Given a received channel symbol rk, obtained from a transmitted bit ck which is the
corresponding output of a state transition represented by a trellis diagram, considering an
AWGN channel, for linear binary block codes, the branch metrics calculation is:

γi,lk,k+1 = ckrk =

{
rk, if i 6= l

0, otherwise
(3.10)

The above formula shows that the branch metrics of all transitions which mantain the
state (zero-transitions) are zero, while the branch metrics of the one-transitions are the
current input symbol (LLR) at step k.

Viterbi Algorithm

The Viterbi algorithm [33] is comprised of two parts: a forward recursion and a trace-
back. The forward recursion accumulates probabilities for all states based on the current
input symbol by using the state transitions represented by a trellis diagram. The traceback
part reconstructs the original data, once a path through the trellis is identified.

Definitions:

1. A path to a state i at step k is the collection of all the k decisions made up to the
time k that lead to the state i.

2. A state metric at a step k is a measure of how good the path that leads to this state is
in comparison to the paths that lead to the other states. Hence, only the difference
between the state metrics and the current input symbol that influence the decisions
of the VA.

3. Let αi,k denote the state metric of a node Si,k.

4. The metric of the first node in Trellis S0,0 is zero: α0,0 = 0.

During the forward recursion, at each decoding cycle the paths with the least sum of
branch metrics, called the local survivors, are selected by using the following formula:

αl,k+1 = min(αl,k, αi,k + γi,lk,k+1) (3.11)

The state metrics Sk+1 are updated based on the previous state metrics Sk and the current
input symbol rk.

If the reader is not familiar with the operation of the VA, we suggest having a look at
the example provided in Appendix A.1A.1.

The decision bits deci,k+1 generated for each state in Equation 3.113.11 are stored in a
survivor memory. At the end of the forward recursion, the most likely sequence through
the Trellis is identified.

The traceback algorithm reads the local survivors from the survivor memory in order
to extract the most likely sequence. Starting with the final state in Trellis S0,n, the decision
bit generated for this state, dec0,n, is retrieved from the survivor memory and the preceding
state Si,n−1 is derived based on the bit read. The decision bit associated with this new state
is also read and so forth. The backward operation read sequence of decision bits is the
most likely codeword sent, given the received sequence r.

25

3.4 The (MAX)-Log-MAP Algorithm

In concatenated coding system, the overall performance of the system is increased if
both decoders use soft-input values. The Viterbi algorithm is a hard-output ML sequence
detection algorithm that does not output any information on the reliability of the decisions
made. The logarithmic maximum-a-posteriori (Log-MAP) is a soft-input, soft-output
algorithm that makes estimation of bits based on the whole received sequence r.

The Log-MAP is based on an algorithm proposed by Bahl, Cocke, Jelinek and Raviv,
the BCJR algorithm [44]. It computes the A-Posteriori-Probability (APP) Logarithmic
Likelihood Ratio (LLR) for each sent bit ck as:

Λ(ck) = ln
Pr(ck = 1|r)
Pr(ck = 0|r) (3.12)

As described in [1111], the calculation of 3.123.12 in the probability domain uses a lot of multi-
plications and additions. For hardware implementations it is preferable to port the calcu-
lations to the logarithmic domain.

Exploiting the idea of the Jacobian logarithm:

ln(eδ1 − eδ2) = min∗(δ1, δ2)

min∗(δ1, δ2) = min(δ1, δ2)− ln(1 + e−|δ2−δ1|), (3.13)

where ln(1 + e−|δ2−δ1|) is a correction term often referred to as fc(|δ2 − δ1|). The basic
idea of the Log-MAP Algorithm is to transform the multiplications into additions and the
additions into minimum selections with additional correction terms.

Using a Trellis diagram as a basis, the APP LLR in the logarithmic domain can be
calculated by using three metrics:

ln
Pr(ck = 1|r)
Pr(ck = 0|r) = min

∀(i,l)
∗(γi,lk,k+1(ck = 1) + αi,k + βl,k+1)

−min
∀(i,l)
∗(γi,lk,k+1(ck = 0) + αi,k + βl,k+1), (3.14)

where i is the index of the current state in trellis and l is the index of the next state
connected by a one or zero-transition. The metrics αi,k and βl,k+1 refer to state metrics
and γi,lk,k+1 are branch metrics. Note that γi,lk,k+1(ck = 1) refers to metrics of one-transitions
and that γi,lk,k+1(ck = 0) = 0 for block codes.

The α and β metrics are computed in a forward and backward recursion, respectively.
The α metrics are the same computed in Equation 3.113.11 during the VA’s forward recursion.
The β metrics are computed in a similar way, but beginning with the last state in the Trellis
S0,n:

βi,k = min(βi,k+1, βl,k+1 + γi,lk,k+1) (3.15)

Knowledge of the whole input sequence is needed for the calculation of each individ-
ual bit. The α-metrics contain information on all the branch metrics from the start of the
Trellis up to time step k. Figure 3.43.4 shows the three metrics used in the calculation of
Λk. The branch metrics from the successor state (k + 1) until the end of the Trellis are
contained in the β-metrics. The only metrics that are not used, neither for the α- nor for
the β-calculation, are γi,lk,k+1. These metrics are directly used in the LLR calculation 3.143.14.

The arithmetic complexity can be further reduced by omitting the correction terms
fc(|δ2− δ1|) in Equation 3.133.13. The resulting algorithm is then called the MAX-Log-MAP

26

βk+1αk γi,l
k,k+1

Forward
Recursion

Backward
Recursion

Figure 3.4: Metrics used in the LLR calculation of Λk [22].

algorithm. The omission of the correcting terms leads to a slight loss in communication
performance in turbo code applications [22]. Since the complexity of the MAX-Log-MAP
is smaller than the Log-MAP’s, the MAX-Log-MAP is the most used implementation.

The operation of the Max-log-MAP algorithm is difficult to understand by only look-
ing to the formulas above. Therefore we provide a Max-log-MAP algorithm example in
Appendix A.2A.2.

27

4 BLOCK CODES DECODER ARCHITECTURES

We presented decoding algorithms for linear block codes in Section 33. In this section,
we give an overview of the general architectures of the Viterbi and the MAX-Log-MAP
decoder for linear block codes. The first section introduces the architectures of each
building block and the implementation issues of the Viterbi decoder. After that, we use
part of the information presented to derive the soft-output of the MAX-Log-MAP decoder.

4.1 The Viterbi Decoder

We explained the Viterbi algorithm in section 3.3.23.3.2. In this section, a general overview
on the decoder basic building blocks is given.

Figure 4.14.1 shows a block diagram of a Viterbi decoder. The LLR memory stores the
LLRs of each received bit rk. They are fed into the Recursion Unit (RU), which processes
the branch and state metrics during the add compare select (ACS) recursion. The state
metrics that need to be compared during the ACS recursion change dynamically. The
comparisons are specified by the columns hk of the Parity Check Matrix (PCM). There-
fore, the PCM memory stores the whole Parity Check Matrix of the code being decoded.
The decision bits deci,k generated by the RU for each state Si,k are stored in the survival
memory. In the Survival Management Unit (SMU), a traceback algorithm retrieves the
stored information in order to decode the most likely path through the Trellis. During the
traceback, the previous states in Trellis have to be derived and again information on the
code’s PCM is used.

RU SMU
λ dec m̂

Parity Check ROM

dec Survival
Memory

Figure 4.1: Block diagram of a Trellis decoder for block codes.

4.2 Recursion Unit

A Trellis diagram for block codes, or Wolf Trellis diagram, has the property that one
of the two branches that leave a node Si,k always leads to a node Si,k+1 from the same
state i. The other branch that leads to the node Si,k+1 comes from another node Sl,k.

28

ACS Sm0

ACS Sm1

ACS Sm2η−κ-1

P
e
rm

u
ta

ti
o
n

n

e
tw

o
rk

Figure 4.2: Recursion unit for a generic block code.

The number l, which is the metric to be compared, changes after each time step and it is
function of the actual column of H . This means that during the ACS recursion, one of the
two state metrics to be compared is the same metric from the previous time step, while a
permutation network selects the other metric.

Figure 4.24.2 shows the recursion unit’s architecture. All the state metrics of one Trellis
step in this architecture are processed in parallel. The recursion unit calculates the new
state metrics based on the previous state metrics and the current input symbols. It is
composed of 2n−κ ACS units, a permutation network and 2n−κ state metrics registers,
which accumulate the state metrics cycle by cycle. It also outputs the 2n−κ decision bits
of each state every decoding cycle.

It is important to say that this architecture also calculates state metrics and decision
bits for the nodes that do not exist in the original trellis diagram construction of Section
3.3.13.3.1. Nevertheless, the decoder stills work properly if we consider two things:

1. If the state metrics from the first step in the Trellis are initialized as:

S0,0 = 0, (4.1)
Si,0 = ∞, 1 ≤ i ≤ 2n−κ − 1

only the paths starting from the state S0,0 are considered. In practice,∞ is a value
that gives a sufficient low probability for these states. In Section 4.64.6 we show how
to derive this value.

2. Decoding is also possible without expurgating the nodes that do not have a path to
the last state in trellis, S0,n. Even if the decision bits for these nodes are calculated,
the traceback algorithm, which will be presented in Section 4.34.3, does not consider
them.

ACS Unit

The ACS modules compute the minimum selection of Equation 3.113.11:

αl,k+1 = min(αl,k, αi,k + γi,lk,k+1).

29

0

1

αl,k

αi,k

αl,k+1

decl,k+1
γ

Figure 4.3: ACS unit

Figure 4.34.3 shows the architecture of the ACS unit. The branch metric γ is added to
the metric to be compared αi,k. A subtraction compares this result with the other state
metric αl,k. Note that nothing needs to be added to the other state metric, since the branch
metrics of all zero-transitions are zero. Finally, the sign of the subtraction, which is also
the decision bit of the next state Sl,k+1, is used to select the least state metric. All the
decision bits are stored in the (2n−κ x n) survival memory.

Permutation Network

Since the state metrics to be compared changes every decoding cycle, we need to
arrange the state metrics data before calculating the ACS operation. A Permutation Net-
work (PN) is a switch based network capable of realizing permutations of its inputs to its
outputs. The building blocks of these networks are switches capable of permuting their
two input terminals to their two output terminal. Each switch can be implemented with
two multiplexers. A control signal is used to either permute or not permute the two inputs
of the switch (see Figure 4.44.4).

The Benes permutation network.

The Benes permutation network [1212] is capable of realizing all the possible n! permu-
tations of its n inputs to its n outputs. Because the network is constructed in a recursive
form, the number of inputs is a power of two.

The total number of switches used to implement a Benes PN with n inputs is n ln(n)−
n/2. By Equation 3.73.7, the columns of the parity check matrix decide which nodes of
the Trellis are connected through a one-transition. The columns must then control the
behavior of the network and select the metric to be compared. Hence, the control of each
switch in the network is a logic function of these columns.

1 0
(a) (b)

Figure 4.4: Control of the switches. (a) Control = 1→ swap inputs. (b)Control = 0→ do
not swap inputs.

30

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

(a) (b)

Figure 4.5: Two permutation networks with 4 inputs. (a) Butterfly permutation network.
(b) Banyan permutation network.

Considering that the maximum number of permutation necessaries in this application
is 2n−κ out of the (2n−κ)! that the Benes PN performs, using a Benes PN would be a waste
of resources. Besides that, its elevated number of stages adds more latency to the ACS
recursion’s critical path. In addition, a complex control logic has to be used to control
each switch of the network. We shall use a smaller PN with a simpler control.

The Banyan permutation network.

We construct the Banyan permutation network [1313] from a butterfly network by amend-
ing its final part (See Figure 4.54.5).

The smallest butterfly network is composed of a single switch. We construct the but-
terfly network in a recursive form. A network with n inputs is obtained from 2 butterfly
networks with n/2 inputs, i.e., two butterfly sub-networks.

We place the second sub-network below the first one and numerate the outputs of the
first sub-networks from 0 to n/2 − 1 and of the second one from n/2 to n − 1. S(i)
denotes the i− th output. A column of n/2 switches is placed in the right side of the two
sub-networks and their inputs are numerated from 0 to n − 1. Let I(i) denote the i − th
input. The connections among the two networks and the new column of switches is done
by the following algorithm:

for (i = 0 to (n/4− 1))
I(2 ∗ i) <= S(2 ∗ i)
I(2 ∗ i+ 1) <= S(2 ∗ i+ n/2)
I(2 ∗ i+ n/2) <= S(2 ∗ i+ 1)
I(2 ∗ i+ n/2 + 1) <= S(2 ∗ i+ n/2 + 1)
end for

Finally, we connect the final wires of the butterfly PN to different output addresses
to create the Banyan PN. Let B(i) denote the i − th output of the butterfly PN and O(i)
denote the i − th output address of the Banyan PN’s block. We make the connections
using the following algorithm:

for (i = 0 to (n/2− 1))
O(i) <= B(2 ∗ i)
O(i+ n/2) <= B(2 ∗ i+ 1)
end for

Figure 4.64.6 shows the construction of an 8x8 Banyan PN using the algorithms from
above.

31

0
1

2
3

4
5

6
7

Sub-network 1

Sub-network 2

S(0) I(0)

S(1) I(1)

I(2)

I(3)

I(4)

I(5)

I(6)

I(7)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

O(0)

O(1)

O(2)

O(3)

O(4)

O(5)

O(6)

O(7)

Figure 4.6: An 8x8 Banyan PN construction example.

Table 4.1: Comparison between the Benes and the Banyan PN.
Network Possible permutations Num switches Stages

Benes n! nld(n)− n/2 2 ∗ ld(n)− 1

Banyan nn/2 n/2 ∗ ld(n) ld(n)

The Banyan PN has approximately half the number of stages of the Benes network.
Table 4.14.1 shows differences between meaningful metrics of these two networks consid-
ering n inputs. Compared with the Benes 2ld(n) − 1 stages, Banyan network has only
ld(n) stages, which reduces the signal propagation time when performing the permuta-
tion. For better visualization, Figure 4.74.7 shows the number of switches used by these two
networks as function of the number of inputs. Moreover, it is much easier to generate
control signals for the Banyan PN.

The Banyan PN is non-blocking to perform all the permutations required in the trellis
decoders. Non-blocking means that the network can link all the necessary paths for a
desired permutation. To perform the XOR operation between the state metric index and
the column vector of the PCM, the control of the Banyan PN is very simple. Each bit
of the column vector controls one entire column of the PN. If the Banyan network is
constructed as above, the least significant bit of the PCM’s column vector controls the
most left column of the network. No additional control logic is required.

4.3 Survival Memory and Traceback

After the state metrics recursion has run n times, the decision bits for all the states are
stored in the survival memory. The traceback operation extracts the most likely sequence
of state transitions in the Trellis. Figure 4.84.8 shows the architecture of the Survival Man-
agement Unit. To realize the traceback operation, we start by reading from the survival
memory the decision bits from the last column of states in Trellis Sn. The first decision
bit to be read in traceback is always dec0,n, from the first state in the last trellis step,
S0,n. Therefore, the (n− κ) bits state index register is reseted to zero and the 2n−κ to one
multiplexer selects the decision bit of the state metric pointed by this address. Given the
decision bit from a state Si,k+1, we can calculate the index l of the previous state in Trellis
as:

l = i⊕ hk+1 ∗ deci,k+1, (4.2)

32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 16 32 64 128 256

N
um

be
ro

fs
w

itc
he

s

Number of inputs

Benes
Banyan

Figure 4.7: Number of switches used by the Benes and the Banyan PN

where⊕ designates an xor operation. Note that information on the parity check matrix of
the code is once again necessary. The index register stores the index of the previous state
in Trellis and the decision bit from this state is again selected. This process continues
until the first column of decision bits is read and the most likely codeword ĉ is derived.

Survival
memory

Index

Next index
calc.

Figure 4.8: SMU architecture.

4.4 Doubling the Throughput

If only one survival memory is used, the recursion unit stays in idle mode while the
traceback operation is running. The resulting throughput (decoded bits per second) of the
system is then half the clock’s frequency. The throughput of the decoder can be duplicated
if two survival memories are used. While the recursion unit writes in one of the memories,
the traceback algorithm reads the data of the second one. The memories alternate their
roles every time that a new block is received. The parity check matrix ROM memory in
this implementation must be dual port, since different columns of the PCM are used in

33

the recursion unit and in the survivor management unit. The resulting data processing of
both serial and parallel decoders is depicted in Figure 4.94.9.

0

time (clock cycles)

nn

2n

3n

4n

d
a
ta

 p
ro

ce
ss

in
g

0

time (clock cycles)

nn

2n

3n

4n

d
a
ta

 p
ro

ce
ss

in
g

Traceback

FWD recursion

(a) (b)

n 2n 3n 4n 5n 6n 7n 8n n 2n 3n 4n 5n

Traceback

FWD recursion

Figure 4.9: Data processing of the Viterbi decoder using: (a) one survivor memory and
sequential processing (b) two survivor memories and parallel processing

One extra memory is required in this implementation, but even though it is much more
efficient than the first one. Only 1% of the number of Look Up Tables (LUTs) increases
due to data merging and distribution.

4.5 Quantization

Fix point representation is the best choice for implementing decoding algorithms. The
floating point numbers of, e.g. the LLRs are mapped to fix point number with some
rounding. Fix point arithmetic is much less complex than floating point arithmetics, but
its restricted range and precision might lead to communication performance losses. The
notation (q, f) is used to represent the quantization of a fix point number: q is the total
number of bits and f the number of bits used in the fractional part. The precision of this
representation is equal to the least positive value representable: 2−f .

If two’s complement arithmetic is used, the input to the decoder are numbers ranging
from −2q−f−1 to 2q−f−1 − 2−f . Figure 4.104.10 shows the quantization process. If the value
to be represented is out of this range, then we saturate the metric and the minimum or
maximum value representable is used.

Input quantization.
The bit widths of the input and output LLR are chosen depending on the algorithm to
be implemented. For the input of the VA a (5,1) quantization represents a slight perfor-
mance loss in comparison to the floating point implementation and is the one with the
best cost benefit. The plot of Figure 4.114.11 shows the VA Frame Error Rate (FER) for the
enhanced Hamming (32,26) code as function of the Signal to Noise Ratio (SNR) consider-
ing an AWNG channel and BPSK modulation for different quantizations. The proximity
between the curves is also very similar if we consider other codes.

No considerations over the best input quantization to be used for the MAX-Log-MAP

34

0 2-f-2-f-2.2-f 2.2-f

-2.2-f -2-f 0 2-f 2.2-f

Figure 4.10: The quantization process.

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6

FE
R

Eb/N0

floating point
q=5 f=1
q=4 f=1
q=6 f=0

Figure 4.11: VA FER for the Extended Hamming (32,26) code considering different quan-
tizations.

decoder shall be given here. The MAX-Log-MAP decoder is a tool used in systems
that employ concatenated decoding algorithms and the best quantization depends on the
system itself. The common literature usually agrees with 5-6 bits for the MAX-Log-MAP
input and 6 to 8 bits for its soft output values [22].

Branch and State Metrics quantization.

For block codes, the branch metrics does not require any calculation and they are
obtained directly from the input symbol LLR. Thus, the bit width of the branch metrics is
the same as used for the input LLRs. For convolution codes branch metric calculation is
needed, since each state transition generates two or more bits.

The calculations presented in the algorithms of Section 33 consider unnormalized state
metrics, which can accumulate values without any bound. In fix point implementations,
this would lead to arithmetic overflows and communication performance losses. How-
ever, some techniques might be used to avoid these overflows and they make use of two
fundamental properties of Trellis based decoding algorithms [1414]:

35

1. The maximum difference between two state metrics of one Trellis step is bounded
by a fixed quantity ∆sm,max.

2. The difference between the state metrics is the only information relevant for the
decisions of the VA and also for the soft-output calculation of the MAX-Log-MAP.

To deduce the worst case of ∆sm,max, we consider paths starting from the all zero
state S0,0. If the first n− κ rows of the code’s PCM are lineary independent, after exactly
n−κ (redundant bits number) stages, all the 2n−κ states can be reached and there exists a
path between every state Si,n−κ and S0,0. Considering that, for block codes, the maximum
difference between two branch metrics within a single Trellis step ∆λ,max is equal to
min(λ), which is the minimum value that a branch metric may assume. The state metrics
can decrease in the worse case by ∆λ,max at each step. Thus, the maximum difference
between the state metrics is given by:

∆sm,max = (n− κ).∆λ,max (4.3)

Each extra bit used for the SM representation requires an extra PN. The bit 0 of all
state metrics is routed to a permutation network, the bit 1 to another and so on. Hence, the
bit width of each SM affects the total area of the circuit directly and should be carefully
chosen.

4.6 Modulo Normalization

Normalization techniques are used to deal with the arithmetic overflows and to keep
the combinational path delay of the ACS recursion as small as possible. In [22], three
state metric normalization methods are presented. In this thesis we will consider only
the modulo normalization because of its easy implementation. Moreover, the other two
methods require some extra rescaling units that increase the combinational path delay of
the ACS recursion. Modulo normalization does not affect the critical path.

The idea of the modulo normalization is to accommodate the overflows by employing
two’s complement arithmetic. The state metrics sm are mapped to its modulo metrics
˜sm:

˜sm = ((sm+ 2q−1)mod2q)− 2q−1 (4.4)

Instead of moving along the real line, the state metrics move around a circle with
circumference 2q. Following [22], if the difference between two metrics is bounded by a
value smaller than 2q−1, then their modular difference is equal to their actual difference.
Thus, the decisions of the decoding algorithms are not affected.

The Viterbi decoder works properly for all codes if its state metrics quantization has
the bit width necessary to represent ∆sm,max plus one extra bit given the modulo normal-
ization:

qsm = ld(n− κ) + ld(∆λ,max) + 1, (4.5)

where ld(∆λ,max) is the number of bits used for the input LLRs.
In fact, ∆sm,max is a pessimistic bound and occurs rarely in block codes. We tested

the results of the Viterbi decoder using different state metric quantizations and we found
out that for some codes, the decoder works properly using one or two bits less than stated
in Equation 4.54.5, even considering the worst case. So, there is clearly a code dependency
on the state metrics quantization.

36

Recusion
Unit

α-values
memoryα

β(1)

LLR memory

CS
tree

CS
tree

min0

min1

Λ

k+1

k

β(0)
k+1

k

LLR Unit

Figure 4.12: The MAX-Log-MAP decoder architecture.

The easiest way to use the state metrics for the LLR calculation of the MAX-Log-
MAP is to use the same quantization for soft-output calculation and the state metrics. The
common literature agrees with a bit width between 8 and 11 for the state metrics of the
MAX-Log-MAP decoder, depending on the number of Trellis states and the decoding
system [22].

As stated in Section 4.14.1 the state metrics need to be initialized before the forward and
backward recursion. The metrics from the first state need to be initialized with zero and
the others with∞, as they do not exist in the first Trellis step. Since∞ is not quantizable,
the value ∆sm,max/2 is chosen. It represents a sufficient low probability for these metrics
and does not compromise the results of both Viterbi and MAX-Log-MAP decoder.

4.7 The MAX-Log-MAP Decoder

We presented the MAX-Log-MAP algorithm in Section 3.43.4. We now focus on the
architectural details of its hardware implementation. The recursion unit used in the Viterbi
decoder is reused here.

Soft Output Decoding

The MAX-Log-MAP decoder calculates the approximated APP LLRs. We obtain the
approximated probabilities from Equation 3.143.14 without the correction terms fc(|δ2 − δ1|)
as:

ln
Pr(ck = 1|r)
Pr(ck = 0|r)

∼= min
∀(i,l)

(γi,lk,k+1(ck = 1) + αi,k + βl,k+1)

−min
∀(i)

(αi,k + βi,k+1). (4.6)

The term γi,lk,k+1(ck = 0) is omitted here, since all the branch metrics from zero-transitions
are zero.

Figure 4.124.12 shows the basic building block of the MAX-Log-MAP architecture. Using
a single recursion unit, the data gathering for the output calculation of Equation 4.64.6 works
as follows:

37

0

time (clock cycles)

nn

2n

3n

4n

d
a
ta

 p
ro

ce
ss

in
g

n 2n2n 3n 4n 5n 6n 7n 8n

β-metrics

α-metrics

Figure 4.13: MAX-Log-MAP decoder data processing.

Both α and β-metrics are needed to compute the LLRs. Using a single recursion unit,
this leads to a serial processing of state metrics as shown in Figure 4.134.13. The set of α-
metrics calculated during the forward recursion must be stored in the α-values memory
for the whole data block. During the backward recursion, all the information necessary for
the computation of the LLRs is obtained. We start the computation of the LLRs from the
last bit of the block. The remainder of the probabilities are calculated while the backward
recursion advances.

The minimum of the sums of α, β and γ-metrics for all zero-transitions and for all
one-transitions have to be found and afterwards subtracted from each other. Given the
structure of the Wolf Trellis, the index of the β-metrics β(1) to be added for the calculation
of the one-transitions summation are time variants. They are obtained from the output of
the PN, because they are the same metrics to be compared to by the ACS units during the
backward recursion. The β-metrics β(0) participating in the zero-transitions summation
are gathered from the state metrics’ registers. The input LLRs participate only in the
one-transitions summation, since the branch metrics of all zero transitions are zero.

cs

cs

cs

cs

cs

cs

cs

Figure 4.14: A compare select binary tree.

38

The α-metrics, starting with the metrics from the states Sn−1, are retrieved from the
memory. Two blocks of adders add the α-metrics in sequence with the β(1) and β(0)-
metrics. As the branch metrics also participate in the one-transitions summation, the upper
adders block in Figure 4.124.12 has 2n−κ+1 adders, while the lower one has 2n−κ adders.

After the sums are done, a binary tree of compare select (CS) units selects the lowest
values among all the one-transitions sums, min1. Since we also have to calculate the
minimum of the sums for all the zero-transitions, min0, a second binary tree is used.
Figure 4.144.14 shows the architecture of a CS tree with 8 inputs. Each tree is comprised of
2n−κ − 1 CS units, which are implemented like the compare select functions of the ACS
units (a subtracter and a multiplexer). Pipeline is here considered, given the high delay of
such structure.

After the lower values have been obtained from both trees, the soft-output Λk is cal-
culated by subtracting min0 from min1.

4.8 FPGA Implementation

The architectures presented in the previous sections were described in VHDL using
Xilinx ISE 14.1 release.

In order to map the above architectures for block codes of different sizes to an FPGA
design we first developed a VHDL package with the code parameters and the components
to be used. As to do so, it is possible to change the code to be decoded by only amending
this file. The code parameters are code length, number of redundant bits, input and state
metrics quantization. The components are the basic building blocks of the decoders. They
include ACS units, Permutation Network, adders, Compare Select tree and the Memories.

The building blocks of the Viterbi (Figure 4.14.1) and MAX-Log-MAP decoder (Fig-
ure 4.124.12) were then implemented by instantiating the components and connecting them
through buses. Not only the components itself but also the number of components to be
instantiated depend on the code’s parameters. Since the Permutation Network is build
up in a recursive form, one file for each network of different size was constructed. The
correct PN is instantiated based on the number of redundant bits of the code.

Moore Finite State Machines are used to control the operative part of the decoders.
The Viterbi decoder’s control is shown in Figure 4.154.15. Note that the Forward Recursion
state runs only (n − 1) times in a row, instead of n times. This is because the decision
bits of the last trellis step are stored in the Prepare Traceback state. In this state, the
state metrics registers and the auxiliary counters are reseted. This allows a throughput of
one decoded bit per clock cycle, as these decision bits are stored while the registers are
configured to start a new recursion.

The controlling state machine of the MAX-Log-MAP is depicted in Figure 4.164.16. The
α-values are calculated and stored during the forward recursion. The output calculation
occurs along with the backward recursion. An auxiliary counter c is used to control the
state transitions. Pipeline is used in the LLR unit after the one and zero-transitions sum
and in the middle of the CS-Tree. To correctly control the circuit with pipeline two extra
states are needed. In the Waiting Latency state, the backward recursion starts but the
useless values generated by the LLR unit are not stored. In the beginning of the next
forward recursion two correct output values in the pipeline queue need to be stored. This
happens in the Forward Recursion & Output state.

Finally, the top level architectures bring these blocks and the control unit together
Constructing the hardware in such hierarchical manner makes the implementation simpler

39

RESET FORWARD
RECURSION

PREPARE
TRACEBACK

FORWARD
RECURSION

&
TRACEBACK

(n-1) times

(n-1) times

Figure 4.15: Controlling state machine of the Viterbi Decoder.

RESET

FORWARD
RECURSION

PREPARE
BACKWARD
RECURSION

WAITING
LATENCY

(n-1
)

BACKWARD
RECURSION

&
OUTPUT

PREPARE
FORWARD

RECURSION

FORWARD
RECURSION

&
OUTPUT

c =

(n-1
)

c =

1
c =

1c =

Figure 4.16: Controlling state machine of the MAX-Log-MAP Decoder.

and also easier to check the exact resources consumption of each part of the circuit. The
Appendix CC shows the VHDL code of the package and the two top levels developed.

40

5 IMPLEMENTATION RESULTS

In this section, we analyze the implementation results of the Viterbi and MAX-Log-
MAP decoder architectures presented in the previous section. The circuit area and decod-
ing throughput of both decoders are given considering FPGA implementations of different
codes. We implemented the decoder architectures of Section 4 in Xilinx ISE 14.1 release
using a Xilinx Virtex 6 FPGA device XC6VLX75T with speed grade -3. All the results
were obtained after Place and Route.

For both decoders, we made the analysis of the results considering the decoder’s
throughput and area. The area analysis is divided into three components: logic area
(LUTs), register used and memories.

5.1 Viterbi Decoder

Table 5.15.1 shows the resources (LUTs) used by the permutation network and the ACS
units as well as the total number of LUTs and registers utilized in the decoder for a dif-
ferent number of Trellis states. The bar graph in Figure 5.15.1 shows the number of LUTs
used as function of the number of Trellis states. The plots in this section consider a fixed
code length of 255, 5 bits for the input LLRs and 7 bits for the state metrics. The x-axis
is in log2 scale, which gives an exponential curve. In the graph the area contributions of
the permutation network and the ACS units are discriminated. The label "others" refers
to those LUTs used by the control unit, the survivor management unit (traceback) and in
additional routing paths. The resources used by both of these blocks were obtained in the
detailed MAP-Report.

Analyzing the graphs, we can conclude that the decoding complexity of linear block
codes exponentially depends on the number of redundant bits of the code (n− κ). This is
because during the construction of a Trellis diagram for block codes, the number bits used
to represent the states is equal to the number of rows of the PCM, which gives a total of
2n−κ states. The number of resources needed for decoding is proportional to the number
of Trellis states.

The permutation network used to permute the state metrics data during the ACS recur-
sion occupies a large area percentage of the circuit. The bigger the number of redundant
bits of the code, the bigger the area percentage that the PN occupies (See Figure 5.15.1). This
is because the other blocks area grows proportional to 2(n−κ), while permutation network
grows proportional to (n− κ).2(n−κ)−1, which is a more than exponential increase.

In the Viterbi decoder, the number of registers used in the control unit is almost con-
stant for all codes. Figure 5.25.2 shows the number of registers used in its implementation
for different state metrics numbers. As the bar graphic shows, the majority of the registers
are used in the state metrics.

41

0

500

1000

1500

2000

2500

3000

8 16 32 64

LU
Ts

Trellis states

CONTROL UNIT
PERMUTATION NETWORK

ACS UNITS

Figure 5.1: Area occupied by each component of the Viterbi decoder

Table 5.1: Resources used in the Viterbi decoder
Trellis states ACS LUTs PN LUTs Total LUTs Registers

8 124 72 265 79
16 248 192 615 144
32 496 560 1190 257
64 992 1152 2791 482

Different code lengths do not influence the throughput of the system, since the max-
imum combination path of this architecture is the ACS recursion unit and it is the same
for different code lengths. An increase in the code length only generates an increase in
the circuit’s area due to the bigger survival and PCM memory.

The critical path of the Viterbi decoder is reading from the parity check matrix ROM
memory, permuting the state metrics data in the permutation network, calculating the next
metrics in the ACS units and storing the decision bits in the survivor memory. Figure 5.35.3
shows the number of decoded bits per second as function of the number of Trellis states.
Since we did not implement pipeline in the recursion unit and the number of stages of the
Banyan PN increases by one every time we double the number of its inputs, the maximum
combination path delay of the RU increases linearly with the number of redundant bits,
given the extra stage in the permutation network needed, resulting in a lower throughput.

The Viterbi decoder uses three memories: a parity check matrix memory and two
survivor memories. The memories are mapped to 36kbit and 18kbit block RAM memories
as displayed in Table 5.35.3. The size of the memories is proportional to the code’s length.
Table 5.25.2 shows the size in bits and the type of the memories used for different trellis
states numbers considering a code length of 255. Two survivor memories are used due to
the throughput problem discussed in Section 4.44.4. These two memories store the decision
bits for all the state metrics during the forward recursion. Thus, they grow proportional to
the number of state metrics.

42

0

200

400

600

800

1000

8 16 32 64 128

R
eg

is
te

rs

Trellis states

CONTROL UNIT
STATE METRICS

Figure 5.2: Viterbi decoder’s registers as function of the number of Trellis states.

Table 5.2: Memories used in the Viterbi decoder
Trellis states Survivor memories PCM memory

8 2 255x8-bit single port RAM 255x3-bit dual port ROM
16 2 255x16-bit single port RAM 255x4-bit dual port ROM
32 2 255x32-bit single port RAM 255x5-bit dual port ROM
64 2 255x64-bit single port RAM 255x6-bit dual port ROM

110

120

130

140

150

160

170

180

190

200

8 16 32 64 128

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

Trellis states

Figure 5.3: Viterbi decoder throughput as function of the number of Trellis states.

Table 5.3: Memory mapping Viterbi decoder
Trellis States RAMB36E1 RAMB18E1

8 0 3
16 0 3
32 0 3
64 2 1

128 4 1

43

5.2 MAX-Log-MAP Decoder

The area contribution of each block of the circuit is displayed in Table 5.45.4.
The total area (LUTs) of the decoder as well as the area contribution of each block

that the decoder comprises is plotted in the bar graph in Figure 5.45.4 for different Trellis
States (TS) numbers. The "others" label refers to the LUTs used by the control unit and
in additional routing. We obtained the data in all graphics presented in this section using
a fixed code length of 255, 6 bits for the input LLRs and 8 bits for the state metrics and
also for the LLR calculation.

The total circuit’s area of the MAX-Log-MAP decoder also increases exponentially
with the number of redundant bits. The area of the MAX-Log-MAP decoder is bigger
than the Viterbi decoder’s, given the extra resources (adders and CS trees) used for the
LLR calculation in the LLR unit. The LLR unit occupies approximately 50% of the
decoder’s area, and is surely the unit that we have to look into with more detail if we want
to improve the area consumption.

In this architecture, a single recursion unit calculates the α and β-metrics in a forward
and backward recursion consecutively. Thus, the real throughput of the decoder is half the
circuit’s clock frequency. Since pipeline is used in the LLR unit of the MAX-Log-MAP,
its critical path is the ACS recursion. The max combinational path in the RU comprises:
reading from the PCM memory, permuting the state metrics data in the permutation net-
work, calculating the next metrics in the ACS units and writing in state metrics’ registers.
If two recursion units are used, one decoded bit per clock cycle can be achieved with costs
of a larger area. The graphic in Figure 5.65.6 shows the decoder’s throughput for the imple-
mented design. Also, because one extra stage in the PN is needed every time a redundant
bit is added, the throughput of the decoder decreases linearly with the number of parity
bits.

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64

LU
Ts

Trellis states

CONTROL UNIT
ACS UNITS

PERMUTATION NETWORK
UNITLLR

Figure 5.4: MAX-Log-MAP decoder LUTs usage as function of the number of Trellis
states.

Figure 5.55.5 illustrated the number of registers used in the MAX-Log-MAP decoder
for different state metrics numbers. The number of registers used in the control unit is
constant for all the codes. The MAX-Log-MAP decoder has 2 pipeline stages, both in the
LLR unit: one after the one and zero transitions summation and the other in the middle

44

Table 5.4: Resources used in the MAX-Log-MAP decoder
TS ACS LUTs PN LUTs LLR Unit Total LUTs Registers
8 160 96 331 733 255
16 320 256 821 1523 447
32 640 896 1541 3166 863
64 1280 1536 3265 6852 1639

0

500

1000

1500

2000

2500

3000

3500

8 16 32 64 128

R
eg

is
te

rs

Trellis states

CONTROL UNIT
STATE METRICS

PIPELINE

Figure 5.5: MAX-Log-MAP decoder’s registers as function of the number of Trellis
states.

of the compare select trees. Pipeline is needed here because of the high delay of this unit.
The number of state metrics registers is also plotted.

Three memories are used in the MAX-Log-MAP decoder: an α-values memory, a
LLR memory, and a PCM memory. Table 5.55.5 shows the number of bits and the type of
each memory for different trellis states numbers, considering codes with 255 bits length.
The memories are mapped to 36kbit and 18kbit block RAM memories as displayed in
Table 5.65.6. In the MAX-Log-MAP decoder, the size of the memories is also proportional
to the code’s length. The memory that grows faster is the α-values memory, since it has to
store all the α-metric’s data before the backward recursion begins. The LLR memory has
a fixed size, due to the that fact that the input quantization is the same for all the codes.
An LLR memory is used in the MAX-Log-MAP decoder, because the input values need
to be retrieved in the backward recursion.

Table 5.5: Memories used in the Max-Log-MAP decoder
TS α-values memory LLR memory PCM memory
8 255x64-bit single port RAM 255x6-bit single port RAM 255x3-bit single port ROM

16 255x128-bit single port RAM 255x6-bit single port RAM 255x4-bit single port ROM
32 255x256-bit single port RAM 255x6-bit single port RAM 255x5-bit single port ROM
64 255x512-bit single port RAM 255x6-bit single port RAM 255x6-bit single port ROM

45

60

65

70

75

80

85

90

95

100

8 16 32 64 128

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

Trellis state

Figure 5.6: MAX-Log-MAP decoder throughput as function of the number of Trellis
states.

Table 5.6: Memory mapping Max-Log-MAP decoder
Trellis States RAMB36E1 RAMB18E1

8 1 2
16 2 2
32 4 2
64 8 2

128 16 2

46

5.3 Validation of the Work

It is clear that the results generated by the hardware architectures presented in this
thesis need to be validated. In this section we give a quick overview on how we tested and
validated our hardware design.

We started by developing software programs for both algorithms discussed in this the-
sis (the MAP and the VA) which used floating point arithmetics and a high abstraction
level. The frame error rates generated by the VA software were compared with the frame
error rates of well known block codes (Hamming and BCH codes) considering ML de-
coding. The soft-results of the Max-Log-Map also needed to be validated. We tested the
results of the Max-Log-Map by comparing them to the VA software’s outputs. If both
algorithms have the same input symbols, than the hard decisions of the Max-Log-Map
algorithm’s output should be equal to the VA’s output.

The next step was to reduce the complexity of the floating point arithmetic used. Thus
we developed new software programs for both algorithms which used only bit vectors and
quantization. These softwares are a model for the hardware to be implemented. The error
rates of the Viterbi decoder’s software model were plotted along with the error rates of
the software that uses floating point. An example of such plot can be seen in Figure 4.114.11.
Due to the roundings caused by the quantization process, little losses in communication
performance are expected. The results of the Max-Log-Map were simply compared with
the results of the floating point MAP software. Our goal was to look for big deviations
from the expected values, since small deviations are expected due to the quantization.
We also tested these lower level softwares considering worst input cases (LLRs with high
absolute values), in which arithmetic overflows would be more likely to happen.

Finally, we implemented both hardwares in VHDL. The hardware designs were tested
by comparing their results with the results of the software models. The tests were made
for different codes with code lengths from 7 to 255 and number of parity bits from 3 to 8.
We applied over 100 000 tests for each code tested and all the results were equal to those
generated by the software models.

47

6 CONCLUSION

In this thesis, we have investigated the topic of Hardware implementations of Trellis
based decoders for Linear Block codes. The biggest problem in constructing Trellis based
decoders hardware for block codes was the trellis time variance. A solution for this was
found by using a Banyan permutation network.

In the course of our investigation we encountered advantages and disadvantages in
the decoding approach used. The important advantage of our task is that the decoders’
complexity does not depend on the code length. For bigger codes, the recursions will take
more time as more steps for this are needed and also bigger memories are needed. Fur-
thermore, in a Trellis for block codes, each stage comprises only one bit, which eliminates
the necessity of calculating branch metrics.

In comparison to that, disadvantages that cannot be set aside were that a Trellis for
block codes is time variant and a permutation network needs to be used to arrange the
state metrics data before the recursions proceed. Moreover, the decoders’ areas increase
exponentially with the number of parity bits for the code.

Taking into account the advantages and disadvantages of our Trellis based decoders,
we can say that this application is very suitable for high code rate codes, since they usually
have high code lengths and the costs of adding parity bits to the codes to be decoded are
high.

It is important to say that the contents presented in this work have been published at
the Advances in Radio Sciences Journal (September/2013). The article we have submitted
is shown in Appendix B.1B.1.

6.1 Future Work

In conclusion, we can say that this research has proven to be very valuable for the field
of ML block codes decoding. The research in this area can still be extended. This thesis
can, nevertheless, provide a good basis for future work in the area of Turbo decoders for
linear block codes.

The MAX-Log-MAP decoder is a tool that can be used in concatenated decoding
systems to improve the decoding performance.

Turbo codes are high performance forward error correcting codes that use MAX-Log-
MAP decoders and feedbacks, so the soft-outputs of the decoders can be used to build an
iterative system.

If the number of redundant bits of the code is higher than 7, then a Trellis with more
than 128 states is required. The state metrics can be processed in partial parallel imple-
mentations if the throughput requirements do not demand for processing all the metrics in
parallel. Advantages of partial parallel processing are less area and power, and a smaller

48

permutation network. How to deal with the Trellis time variance for block codes and the
permutation network is the biggest challenge of this task.

49

REFERENCES

[1] J. Wolf. Efficient maximum likelihood decoding of block codes using a trellis. IEEE
Transactions on Information Theory, Vol. IT-20, NO. 1, January 1978.

[2] T. Vogt. A Reconfigurable Application-specific Instruction-Set Processor for Trellis
based Channel Decoding. PhD thesis, Technische Universität Kaiserslautern, 2008.

[3] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Trans. Information Theory, IT-13:260–269, April 1967.

[4] F. Jelinek L.R. Bahl, J. Cocke and J. Raviv. Optimal decoding of linear codes for
minimizing symbol error rate. IEEE Trans. on Inform., Vol. IT-20., pages 284–287,
March 1974.

[5] Ramesh Pyndiah, Alain Glavieux, Annie Picart, and Sylvie Jacq. Near optimum
decoding of product codes. In Proceedings IEEE Global Telecommunications Con-
ference, pages 339–343, San Fransisco, CA, USA, November – December 1994.
IEEE.

[6] Robert Michael Tanner. A recursive approach to low complexity codes. IEEE Trans-
actions on Information Theory, 27(5):533–547, 1981.

[7] Liu and Lin. Turbo encoding and decoding of reed-solomon codes through binary
decomposition and self-concatenation. IEEETCOMM: IEEE Transactions on Com-
munications, 52, 2004.

[8] Alexander Vardy and Yair Be’ery. Bit-level soft-decision decoding of reed-solomon
codes. IEEE Transactions on Communications, 39(3):440–444, 1991.

[9] Claude Berrou and Alain Glavieux. Near optimum error-correcting coding and de-
coding: Turbo Codes. IEEE Transactions on Communications, 44(10):1261–1271,
October 1996.

[10] Todd K. Moon. Error correction coding: mathematical methods and algorithms.
Wiley-Interscience, pub-WILEY-INTERSCIENCE:adr, 2005.

[11] Brack T. Application and Standard Driven LDPC Code Decoder Development. PhD
thesis, Technische Universität Kaiserslautern, 2007.

[12] V. E. Benes. Optimal rearrangeable multistage connecting networks. The Bell Sys-
tem Technical Journal, 4, 1964.

50

[13] L. Rodney Goke and G. Jack Lipovski. Banyan networks for partitioning multi-
processor systems. 1st Annual Symposium on Computer Architecture, pages 21–28,
1973.

[14] Andries P. Hekstra. An alternative to metric rescaling in viterbi decoders. IEEE
Transactions on Communications, 37(11):1220–1222, 1989.

51

APPENDIX A ALGORITHMS EXAMPLES

A.1 An Example of Viterbi Algorithm for Block Codes

The Viterbi algorithm applied to block codes was presented in Section 3.3.23.3.2. In this
appendix we give an example of encoding and decoding of a block code using the VA for
a better understanding.

Consider a block code with generator matrix G and parity check matrix H as below:

G =




1 0 0 1 1
0 1 0 1 0
0 0 1 0 1


H =

[
1 1 0 1 0
1 0 1 0 1

]
(A.1)

The message m = {1 0 1} to be sent is encoded by the channel encoder through the
multiplication of m with the matrix G as in Equation 2.52.5. The result is a codeword c =
{1 0 1 1 0}, which is modulated by an BPSK modulator and transmitted into an AWGN
channel. The modulated symbols are affected by random noise during the transmission.

Viterbi Decoding

The digital demodulator delivers the calculated LLRs r = {−2.1 1.3 0.5 − 1 2.3}
to the Viterbi decoder. Note that the hard-decisions of these symbols do not correspond
to a valid codeword.

The Viterbi algorithm using a Wolf trellis is as shown in Figure A.1A.1. The calculation
of a branch metric γi,lk,k+1 in the Wolf trellis is simply zero for zero-transitions (i = l) and
the current input symbol rk for one-transitions (i 6= l). γi,lk,k+1 denotes the unique branch
metric from a state Sikto a state Slk+1.

The state metrics of the first trellis step have to be initialized. The metric from the
state zero is initialized with zero and the other ones with∞. In the forward recursion, at
each time step k, the new state metrics αk+1 and decision bits deck+1 have to be calculated
based on the previous state metrics αk and the branch metrics as in Equation 3.113.11:

αl,k+1 = min(αl,k, αi,k + γi,lk,k+1) (A.2)

Every time a path from a zero-transition is chosen, the decision bit 0 is selected. If
both paths metrics have the same value, than the path from the zero-transition is also
selected. The paths which did not survive in the example of Figure A.1A.1 are drawn in light
gray. The decision bits for each node are depicted under each state metric.

During the traceback operation, the decision bits are read from the survival memory,
beginning with the bits from the last trellis step. An index register contains the index

52

of the next bit to be read. Every time a decision bit zero is read, the value in the index
register is maintained. Otherwise the index of the next bit has to be calculated by realizing
an XOR operation between the current index and the column of the parity check matrix.
Once the traceback has finished, the bits read during this operation compose the most
likely codeword sent.

0

k=0 k=1 k=2 k=3 k=4

0

-2.1

0

-0.8

1.3

-2.1

-0.3

-0.8

-1.6

-2.1

-2.6

-3.1

-2.6

k=5
0

-2
.1

0

1.3

1.
3

0

0.
5

0

0

0

-1
-1

0

1

0

0

0.
5

0

0

0

0

0

1

1

0

1

0

1

1

1

-1.6

-2.1
0

0

-3.1

-1.6

-2.1
0

0

0

0

0
0
0
0

0 0

H5=[01]

1
1
0
0

H4=[10]H3=[01]H2=[10]H1=[11]

-0.8

1.3
1

1

o
0

0

o

oooo

oo

oo

0

0

0 0

(H5*0)

0 0

(H4*1)

1
0
1
0

1 0

(H3*1)

0
1
1
0

1 1

(H2*0)

0
0
0
1

1 1

(H1*1)

0 0

Forward Recursion

Traceback

Figure A.1: A Viterbi Algorithm for Block Codes Example.

53

A.2 An Example of Max-Log-Map Algorithm for Block Codes

The Max-Log-Map algorithm applied to block codes was presented in Section 3.43.4. In
this appendix we give an example of decoding of a block code using the Max-Log-Map
algorithm for a better understanding.

Consider a block code with parity check matrix H as below:

H =

[
1 1 0 1 0
1 0 1 0 1

]
(A.3)

A codeword c = {1 0 1 1 0} of this code is modulated by an PBSK modulator and
sent through an AWGN channel. After transmission, the corespondent input LLRs r =
{1 2.1 − 2.5 − 2.8 0.8} = {r0 r1 r2 r3 r4} are delivered to the decoder.

Soft Output Calculation

The Max-Log-Map decoder’s soft-outputs calculation is comprised of 3 parts: the
forward recursion, the backward recursion and the calculation of the output symbols.
The α-metrics are calculated during the forward recursion. They are the same metrics
calculated during the VA’s ACS recursion (Equation 3.113.11). The β-metrics are calculated
in a similar way, but beginning with the last stage in the trellis diagram (Equation 3.153.15).
Both recursions accumulate probabilities for each state based on the metrics previously
calculated and the input symbols. The calculation of a branch metric γi,lk,k+1 in the Wolf
trellis is simply zero for zero-transitions (i = l) and the current input symbol rk for
one-transitions (i 6= l). Figure A.2A.2 shows the calculation of the beta and alpha metrics
considering a code with parity check matrix H and the LLRs above.

After the β-metrics of a trellis step have been calculated, it is possible to calculate
the corespondent output symbol. To calculate an output LLR, the minimum of the sums
for all one-transitions and for all zero-transitions sums have to be found and afterwards
subtracted from each other. The minimum one and zero-transitions branches in Figure
A.2A.2 are drawn with dashes to facilitate their identification. The calculation of the output
symbols are depicted in the equations below:

Λ4 = min(α0,4 + r4 + β1,5, α1,4 + r4 + β0,5, α2,4 + r4 + β3,5, α3,4 + r4 + β2,5)

− min(α0,4 + β0,5, α1,4 + β1,5, α2,4 + β2,5, α3,4 + β3,5) = −2.4− (−4.3) = 1.9

Λ3 = min(α0,3 + r3 + β2,4, α1,3 + r3 + β3,4, α2,3 + r3 + β0,4, α3,3 + r3 + β1,4)

− min(α0,3 + β0,4, α1,3 + β1,4, α2,3 + β2,4, α3,3 + β3,4) = −4.3− (−1.7) = −2.6

Λ2 = min(α0,2 + r2 + β1,3, α1,2 + r2 + β0,3, α2,2 + r2 + β3,3, α3,2 + r2 + β2,3)

− min(α0,2 + β0,3, α1,2 + β1,3, α2,2 + β2,3, α3,2 + β3,3) = −4.3− (−1) = −3.3

Λ1 = min(α0,1 + r1 + β2,2, α1,1 + r1 + β3,2, α2,1 + r1 + β0,2, α3,1 + r1 + β1,2)

− min(α0,1 + β0,2, α1,1 + β1,2, α2,1 + β2,2, α3,1 + β3,2) = −2.4− (4.3) = 1.9

Λ0 = min(α0,0 + r0 + β3,1, α1,0 + r0 + β2,1, α2,0 + r0 + β1,1, α3,0 + r0 + β0,1)

− min(α0,0 + β0,1, α1,0 + β1,1, α2,0 + β2,1, α3,0 + β3,1) = −4.3− (2.4) = −1.9

54

α0,0=0

k=0 k=1 k=2 k=3 k=4 k=5
0

1

H5=[01]H4=[10]H3=[01]H2=[10]H1=[11]

0

0

β0,0=-4.3

α1,0=∞
β1,0=-3.5

α2,0=∞
β2,0=-4.5

α3,0=∞
β3,0=-5.3

α0,1=0

β0,1=-2.4

α1,1=∞
β1,1=-3.2

α2,1=∞
β2,1=-4.5

α3,1=1

β3,1=-5.30

1

1

1

α0,2=0

β0,2=-1.7

α1,2=3.1

β1,2=-2.5

α2,2=2.1

β2,2=-4.5

α3,2=1

β3,2=-5.3

0

0

0

0

2
.1

2
.1

2
.1

2
.1

α0,3=0

β0,3=0

α1,3=-2.5

β1,3=0.8

α2,3=-1.5

β2,3=-2.8

α3,3=-0.4

β3,3=-2

α0,4=-4.3

β0,4=0

α1,4=-3.2

β1,4=0.8

α2,4=-2.8

β2,4=∞

α3,4=-5.3

β3,4=∞

α0,5=-4.3

β0,5=0

α1,5=-3.5

β1,5=∞

α2,5=-4.5

β2,5=∞

α3,5=-5.3

β3,5=∞

0

0

0

0

0

0

0

0

-2
.8

-2
.8

-2
.8

-2
.8

-2
.5

-2.5

-2
.5

-2.5

0

0

0

0

0.
8

0.8

0.
8

0.8

Forward Recursion: α-metrics

Backward Recursion: β-metrics

Figure A.2: A Max-Log-Map Algorithm for Block Codes Example.

Note that because the branch metrics of all the zero transitions are zero, the input
symbols contribute only to the one-transitions summation. The soft-output symbols cal-
culated by the Max-Log-Map decoder for the LLRs r = {1 2.1 − 2.5 − 2.8 0.8} are
Λ = {−1.9 1.9 − 3.3 − 2.6 1.9}.

55

A.3 A Convolutional Code Example

Convolutional codes were presented in Section 2.32.3. This appendix gives an example
of encoding and decoding of a convolutional codes for a better understanding.

Encoding of a Convolutional Code.
The information sequence u = {1 1 0 1 0 0} is encoded by the convolutional encoder

of Figure 2.22.2 producing the encoded sequence v = {(1 1) (0 1) (0 1) (1 0) (1 0) (1 1)}.
Note that this example already considers tail biting. It is easier to see the encoding process
by looking the Mealy State Machine of Figure 2.32.3. Considering a BPSK modulated, the
encoded bits {0 1} are mapped to discrete symbols {−1 + 1} before transmission.

Viterbi Decoding

The received sequence considering hard-decisions r = {(−1 − 1) (+1 − 1) (+1 −
1) (−1 + 1) (+1 + 1) (−1 − 1)} includes one corrupted bit. During the ACS recursion
of the Viterbi decoder, the branch metrics of each state transition in the trellis have to be
calculated based on the state transitions’ outputs vk and the received symbols rk as:

γm,m
′

k,k+1 =
n−1∑

κ=0

vκrκ. (A.4)

Note that γm,m
′

k,k+1 denotes the unique branch metric for a transition from state Smk to
state Sm′k+1. As an example of branch metric calculation, consider a 1-transition from state
S0
k to state S2

k+1 in the state machine of Figure 2.32.3. The output vk of this transition is
(1 1). If the received symbols at time step k is rk = (−1 − 1), than the calculation of the
metric γ0,2

k,k+1 is as follows:

γ0,2
k,k+1 =

1∑

κ=0

vκrκ = (1 1) · (−1 − 1) = −2. (A.5)

The state metrics of the first trellis step have to be initialized. The metric from the
state zero is initialized with zero and the other ones with∞. In the forward recursion, at
each time step k, the new state metrics αk+1 and decision bits deck+1 have to be calculated
based on the previous state metrics αk and the current input symbol rk.

αm
′

k+1 = min
∀m

(αmk + γm,m
′

k,k+1) (A.6)

Figure A.3A.3 shows the calculation of state metrics and decision bits for the received
symbols r above. The paths which did not survive are drawn in light gray. The decision
bits have to be store in a survival memory. Every time a path from a state metric with
lower state number is chosen, the decision bit 0 is selected. If both paths metrics have the
same value, 0 is also selected. The decision bits for each state are depicted under each
state metric.

During the traceback operation, the decision bits are read from the survival memory,
beginning with the bits from the last trellis step. The shift register is reseted to all-zero
and act as a pointer to the correct bit to be read. The bit recently read enters the shift
register and the bits leaving the register are the most likely bits sent. Once the traceback
operation has finished, the most likely path through the trellis is identified.

56

0 0

-2

-1

0

0

-3

-4

-1

0

-2

-1

-4

-5

-3

k=0 k=1 k=2 k=3 k=4
0

-2

0

0 0 0

0

1

0

-1

0

0

1

0

0

0
1

1
-1

1

-1

1

1

0

1

0

0
-1

-1
1

1

-1

0

1

1

1

-4

-4

-2

-4

k=5
0

2

2
1

1
1

1
1

0

0

0

0

-5

-6

-6

-5

k=6
0

-2

-2
-1

-1-1

-1

-1

1

1

0

0

oo

oo

oo

oo

oo

0

0

Forward Recursion

0 0

1
1
0
0

0 0 1

0
0
0
0

00 111 0

1
0
1
1

1
1
0
1

10 1

0
1
0
0

01 1

0
0
0
0

01 0

Traceback

Figure A.3: A convolutional decoder example.

57

APPENDIX B RELATED WORK

B.1 Article published at the Advances in Radio Sciences Journal

Manuscript prepared for J. Name
with version 5.0 of the LATEX class copernicus.cls.
Date: 13 December 2013

FPGA Implementation of Trellis Decoders for Linear Block Codes
S. Scholl1, E. Leonardi2, and N. Wehn1

1Microelectronic Systems Design Research Group, University of Kaiserslautern, 67663 Kaiserslautern, Germany
2Institute of Informatics, Federal University of Rio Grande do Sul, 91501970 Porto Alegre, Brazil

Correspondence to: S. Scholl (scholl@eit.uni-kl.de)

Abstract. Forward error correction based on trellises has
been widely adopted for convolutional codes. Because of
their efficiency, they have also gained a lot of interest from
a theoretic and algorithm point of view for the decoding
of block codes. In this paper we present for the first time5

hardware architectures and implementations for trellis de-
coding of block codes. A key feature is the use of a sophis-
ticated permutation network, the Banyan network, to imple-
ment the time varying structure of the trellis. We have imple-
mented the Viterbi and the max-log-MAP algorithm in dif-10

ferent folded versions on a Xilinx Virtex 6 FPGA.

1 Introduction

Forward error correction is widely used in today’s commu-
nication systems for the correction of transmission errors.15

In the last years and decades many different error correc-
tion schemes have been introduced and successfully adopted
in various communication standards. Prominent examples
for channel codes are convolutional codes, Reed-Solomon
codes, turbo codes and LDPC codes.20

The optimal correction strategy is called maximum like-
lihood (ML) decoding. Since ML decoding is very complex
for many practically used codes, most of the decoding al-
gorithms are suboptimal heuristics, e.g. the turbo decoding
algorithm (Lin and Jr (2004)). However, in this paper we25

consider two algorithms, that can efficiently perform ML
decoding of convolutional codes or small block codes: the
Viterbi algorithm (VA) (Viterbi (1967)) and the BCJR algo-
rithm (Bahl et al. (1974)).

The efficiency of the VA and BCJR algorithm originate30

mainly in the exploitation of the code’s structure, which is
graphically represented as a trellis diagram. In the past a vast
amount of research has been carried out on trellis based de-
coding for convolutional codes, including works from gen-

eral theory to hardware implementations for real world ap-35

plications.
However, not only convolutional codes can be described

by trellis diagrams. Also block codes can be represented as
trellis and thus efficient decoding algorithms for convolu-
tional trellises can also be applied to block codes. Trellis de-40

coders for block codes have many different applications as
standalone ML decoder or as components of larger decoding
heuristics. Here we want to point out just a few use cases:

– as a maximum likelihood decoder for small block codes

– as a component decoder for turbo product codes, Pyn-45

diah et al. (1994)

– as a check node decoder for generalized LDPC codes,
Tanner (1981)

– as a component for soft decision decoding of Reed-
Solomon codes, e.g. in Vardy and Be’ery (1991), Liu50

and Lin (2004)

Trellises of block codes mostly have a special structure
(called time varying trellis), that poses a major challenge
for the hardware designer. So far hardware architectures and
implementation have not been considered yet. In Kim et al.55

(2003) a trellis decoder was implemented on an FPGA, but
its use is restricted to a small group of block codes, that do
not have a time varying structure.

In this paper we propose an architecture, that is able to
handle all block codes of reasonable size. We solve the chal-60

lenge posed by the time varying structure by introducing a
optimized Banyan permutation network, that is tailored to
the application. We evaluate the architectures for the VA and
BCJR as well as folded versions by implementing them on
a Virtex 6. To our best knowledge, this is the first hardware65

implementation of trellis decoding for arbitrary block codes.
The paper is structured as follows: In Section 2 we first

present the construction rules for a trellis, followed by a

2 :

brief description of the algorithms in Section 3. Section 4
describes the proposed architectures and the implementation70

results can be found in Section 5.

2 Trellis Construction for Block Codes

We consider a binary block code with block length N and
K information bits. The code is defined by its parity check
matrix (PCM) H of dimension (N −K)×N . The columns75

of H are denoted by hk. A valid code word is denoted by
x= (x0,x1, ...,xN−1) and the received log-likelihood ratios
(LLRs) by y = (y0,y1, ...,yN−1)

A trellis diagram is a graphical representation of the code
word space of a channel code. Every path in a trellis connect-80

ing the starting and end point correspond to exactly one code
word.

The trellis diagram for block codes can be constructed in
two different ways: using the generator matrix or the parity
check matrix (PCM) of the code.85

The first construction method is based on the generator
matrix (see Lin and Jr (2004) for more information). Since
this construction method is quite complex and requires the
generator matrix to be in a special form (trellis oriented
generator matrix form), we apply the second construction90

method based on the PCM.
The PCM method provides full flexibility on the matrix,

so that any PCM can be used. Furthermore, the trellis struc-
ture can easily be deduced from the PCM, which makes it
suitable for a hardware implementation. Since the trellis de-95

scribes a block code, we call it a bit-level trellis – in contrast
to the convolutional trellis. In the following, we describe the
construction method of Wolf (1978).

The bit-level trellis has N trellis steps (sometimes called
time steps), and M = 2N−K states per step. The states are100

labelled by a binaryN−K tuple smk , wherem= 0,1, ...,M−
1 denotes the index of a state in step k = 0,1, ...,N .

To construct the trellis, the states between step k and k+1
are connected by branches. There are two different types of
branches. One corresponds to code bit ’0’ (xk = 0) the other105

one to code bit ’1’ (xk = 1). The branches are established
recursively as follows: From each state smk of step k two
branches depart to state

smk+1 = smk for xk = 0
110

slk+1 = smk +hk for xk = 1

Since only paths from s00 to s0N represent code words, all
other paths can be expurgated.

There are some remarkable differences between a convolu-
tional trellis and a bit-level trellis. A bit-level trellis is in gen-115

eral a time-varying trellis, i.e. state transitions change over
time – in contrast to the convolutional trellis.

Besides the time varying property, in a bit-level trellis only
one bit is associated with a time step. In a convolutional trel-
lis usually two or more bits correspond to one time step.120

1 1 1 0 1 0 1
0 1 0 1 1 1 1

H =

00

01

10

11

Bit = 0

Bit = 1

Fig. 1. Example for a trellis construction using the PCM H

Additionally, it should be pointed out that the ’0’ branches
always connect states having the same label. This property
can be exploited in hardware, as we will see later.

A small example forN = 7 andK = 5 with aM = 4 state
trellis is depicted in Fig. 1 to clarify the trellis construction.125

3 Trellis Decoding Algorithms

Once the trellis representation of a code is obtained, it en-
ables the use of very efficient decoding algorithms, like the
VA and the BCJR algorithm. In this section we give a short
summary of these two algorithms for bit-level trellises and130

their variants in the log domain.

3.1 Viterbi Algorithm

The VA (Viterbi (1967)) performs ML decoding efficiently
on a trellis. It looks for the most probable path in the trellis
by recursively building up paths though the trellis and dis-135

carding unlikely paths in every step. We shortly repeat the
VA in the logarithm domain, that is usually used for hard-
ware implementation.

For the VA every trellis state smk is assigned a state metric
α(smk). The state metrics for step k+1 are calculated recur-140

sively from those of step k.

1. initialize the state metrics at step 0: s00 with 0 and all
other sm0 (m 6= 0) with -infinity

2. For all states k = 0,1, ..,N − 1 and all indices
m= 0,1..,M − 1 calculate145

α
(
slk
)
=max

[
α
(
slk
)
, α(smk)+ yk

]
(1)

where slk = smk +hk

3. output the path which lead to the maximum state metric
α
(
s0N

)
, called the traceback step.150

More detailed information on the VA can easily be found
in literature (Lin and Jr (2004); Wolf (1978)).

3.2 BCJR and Max-log-MAP Algorithm

A drawback of the VA is that it does not provide any soft
output information, which is required by modern decoding155

: 3

heuristics. However, the BCJR algorithm (Bahl et al. (1974))
provides such additional information.

For hardware implementations is it advantageous to use
the BCJR algorithm in the logarithm domain, which is
called log-MAP, or its low complexity version max-log-MAP160

(Robertson et al. (1995)). In this paper we consider the max-
log-MAP because it provides low complexity without de-
grading the decoding performance significantly.

In the max-log-MAP (and also the BCJR algorithm) every
state is assigned two state metrics: the forward state metrics165

α(smk) and the backward state metrics β (smk).
Max-log-MAP decoding consists of three phases:

1. forward recursion (calculates state metrics α(smk))

2. backward recursion (calculates state metrics (β (smk))

3. soft output calculation (using α(smk), β
(
smk+1

)
and yk)170

The forward recursion is equal to that of the VA in Eq.
1. For the backward recursion the states are processed in re-
versed order, i.e. from right to left. Details of the algorithm
can be found e.g. in Lin and Jr (2004).

It can already be seen, that the recursion steps are im-175

portant in both the VA and the max-log-MAP. It consists of
add-compare-select (ACS) operations in Eq. 1 and requires
permutations of state metrics according to the time varying
branch structure. In the following section, we will focus on
the hardware architecture for such a recursion unit for bit-180

level trellises.

4 Proposed Architectures

In this section we present the hardware architectures for VA
and the max-log-MAP decoder for bit-level trellises. We pro-
pose the use of a Banyan network, that to implement the flex-185

ible state transitions. Finally we present a folded architecture,
which reduces the decoder area to enable the implementation
for trellises with a large number of states.

4.1 Architectures for Viterbi and Max-Log-MAP algo-
rithm190

The top level architectures for Viterbi and max-log-MAP de-
coder are depicted in Fig. 2 and 3. Although they look dif-
ferent, their core functionality is the recursion unit, which in
both cases is identical.

The recursion unit for a simple case of a 4 state trellis is195

shown in Fig. 4. All state metrics α(smk) of one time step k
are calculated in parallel. The different trellis steps are calcu-
lated consecutively, i.e. one trellis step per clock cycle. The
state metrics are temporarily stored in the registers.

One iteration consists of routing the state metrics through200

the permutation network first. The routing is done according
to the branches to the ACS units and is determined by the

recursion
unit

recursion
unit

survivor bit
memory

survivor bit
memory

parity check ROMparity check ROM

traceback
unit

traceback
unit

input
LLRs

output
bits

Fig. 2. Top level architecture of the Viterbi decoder

recursion
unit

recursion
unit

α metric memoryα metric memory

parity check ROMparity check ROM

soft output
unit

soft output
unit

input
LLRs

output
LLRs (APP)

LLR
memory

LLR
memory

Fig. 3. Top level architecture for the max-log-MAP decoder

columns of the PCM hk. The ACS calculates Eq. 1. Finally
the state metrics are stored in the register again.

Note, that the state metrics are directly fed back to the reg-205

ister. This maps the branches for code bit ’0’ to the hardware.
The state metrics and received LLRs y are represented as

fixed point numbers. To keep the number of bits low and
therefore to save resources without provoking catastrophic
overflows, modulo arithmetic is used here (Hekstra (1989)).210

4.2 Permutation Network

An essential part of the trellis decoders is the permutation
network (PN). It routes the state metrics along the Bit ’1’
branches during the recursion.

The PNs in the trellis decoders must have M = 2N−K in-215

puts and outputs. The network is controlled by the column

ACS

ACS

ACS

ACS

PCM Memorycontains
state metric α

'1' branch

'0' branch

'1' branch

y
i

Fig. 4. Architecture of the recursion unit

4 :

bits of the PCM hk and consists of 2× 2 butterfly switches,
which can permute or route through the two inputs.

We first investigate the use of the well known Benes PN
(Benes (1964)) and in a second step propose the use of a more220

sophisticated network, the Banyan PN (Goke and Lipovski
(1973)).

The Benes PN is capable of performing all possible M !
permutations, although in this application only M are re-
quired. Therefore, the Benes PN uses more resources than225

necessary. A drawback of the Benes PN is its elevated num-
ber of 2 · log2(M)− 1 stages, which directly lengthens the
maximum combinational path of the recursion unit and thus
decreases the throughput. Furthermore the Benes PN re-
quires a complex controlling logic, which maps the bits from230

the PCM to the control bits of the switches, see Fig. 7.
The second network studied is the Banyan PN. It performs

the necessary permutation with approximately half the num-
ber of stages (log2(M)) in comparison to the Benes PN. This
reduces the signal propagation time and improves through-235

put. Moreover the Banyan PN has approximately half the
number of switches (see Fig. 5). Another advantage is that
the bits of the columns of the PCM can directly be applied
to control the switches in the network. No extra controlling
logic is required. The small number of switches and the sav-240

ing of the complex controlling logic makes the Banyan PN
the network of choice for this application.

In the following, we provide our method of how to build up
such a network. The Banyan PN is constructed from two But-
terfly PNs and a final permutation stage. The smallest Butter-245

fly PN is composed of a single switch and larger ones can be
constructed recursively, i.e. a network with M inputs is ob-
tained from two Butterfly PNs with M/2 inputs.

We place the second Butterfly PN below the first one and
denote the outputs by S(i) with i= 0,1, ..,M/2− 1 and i=250

M/2, ..,M −1. The final stage is a column of M/2 switches
that placed right of the two Butterfly PNs. Their inputs are
denoted by I(i) with i= 0,1, ..,M − 1 and their outputs by
B(i). The connections between the two Butterfly PNs and
the final stage is done by the following algorithm:255

Algorithm 1 Intermediate connections of a Butterfly PN
for (i= 0 to (M/4− 1)) do
I(2 ∗ i)← S(2 ∗ i)
I(2 ∗ i+1)← S(2 ∗ i+M/2)
I(2 ∗ i+M/2)← S(2 ∗ i+1)
I(2 ∗ i+M/2+1)← S(2 ∗ i+M/2+1)

end for

Finally, we connect the outputs B(i) of the final stage to
the outputs O(i) of the Banyan PN by using the following
algorithm:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 16 32 64 128 256

N
um

be
ro

fs
w

itc
he

s

Number of inputs

Benes
Banyan

Fig. 5. Number of switches used by the Benes and the Banyan PN

Control bits from PCM

Butterfly PN

Butterfly PN

Fig. 6. Eight input Banyan PN: it needs less switches than the Benes
PN and no controlling is needed

Algorithm 2 Output connections of a Banyan PN
for (i= 0 to (n/2− 1)) do
O(i)←B(2 ∗ i)
O(i+n/2)←B(2 ∗ i+1)

end for

Each input of the network has to be able to reach all the
M different output addresses and that is only possible with260

N−K stages. Thus it is impossible to do all the required per-
mutations with a network with less stages than the Banyan.

Fig. 6 shows the construction of an 8x8 Banyan PN using
the algorithms from above.

4.3 Folding265

For trellises with a large number of states M , the above pre-
sented architecture grows quickly and may become too large
for an FPGA implementation. To counteract this problem,
we propose folding to reduce the required resources of the
decoder at the expense of a reduced throughput.270

: 5

Complex Controlling Logic

Bits from PCM memory

Fig. 7. Eight input Benes PN: it needs more switches than the
Banyan PN and additional controlling is needed

In the folded architecture not all M state metrics in one
trellis step are calculated in one clock cycle. Instead the state
metrics are calculated, e.g. in two clock cycles. In this case
half of the ACS units can be reused.

Furthermore it reduces the size of the PN by more than275

half given that its construction is recursive (see above). Note,
that the folded Banyan PN with M/2 exactly fulfils the per-
mutation requirements of the folded architecture, and is thus
suitable for folded architectures.

The number of clock cycles required to calculate the state280

metrics of one trellis step is called folding factor f and must
be a power of 2.

Due to folding the size of the PN, the number of ACS
units and the soft output unit (for the max-log-MAP decoder)
is largely reduced. However, some additional hardware re-285

sources are needed to distribute the state metrics to the PN
and ACS units and registers to store the partially calculated
state metrics.

The area reduction of the soft output unit is directly pro-
portional to the folding factor f . Therefore folding is espe-290

cially advantageous for the max-log-MAP decoder.

5 FPGA Implementation

To evaluate the architectures in detail we have implemented
the architectures on a Xilinx Virtex 6 (XC6VLX75T-3)
FPGA using ISE 14.1. The architectures for the VA, the max-295

log-MAP and their folded version have been evaluated for
trellises with different number of states. We analyse the re-
source consumption regarding the required look-up tables
(LUTs) after place & route.

The numbers presented are only dependent on the num-300

ber of trellis states M and not on the number of trellis steps
N . The number of trellis steps N only influences the size of
the memories. However this is not the critical resource in the
design.

0

500

1000

1500

2000

2500

3000

8 16 32 64

LU
Ts

Trellis states

CONTROL UNIT
PERMUTATION NETWORK

ACS UNITS

Fig. 8. Viterbi decoder: look-up tables

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64

LU
Ts

Trellis states

CONTROL UNIT
ACS UNITS

PERMUTATION NETWORK
SOFT OUTPUT UNIT

Fig. 9. Max-log-MAP decoder : look-up tables

The quantization of the metrics is dependent on the context305

in which the decoders are used. However it has been experi-
enced by simulations that a state metric quantization of 7 Bits
for the VA and 8 Bits for the max-log-MAP is reasonable.

In Fig. 8 and 9 the required LUTs for the unfolded archi-
tecture (f = 1) is shown, separated for each decoder part.310

For the VA almost 50% of the LUTs are occupied by the
ACS units. The PN also consumes nearly 50% of the LUTs.
Therefore the ACS units and the PN are the dominating parts.
The remaining fraction is occupied by the controlling, which
also includes the traceback unit.315

The max-log-MAP is dominated by the soft output unit,
which needs approximately 50% of all LUTs. The PN and
the ACS units consume around 25% each.

In Fig. 10 and 11 the number of required LUTs for differ-
ent folded architectures are shown. It shows how the occu-320

pied resources reduce and allows for the implementation of
larger trellises. The throughput decrease for the VA can be
seen in Fig. 12.

6 :

0

2000

4000

6000

8000

10000

12000

14000

32 64 128 256

LU
Ts

Trellis states

Parallel
Folding Factor 2
Folding Factor 4
Folding Factor 8

Fig. 10. Viterbi decoder: LUTs dependent on folding factor

0

5000

10000

15000

20000

25000

30000

32 64 128 256

LU
Ts

Trellis states

Parallel
Folding Factor 2
Folding Factor 4
Folding Factor 8

Fig. 11. Max-log-MAP decoder: LUTs dependent on folding factor

6 Conclusions

In this paper we have investigated hardware architectures for325

bit-level trellises. We have selected the trellis construction
based on the PCM, because it provides maximum flexibility.
After a brief review of the VA and the BCJR decoding algo-
rithms, we proposed efficient hardware architectures. A key
feature is the Banyan PN, which maps the time variant prop-330

erty of the trellis efficiently to hardware and significantly out-
performs standard solutions like the Benes PN. Furthermore
we presented a folded version of the architecture to enable
the implementation for large trellises. Finally the resource
consumption and throughput of the architecture have been335

evaluated on a Xilinx Virtex 6 FPGA.

Acknowledgements. We gratefully acknowledge partially financial
support by the DFG (project-ID: KI 1754/1-1) as well as by the
Center of Mathematical and Computational Modelling of the Uni-
versity of Kaiserslautern. We thank Frank Kienle for his valuable340

comments and suggestions.

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

Trellis states

Parallel
Folding Factor 2
Folding Factor 4
Folding Factor 8

Fig. 12. Viterbi decoder: throughput dependent on folding factor

References

Bahl, L., Cocke, J., Jelinek, F., and Raviv, J.: Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate, IEEE Transac-
tion on Information Theory, IT-20, 284–287, 1974.345

Benes, V. E.: Optimal Rearrangeable Multistage Connecting Net-
works, The Bell System Technical Journal, 4, 1964.

Goke, L. R. and Lipovski, G. J.: Banyan Networks for Partitioning
Multiprocessor Systems, 1st Annual Symposium on Computer
Architecture, pp. 21–28, 1973.350

Hekstra, A. P.: An Alternative to Metric Rescaling in Viterbi De-
coders, IEEE Transactions on Communications, 37, 1220–1222,
doi:http://dx.doi.org/10.1109/26.4651610.1109/26.46516, 1989.

Kim, S., Ryoo, S., and Lee, S.: Block Turbo Codes Using Multiple
Soft Outputs, in: Proceedings of the 3rd ISTC, vol. 1, pp. 247–355

250, Brest, 2003.
Lin, S. and Jr, D. C.: Error Control Coding 2nd., Prentice Hall PTR,

Upper Saddle River, New Jersey, USA, 2004.
Liu, C. Y. and Lin, S.: Turbo encoding and decoding of

Reed-Solomon codes through binary decomposition and self-360

concatenation, IEEE Transactions on Communications, 52,
1484–1493, 2004.

Pyndiah, R., Glavieux, A., Picart, A., and Jacq, S.: Near optimum
decoding of product codes, in: Proc. IEEE Global Telecommuni-
cations Conf. GLOBECOM ’94. Communications: The Global365

Bridge, pp. 339–343, 1994.
Robertson, P., Villebrun, E., and Hoeher, P.: A Comparison of Op-

timal and Sub-Optimal MAP decoding Algorithms Operating
in the Log-Domain, in: Proc. 1995 International Conference on
Communications (ICC ’95), pp. 1009–1013, Seattle, Washing-370

ton, USA, 1995.
Tanner, R. M.: A Recursive Approach to Low Complexity Codes,

IEEE Transaction on Information Theory, IT-27, 533–547, 1981.
Vardy, A. and Be’ery, Y.: Bit-level soft-decision decoding of Reed-

Solomon codes, IEEE Transactions on Communications, 39,375

440–444, 1991.
Viterbi, A. J.: Error Bounds for Convolutional Codes and an

Asymptotically Optimum Decoding Algorithm, IEEE Transac-
tions on Information Theory, 13, 260–269, 1967.

Wolf, J.: Efficient maximum likelihood decoding of linear block380

codes using a trellis, IEEE Transactions on Information Theory,
24, 76–80, 1978.

64

APPENDIX C VHDL CODE

C.1 Block Codes Trellis Decoders Package

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package trellis_decoders_bc_lib is

constant SM_BITS : integer := 7;
constant LLR_BITS : integer := 5;
constant N : integer := 255; --CODE LENGHT
constant ADDRESS_BITS : integer := 8; -- log2(N) -> rounded up
constant R : integer := 8; --REDUNDANT BITS = N - K
constant NUMBER_OF_SM : integer := 2**R;

type state_metrics_array_type is array (0 to NUMBER_OF_SM -1)
of std_logic_vector (SM_BITS -1 downto 0);
type state_metric_bits_type is array (0 to SM_BITS -1)
of std_logic_vector(0 to NUMBER_OF_SM -1);
type permutation_network_internal_connections is array(0 to R-1)
of std_logic_vector(0 to NUMBER_OF_SM);

type PN_2x2_IO_type is array (0 to 1)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_4x4_IO_type is array (0 to 3)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_8x8_IO_type is array (0 to 7)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_16x16_IO_type is array (0 to 15)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_32x32_IO_type is array (0 to 31)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_64x64_IO_type is array (0 to 63)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_128x128_IO_type is array (0 to 127)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_256x256_IO_type is array (0 to 255)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_512x512_IO_type is array (0 to 511)
of std_logic_vector (SM_BITS -1 downto 0);
type PN_1024x1024_IO_type is array (0 to 1023)
of std_logic_vector (SM_BITS -1 downto 0);

component Recursion_Unit
port (

65

CLOCK : in std_logic;
RECURSION_H_COLUMN : in std_logic_vector (R-1 downto 0);
LLR : in std_logic_vector (LLR_BITS-1 downto 0);
RESET_SM : in std_logic;
WRITE_SM_REGISTERS : in std_logic;
CHOOSEN_BITS : out std_logic_vector (NUMBER_OF_SM -1 downto 0)

);
end component;

component Survivor_Management_Unit
port(

CLOCK : in std_logic;
CHOOSEN_BITS : in std_logic_vector (NUMBER_OF_SM -1 downto 0);
TRACEBACK_H_COLUMN : in std_logic_vector (R-1 downto 0);
ENABLE_TRACEBACK_MEMORY : in std_logic;
TRACEBACK_MEMORY_A_ADDRESS
: in std_logic_vector(ADDRESS_BITS -1 downto 0);
TRACEBACK_MEMORY_B_ADDRESS
: in std_logic_vector(ADDRESS_BITS -1 downto 0);
TRACEBACK_MEMORY_A_WRITE_ENABLE : in std_logic;
TRACEBACK_MEMORY_B_WRITE_ENABLE : in std_logic;
RESET_TRACEBACKING_MEMORY_REGISTER : in std_logic;
TOGGLE_TRACEBACKING_MEMORY: in std_logic;
RESET_METRIC_INDEX_REGISTER: in std_logic;
TRACEBACKING_MEMORY : out std_logic;
DECODED_BIT : out std_logic

);
end component;

component LLR_Unit is
port (

CLOCK : in std_logic;
ALPHA_VALUES : in state_metrics_array_type;
BETA_VALUES_1_TRANSITIONS : in state_metrics_array_type;
BETA_VALUES_0_TRANSITIONS : in state_metrics_array_type;
LLR : in std_logic_vector (LLR_BITS -1 downto 0);
WRITE_PIPELINE_REGS : in std_logic;
RESET_MAP_REGISTER : in std_logic;
WRITE_RESULT : in std_logic;
MAP_RESULT : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0)

);
end component;

component ACS
Port (STATE_METRIC_X : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);

STATE_METRIC_Y : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);
LLR : in STD_LOGIC_VECTOR (LLR_BITS-1 downto 0);
CHOOSEN_BIT : out STD_LOGIC;
SELECTED_METRIC : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0));

end component;

component H_Matrix_ROM
Port (CLOCK : in STD_LOGIC;

ENABLE : in STD_LOGIC;
ADDRESS_A : in STD_LOGIC_VECTOR (ADDRESS_BITS -1 downto 0);

ADDRESS_B : in STD_LOGIC_VECTOR (ADDRESS_BITS -1 downto 0);
DATA_OUT_A : out STD_LOGIC_VECTOR (R-1 downto 0);

DATA_OUT_B : out STD_LOGIC_VECTOR (R-1 downto 0));

66

end component;

component Traceback_Memory
Port (CLOCK : in STD_LOGIC;

ENABLE : in STD_LOGIC;
WRITE_ENABLE : in STD_LOGIC;
DATA_IN : in STD_LOGIC_VECTOR (NUMBER_OF_SM -1 downto 0);
ADDRESS : in STD_LOGIC_VECTOR (ADDRESS_BITS -1 downto 0);
DATA_OUT : out STD_LOGIC_VECTOR (NUMBER_OF_SM -1 downto 0)

);
end component;

component LLR_Memory
Port (CLOCK : in STD_LOGIC;

ENABLE : in STD_LOGIC;
WRITE_ENABLE : in STD_LOGIC;

ADDRESS : in STD_LOGIC_VECTOR (ADDRESS_BITS -1 downto 0);
DATA_IN : in STD_LOGIC_VECTOR (LLR_BITS -1 downto 0);

DATA_OUT : out STD_LOGIC_VECTOR (LLR_BITS -1 downto 0));
end component;

component Alpha_Values_Memory
Port (CLOCK : in STD_LOGIC;
ENABLE : in STD_LOGIC;
WRITE_ENABLE : in STD_LOGIC;

ADDRESS : in STD_LOGIC_VECTOR (ADDRESS_BITS -1 downto 0);
DATA_IN : in
STD_LOGIC_VECTOR ((NUMBER_OF_SM)*(SM_BITS) -1 downto 0);

DATA_OUT : out
STD_LOGIC_VECTOR ((NUMBER_OF_SM)*(SM_BITS) -1 downto 0));

end component;

component Three_Elements_Adder -- adds the elements of a one-transition
Port (ALFA_METRIC : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);

BETA_METRIC : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);
LLR : in STD_LOGIC_VECTOR (LLR_BITS -1 downto 0);
RESULT : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0));

end component;

component Two_Elements_Adder is
Port (ALFA_METRIC : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);

BETA_METRIC : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);
RESULT : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0));

end component;

component Lower_Value_Selector
Port (CLOCK : in std_logic;
INPUT_VALUES : in state_metrics_array_type;
WRITE_PIPELINE_REGS : in std_logic;

LOWER_VALUE : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0));
end component;

component Banyan_Permutation_Network is
Port (INPUTS : in state_metrics_array_type;
CONTROLS : in std_logic_vector(0 to R -1);

OUTPUTS : out state_metrics_array_type);
end component;

67

component SM_Switch
Port (SM_A : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);

SM_B : in STD_LOGIC_VECTOR (SM_BITS -1 downto 0);
CONTROL : in STD_LOGIC;
OUT_A : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0);
OUT_B : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0));

end component;

component Butterfly_Network_4x4 is
Port (INPUTS : in PN_4x4_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 1);
OUTPUTS : out PN_4x4_IO_type

);
end component;

component Banyan_Network_4x4 is
Port (INPUTS : in PN_4x4_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 1);
OUTPUTS : out PN_4x4_IO_type

);
end component;

component Butterfly_Network_8x8 is
Port (INPUTS : in PN_8x8_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 2);
OUTPUTS : out PN_8x8_IO_type);

end component;

component Banyan_Network_8x8 is
Port (INPUTS : in PN_8x8_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 2);
OUTPUTS : out PN_8x8_IO_type);

end component;

component Butterfly_Network_16x16 is
Port (INPUTS : in PN_16x16_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 3);
OUTPUTS : out PN_16x16_IO_type);

end component;

component Banyan_Network_16x16 is
Port (INPUTS : in PN_16x16_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 3);
OUTPUTS : out PN_16x16_IO_type);

end component;

component Butterfly_Network_32x32 is
Port (INPUTS : in PN_32x32_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 4);
OUTPUTS : out PN_32x32_IO_type);

end component;

component Banyan_Network_32x32 is
Port (INPUTS : in PN_32x32_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 4);
OUTPUTS : out PN_32x32_IO_type);

end component;

68

component Butterfly_Network_64x64 is
Port (INPUTS : in PN_64x64_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 5);
OUTPUTS : out PN_64x64_IO_type);

end component;

component Banyan_Network_64x64 is
Port (INPUTS : in PN_64x64_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 5);
OUTPUTS : out PN_64x64_IO_type);

end component;

component Butterfly_Network_128x128 is
Port (INPUTS : in PN_128x128_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 6);
OUTPUTS : out PN_128x128_IO_type);

end component;

component Banyan_Network_128x128 is
Port (INPUTS : in PN_128x128_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 6);
OUTPUTS : out PN_128x128_IO_type);

end component;

component Butterfly_Network_256x256 is
Port (INPUTS : in PN_256x256_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 7);
OUTPUTS : out PN_256x256_IO_type);

end component;

component Banyan_Network_256x256 is
Port (INPUTS : in PN_256x256_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 7);
OUTPUTS : out PN_256x256_IO_type);

end component;

component Butterfly_Network_512x512 is
Port (INPUTS : in PN_512x512_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 8);
OUTPUTS : out PN_512x512_IO_type);

end component;

component Banyan_Network_512x512 is
Port (INPUTS : in PN_512x512_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 8);
OUTPUTS : out PN_512x512_IO_type);

end component;

component Banyan_Network_1024x1024 is
Port (INPUTS : in PN_1024x1024_IO_type;

CONTROLS : in STD_LOGIC_VECTOR (0 to 9);
OUTPUTS : out PN_1024x1024_IO_type);

end component;
end trellis_decoders_bc_lib;

69

C.2 Viterbi Decoder Top Level

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.trellis_decoders_bc_lib.ALL;

entity Viterbi_Decoder_Block_Codes is
Port (CLOCK : in STD_LOGIC;
RESET : in STD_LOGIC;
LLR : in std_logic_vector(LLR_BITS -1 downto 0);
DECODED_BIT : out std_logic
);

end Viterbi_Decoder_Block_Codes;

architecture Behavioral of Viterbi_Decoder_Block_Codes is

--WIRES
signal choosen_bits : std_logic_vector (NUMBER_OF_SM -1 downto 0);
signal recursion_H_column : std_logic_vector (R-1 downto 0);
signal traceback_H_column : std_logic_vector (R-1 downto 0);
signal decoded_bit_internal_signal : std_logic;
signal tracebacking_memory : std_logic;
--REGISTERS
signal up_counter : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal down_counter : std_logic_vector(ADDRESS_BITS -1 downto 0);
-- two addresses to acess the dual port H memory ROM
signal H_memory_address_A_register : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal H_memory_address_B_register : std_logic_vector(ADDRESS_BITS -1 downto 0);
--CONTROL SIGNALS
signal reset_sm : std_logic;
signal write_sm_registers : std_logic;
signal enable_H_memory : std_logic;
signal enable_traceback_memory : std_logic;
signal traceback_memory_A_address : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal traceback_memory_B_address : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal traceback_memory_A_write_enable : std_logic;
signal traceback_memory_B_write_enable : std_logic;
signal reset_tracebacking_memory_register : std_logic;
signal toggle_tracebacking_memory: std_logic;
signal reset_metric_index_register: std_logic;
signal reset_up_counter : std_logic;
signal reset_down_counter : std_logic;
signal increment_H_memory_address_A : std_logic;
signal decrement_H_memory_address_B : std_logic;
signal reset_memory_address : std_logic;
signal count_up : std_logic;
signal count_down : std_logic;

-- FSM
type state_type is
(RESET_STATE, FWD_RECURSION, PREPARE_TRACEBACK, TRACEBACK_AND_FWD_RECURSION);
signal state, next_state : state_type;

begin

70

H_memory: H_Matrix_ROM port map(
CLOCK => CLOCK,
ENABLE => enable_H_memory,
ADDRESS_A => H_memory_address_A_register,
ADDRESS_B => H_memory_address_B_register,
DATA_OUT_A => recursion_H_column,
DATA_OUT_B => traceback_H_column

);

-- address used in forward recursion
H_memory_address_A_reg: process (CLOCK, reset_memory_address)
begin

if (reset_memory_address = ’1’) then
H_memory_address_A_register <= (others => ’0’);

elsif falling_edge (CLOCK) then
if (increment_H_memory_address_A = ’1’) then

H_memory_address_A_register <= H_memory_address_A_register + ’1’;
else

H_memory_address_A_register <= H_memory_address_A_register;
end if;

end if;
end process;

-- address used in traceback
H_memory_address_B_reg: process (CLOCK, reset_memory_address)
begin

if (reset_memory_address = ’1’) then
H_memory_address_B_register <= conv_std_logic_vector(N-1, ADDRESS_BITS);

elsif falling_edge (CLOCK) then
if (decrement_H_memory_address_B = ’1’) then

H_memory_address_B_register <= H_memory_address_B_register - ’1’;
else

H_memory_address_B_register <= H_memory_address_B_register;
end if;

end if;
end process;

RU: Recursion_Unit port map(
CLOCK => CLOCK,
RECURSION_H_COLUMN => recursion_H_column,
LLR => LLR,
RESET_SM => reset_sm,
WRITE_SM_REGISTERS => write_sm_registers,
CHOOSEN_BITS => choosen_bits

);

SMU: Survivor_Management_Unit port map(
CLOCK => CLOCK,
CHOOSEN_BITS => choosen_bits,
TRACEBACK_H_COLUMN => traceback_H_column,
ENABLE_TRACEBACK_MEMORY => enable_traceback_memory,
TRACEBACK_MEMORY_A_ADDRESS => traceback_memory_A_address,
TRACEBACK_MEMORY_B_ADDRESS => traceback_memory_B_address,
TRACEBACK_MEMORY_A_WRITE_ENABLE => traceback_memory_A_write_enable,
TRACEBACK_MEMORY_B_WRITE_ENABLE => traceback_memory_B_write_enable,
RESET_TRACEBACKING_MEMORY_REGISTER => reset_tracebacking_memory_register,
TOGGLE_TRACEBACKING_MEMORY => toggle_tracebacking_memory,
RESET_METRIC_INDEX_REGISTER => reset_metric_index_register,

71

TRACEBACKING_MEMORY => tracebacking_memory,
DECODED_BIT => decoded_bit_internal_signal

);

DECODED_BIT <= decoded_bit_internal_signal;
------------------------------- FSM -----------------------------

process (CLOCK, RESET, state)
begin

if (RESET = ’1’) then
state <= RESET_STATE;

elsif rising_edge(CLOCK) then
state <= next_state;

else
state <= state;

end if;
end process;

process (state, up_counter, down_counter)
begin

case state is
when RESET_STATE =>

next_state <= FWD_RECURSION;
when FWD_RECURSION =>

if (up_counter = conv_std_logic_vector(N-2, ADDRESS_BITS)) then
next_state <= PREPARE_TRACEBACK;

else
next_state <= FWD_RECURSION;

end if;
when PREPARE_TRACEBACK =>

next_state <= TRACEBACK_AND_FWD_RECURSION;
when TRACEBACK_AND_FWD_RECURSION =>

if (up_counter = conv_std_logic_vector(N-2, ADDRESS_BITS))then
next_state <= PREPARE_TRACEBACK;

else
next_state <= TRACEBACK_AND_FWD_RECURSION;

end if;
when others =>

next_state <= RESET_STATE;
end case;

end process;

-- auxiliary counters
up_counter_process: process (CLOCK)
begin

if rising_edge (CLOCK) then
if (reset_up_counter = ’1’) then

up_counter <= (others => ’0’);
elsif (count_up = ’1’) then

up_counter <= up_counter + ’1’;
else

up_counter <= up_counter;
end if;

end if;
end process;

down_counter_process: process (CLOCK)
begin

72

if falling_edge (CLOCK) then
if (reset_down_counter = ’1’) then

down_counter <= conv_std_logic_vector(N-1, ADDRESS_BITS);
elsif (count_down = ’1’) then

down_counter <= down_counter - ’1’;
else

down_counter <= down_counter;
end if;

end if;
end process;

reset_sm <= ’0’ when
(state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’1’;
write_sm_registers <= ’1’
when (state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’0’;
-- H ROM
enable_H_memory <= ’1’;
increment_H_memory_address_A <= ’1’
when (state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’0’;
decrement_H_memory_address_B <= ’1’
when (state = TRACEBACK_AND_FWD_RECURSION) else ’0’;
reset_memory_address <= ’0’
when (state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’1’;
-- TRACEBACK MEMORIES
enable_traceback_memory <= ’0’ when (state = RESET_STATE) else ’1’; --’1’
when (state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’0’;
traceback_memory_A_address <= down_counter when tracebacking_memory = ’0’
else up_counter;
traceback_memory_B_address <= down_counter when tracebacking_memory = ’1’
else up_counter;
traceback_memory_A_write_enable <= ’1’ when tracebacking_memory = ’1’ else ’0’;
traceback_memory_B_write_enable <= ’1’ when tracebacking_memory = ’0’ else ’0’;
reset_tracebacking_memory_register <= ’1’ when state = RESET_STATE else ’0’;
toggle_tracebacking_memory <= ’1’ when (state = PREPARE_TRACEBACK) else ’0’;
-- COUNTERS
reset_down_counter <= ’0’
when (state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’1’;
reset_up_counter <= reset_down_counter;
count_up <= ’1’
when (state = FWD_RECURSION or state = TRACEBACK_AND_FWD_RECURSION) else ’0’;
count_down <= ’1’ when (state = TRACEBACK_AND_FWD_RECURSION) else ’0’;
reset_metric_index_register <= ’0’
when state = TRACEBACK_AND_FWD_RECURSION else ’1’;
end Behavioral;

C.3 MAX-Log-MAP Top Level

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.trellis_decoders_bc_lib.ALL;

entity Max_Log_Map_Decoder_Block_Codes is
Port (CLOCK : in STD_LOGIC;

RESET : in STD_LOGIC;
LLR : in STD_LOGIC_VECTOR (LLR_BITS -1 downto 0);
MAP_RESULT : out STD_LOGIC_VECTOR (SM_BITS -1 downto 0)

73

);
end Max_Log_Map_Decoder_Block_Codes;

architecture Behavioral of Max_Log_Map_Decoder_Block_Codes is
-- WIRES
signal state_metrics : state_metrics_array_type;
signal pn_output : state_metrics_array_type;
signal alpha_values : state_metrics_array_type;
signal alpha_values_memory_output :
std_logic_vector ((NUMBER_OF_SM)*(SM_BITS) -1 downto 0);
signal alpha_values_memory_data_in :
std_logic_vector ((NUMBER_OF_SM)*(SM_BITS) -1 downto 0);
signal H_column : std_logic_vector (R-1 downto 0);
signal recursion_llr : std_logic_vector (LLR_BITS-1 downto 0);
signal llr_memory_output : STD_LOGIC_VECTOR (LLR_BITS-1 downto 0);
signal map_result_signal : STD_LOGIC_VECTOR (SM_BITS -1 downto 0);

--REGISTERS
signal up_down_counter : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal up_counter : std_logic_vector(ADDRESS_BITS -1 downto 0);

--CONTROL SIGNALS
signal reset_sm : std_logic;
signal reset_map_register : std_logic;
signal write_sm_registers : std_logic;
signal recursion_llr_selector : std_logic;
signal enable_llr_memory : std_logic;
signal llr_memory_write_enable : std_logic;
signal llr_memory_address : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal enable_H_memory : std_logic;
signal alpha_values_memory_address : std_logic_vector(ADDRESS_BITS -1 downto 0);
signal alpha_values_memory_enable : std_logic;
signal alpha_values_memory_write_enable : std_logic;
signal write_pipeline_regs : std_logic;
signal reset_counter : std_logic;
signal count_direction : std_logic;
signal reset_up_counter : std_logic;
signal count_up : std_logic;
signal write_result : std_logic;

--FSM
type state_type is (RESET_STATE, FWD_RECURSION, PREPARE_BACK_RECURSION,
WAITING_LATENCY, BACK_RECURSION, PREPARE_FWD_RECURSION, FWD_RECURSION_AND_STORE);
signal state, next_state: state_type;

begin
llr_mem_instance: LLR_Memory port map(

CLOCK => CLOCK,
ENABLE => enable_llr_memory ,
WRITE_ENABLE => llr_memory_write_enable,
ADDRESS => llr_memory_address,
DATA_IN => LLR,
DATA_OUT => llr_memory_output

);

-- this MUX is used because during the fwd recursion,
--the LLR used comes from the INPUT, and during the backward recursion,
--the LLR comes form the LLR memory.

74

recursion_llr_mux: process (LLR, llr_memory_output, recursion_llr_selector)
begin

if (recursion_llr_selector = ’1’) then
recursion_llr <= LLR;

else
recursion_llr <= llr_memory_output;

end if;
end process;

H_memory: H_Matrix_ROM port map(
CLOCK => CLOCK,
ENABLE => enable_H_memory,
ADDRESS_A => up_down_counter,
DATA_OUT_A => H_column

);

RU: Recursion_Unit port map (
CLOCK => CLOCK,
RECURSION_H_COLUMN => H_column,
LLR => recursion_llr,
RESET_SM => reset_sm,
WRITE_SM_REGISTERS => write_sm_registers,
STATE_METRICS => state_metrics,
PN_OUTPUT => pn_output

);

-- auxiliary counter used to access memory addresses
-- this counter counts from 0 to N-1 and from N-1 downto 0
-- values out of this range cause illegal address access
counter: process (CLOCK, reset_counter)
begin

if (reset_counter = ’1’) then
up_down_counter <= (others => ’0’);

elsif falling_edge (CLOCK) then
if (count_direction = ’1’) then

if (up_down_counter /= conv_std_logic_vector(N-1, ADDRESS_BITS)) then
-- this avoids illegal address access

up_down_counter <= up_down_counter + ’1’;
else

up_down_counter <= up_down_counter;
end if;

else
if (up_down_counter /= conv_std_logic_vector(0, ADDRESS_BITS)) then
-- this avoids underflow

up_down_counter <= up_down_counter - ’1’;
else

up_down_counter <= up_down_counter;
end if;

end if;
end if;

end process;

-- transforms the signal state_metrics to be suitable
--for the Alpha memory input
alpha_values_mem_din_attribution: process(state_metrics)
begin

for i in NUMBER_OF_SM -1 downto 0 loop
alpha_values_memory_data_in((i+1)*SM_BITS -1 downto i*SM_BITS)

75

<= state_metrics(NUMBER_OF_SM -1 -i);
end loop;

end process;

process(alpha_values_memory_output)
begin

for i in NUMBER_OF_SM -1 downto 0 loop
alpha_values(NUMBER_OF_SM -1 -i)
<= alpha_values_memory_output((i+1)*SM_BITS -1 downto i*SM_BITS);

end loop;
end process;

Alpha_Memory: Alpha_Values_Memory port map(
CLOCK => CLOCK,
ENABLE => alpha_values_memory_enable,
WRITE_ENABLE => alpha_values_memory_write_enable,
ADDRESS => alpha_values_memory_address,
DATA_IN => alpha_values_memory_data_in,
DATA_OUT => alpha_values_memory_output

);

-- auxiliary counter
up_couter_process: process (CLOCK)
begin

if rising_edge (CLOCK) then
if (reset_up_counter = ’1’) then

up_counter <= (others => ’0’);
elsif (count_up = ’1’) then

up_counter <= up_counter + ’1’;
else

up_counter <= up_counter;
end if;

end if;
end process;

LLR_Unit_instance: LLR_Unit port map (
CLOCK => CLOCK,
ALPHA_VALUES => alpha_values,
BETA_VALUES_1_TRANSITIONS => pn_output,
BETA_VALUES_0_TRANSITIONS => state_metrics,
LLR => llr_memory_output,
WRITE_PIPELINE_REGS => write_pipeline_regs,
RESET_MAP_REGISTER => reset_map_register,
WRITE_RESULT => write_result,
MAP_RESULT => map_result_signal

);

MAP_RESULT <= map_result_signal;

------------------------- FINITE STATE MACHINE --------------------------

process (CLOCK, RESET)
begin

if (RESET = ’1’) then
state <= RESET_STATE;

elsif rising_edge(CLOCK)then
state <= next_state;

end if;

76

end process;

process (state, up_down_counter, up_counter)
begin

case state is
when RESET_STATE =>

next_state <= FWD_RECURSION;
when FWD_RECURSION =>

if (up_down_counter = conv_std_logic_vector(N-1, ADDRESS_BITS)) then
next_state <= PREPARE_BACK_RECURSION;

else
next_state <= FWD_RECURSION;

end if;
when PREPARE_BACK_RECURSION =>

next_state <= WAITING_LATENCY;
when WAITING_LATENCY =>

if (up_counter = conv_std_logic_vector(1, ADDRESS_BITS)) then
next_state <= BACK_RECURSION;

else
next_state <= WAITING_LATENCY;

end if;
when BACK_RECURSION =>

if (up_down_counter = conv_std_logic_vector(0, ADDRESS_BITS)) then
next_state <= PREPARE_FWD_RECURSION;

else
next_state <= BACK_RECURSION;

end if;
when PREPARE_FWD_RECURSION =>

next_state <= FWD_RECURSION_AND_STORE;
when FWD_RECURSION_AND_STORE =>

if (up_down_counter = conv_std_logic_vector(2, ADDRESS_BITS)) then
next_state <= FWD_RECURSION;

else
next_state <= FWD_RECURSION_AND_STORE;

end if;
when others =>

next_state <= RESET_STATE;
end case;

end process;

-- control signals attribution
reset_sm <= ’1’ when (state = RESET_STATE or
state = PREPARE_FWD_RECURSION or state = PREPARE_BACK_RECURSION) else ’0’;
reset_map_register <= ’0’ when (state = BACK_RECURSION or
state = FWD_RECURSION_AND_STORE or state = PREPARE_FWD_RECURSION) else ’1’;
write_sm_registers <= ’1’ when (state = WAITING_LATENCY
or state = BACK_RECURSION or state = FWD_RECURSION_AND_STORE or
state = FWD_RECURSION) else ’0’;
--llr memory
recursion_llr_selector <= ’1’ when (state = FWD_RECURSION_AND_STORE or
state = FWD_RECURSION) else ’0’;
enable_llr_memory <= ’0’ when state = RESET_STATE else ’1’;
llr_memory_address <= up_counter when (state = FWD_RECURSION or
state = FWD_RECURSION_AND_STORE) else up_down_counter;
llr_memory_write_enable <= ’1’ when (state = FWD_RECURSION or
state = FWD_RECURSION_AND_STORE or state = PREPARE_BACK_RECURSION) else ’0’;
-- Parity check matrix
enable_H_memory <= ’1’;

77

alpha_values_memory_enable <= ’0’ when (state = RESET_STATE) else ’1’;
alpha_values_memory_address <= llr_memory_address;
alpha_values_memory_write_enable <= llr_memory_write_enable;
write_pipeline_regs <= ’0’ when (state = RESET_STATE or
state = PREPARE_BACK_RECURSION or state = FWD_RECURSION) else ’1’;
--COUNTERS
reset_counter <= ’1’ when state = RESET_STATE or
state = PREPARE_FWD_RECURSION else ’0’;
count_direction <= ’1’ when (state = FWD_RECURSION or
state = FWD_RECURSION_AND_STORE or state = PREPARE_BACK_RECURSION) else ’0’;
reset_up_counter <= ’1’ when (state = RESET_STATE or
state = PREPARE_BACK_RECURSION or state = PREPARE_FWD_RECURSION) else ’0’;
count_up <= ’1’ when (state = WAITING_LATENCY or state = FWD_RECURSION or
state = FWD_RECURSION_AND_STORE or state = BACK_RECURSION) else ’0’;
write_result <= ’1’ when (state = BACK_RECURSION or
state = FWD_RECURSION_AND_STORE or state = PREPARE_FWD_RECURSION) else ’0’;

end Behavioral;

	List of Abbreviations and Acronyms
	List of Figures
	Abstract
	Resumo
	Introduction
	Motivation

	Channel Coding
	Basics
	Block Codes
	Generator Matrix
	Parity Check Matrix

	Convolutional Codes
	Introduction to Convolutional Codes
	The Difference between Block Codes and Convolutional Codes

	Decoding of Linear Block Codes
	Soft-input Decoding
	The Word Correlating Decoder
	The Viterbi Algorithm
	Trellis Diagram for Linear Block Codes
	The Viterbi Algorithm Using a Trellis Diagram.

	The (MAX)-Log-MAP Algorithm

	Block Codes Decoder Architectures
	The Viterbi Decoder
	Recursion Unit
	Survival Memory and Traceback
	Doubling the Throughput
	Quantization
	Modulo Normalization
	The MAX-Log-MAP Decoder
	FPGA Implementation

	Implementation Results
	Viterbi Decoder
	MAX-Log-MAP Decoder
	Validation of the Work

	Conclusion
	Future Work

	References
	 ALGORITHMS EXAMPLES
	 RELATED WORK
	 VHDL CODE

