
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GUSTAVO GARCIA VALDEZ

A Generic Description and Simulation of
Architectures Based on Microarchitectures

Monograph presented in partial fulfillment
of the requirements for the degree of
Bachelor of Computer Science

Prof. Dr. Raul Fernando Weber
Advisor

Porto Alegre, December 5th, 2013

CIP – CATALOGING-IN-PUBLICATION

Gustavo Garcia Valdez,

A Generic Description and Simulation of Architectures Based
on Microarchitectures /

Gustavo Garcia Valdez. – Porto Alegre: Graduação em Ciên-
cia da Computação da UFRGS, 2013.

64 f.: il.

Monograph – Universidade Federal do Rio Grande do Sul.
Curso de Bacharelado em Ciência da Computação, Porto Alegre,
BR–RS, 2013. Advisor: Raul Fernando Weber.

1. Computer Architectures. 2. Machine Simulation. 3. Mi-
croarchitectures. 4. Computer Organization. I. Weber, Raul Fer-
nando. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do CIC: Prof. Raul Fernando Weber
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

Instruction tables will have to be made up by mathematicians with com-
puting experience and perhaps a certain puzzle-solving ability. There
need be no real danger of it ever becoming a drudge, for any processes
that are quite mechanical may be turned over to the machine itself.
(TURING, 1946)

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Prof. Raul Fernando Weber for the support
in my bachelor thesis, for everything that I learned from him in many classes during the
bachelor and for envisioning the system that I would them use as conceptual basis for my
project idea.

Besides my advisor, I would like to thank all my Professors and TA’s throughout my 6
years of study, both at Federal University of Rio Grande do Sul (UFRGS) as at the Berlin
Institute of Technology (TU-Berlin).

My sincere thanks also to Prof. Aline Villavicencio, who advised me during almost
my whole graduation when I was working in the field of Computer Linguistics.

Last but not least, I want to thank my parents Heraldo da Silva Valdez and Isabel
Cristina Garcia Valdez for all the effort and guidance that I so much needed in those 23
years of life.

CONTENTS

CONTENTS . 7

LIST OF FIGURES . 11

LIST OF TABLES . 13

ACRONYMS . 15

ABSTRACT . 15

RESUMO . 17

1 INTRODUCTION . 21

1.1 Motivation . 21

1.2 Goals . 21

1.3 Structure of this work . 22

2 STATE-OF-THE-ART . 23

2.1 p-code Machines . 23

2.1.1 JVM Architecture . 23

2.2 Historical and Legacy Code Emulators 25

2.2.1 The SIMH Simulator set . 25

2.3 Gaming Console Platform Emulators . 25

2.4 Didactic Machine Simulators . 26

2.4.1 Neander Machine . 26

2.4.2 Ahmes Machine . 26

2.4.3 Ramses Machine . 26

2.4.4 Cesar Machine . 26

2.4.5 Other Machines . 27

2.5 Instruction Set Simulators . 27

2.5.1 MikroSim . 27

2.5.2 CPU Sim . 28

2.6 Feature Comparison . 29

2.7 Conclusions . 29

3 CONCEPTUALIZATION . 33

3.1 System . 34

3.2 Machine and Plugin Files . 34

3.2.1 Machine Definitions . 35

3.2.2 ALU and I/O Plugin Files . 36

3.3 Use Case Scenario . 36

4 THE ’TANUKI’ IMPLEMENTATION . 39

4.1 Programming Language . 39

4.1.1 Java . 39

4.1.2 C . 39

4.1.3 Ruby . 40

4.1.4 Choice . 40

4.2 Graphical User Interface . 40

4.3 How to Run a Machine . 41

4.4 Coding . 41

4.5 Implementation Scope . 42

4.6 Comparison with other ISSs . 42

4.7 Implementation Conclusions and Lessons Learned 42

5 DESCRIPTION LANGUAGES . 45

5.1 The Machine File . 45

5.1.1 Base, Wordsize, Memory and Registers 45

5.1.2 ALU Reference . 45

5.1.3 Fetch Code . 46

5.1.4 Instruction Codes . 46

5.1.5 Peripheral/GUI Plugin References . 47

5.2 ALU file . 49

5.2.1 State Register Definition . 49

5.2.2 Code for Updating State Registers . 49

5.2.3 Operation Codes . 49

5.3 Creating a Peripheral Plugin . 50

5.3.1 Name and Grid Sizes . 50

5.3.2 Plugin Code . 50

6 CONCLUSIONS AND FUTURE WORK 53

6.1 Lessons . 53

6.2 Contribution . 53

6.3 Future Work . 53

REFERENCES . 55

APPENDICES . 57

APPENDIXA. 57

A.1 NEANDER_SIMPLE_PLUGIN . 57

A.2 Simple GUI Plugin (Controller) . 59

A.3 NEANDER ALU . 60

GLOSSARY . 63

LIST OF FIGURES

2.1 JVM instruction cycle pseudo-code description 24

2.2 MikroSim Microcode ROM Editor 28

2.3 CPU Sim Running an Assembly Program 29

2.4 CPU Sim Microinstruction Editor 30

3.1 Class diagram of the simulator concept 34

3.2 Supported Microinstructions . 35

3.3 Fetch code example . 36

3.4 Absolute ADD operation . 37

3.5 Direct ADD operation . 37

3.6 Indirect ADD operation . 38

3.7 IX-indexed ADD operation . 38

4.1 Tanuki Main Screen . 41

5.1 Base, Wordsize and Memory Size Definitions 45

5.2 Register Definition . 46

5.3 ALU File Name Definition . 46

5.4 Fetch Code Definition . 46

5.5 Instruction Code Definitions . 47

5.6 Peripheral Plugin References and GUI Box Definitions 47

5.7 Tanuki Neander Simple - A very basic NEANDER implementation
with simple plugins . 48

5.8 State Register Definition . 49

5.9 Code for Update Status . 49

5.10 Code for Operations . 50

5.11 Name and Grid Definitions . 50

5.12 Plugin Code . 51

LIST OF TABLES

2.1 Type support in the Java Virtual Machine instruction set 24

2.2 State-of-the-art Comparison Table 30

2.3 Instruction Set Simulators Comparison Table 31

3.1 Address Modes . 37

4.1 Revisited Instruction Set Simulators Comparison Table 43

ACRONYMS

ALU Arithmetic Logic Unit. 33, 34, 36, 37, 39, 41, 45, 49

CPU Central Processing Unit. 23, 28

DLL Dynamic-Link Library. 40

DSO Dynamic Shared Object. 40

GUI Graphical User Interface. 25, 33, 34, 39, 40, 42, 43, 47, 50, 53

I/O Input/Output. 34, 36

ISS Instruction Set Simulator. 27–29, 34, 53

JVM Java Virtual Machine. 23

OO Object Oriented. 23, 33, 39, 40

PC Program Counter. 23, 26, 27

ABSTRACT

In teaching computer architecture, didactic simulator machines have been the rule to
teach basic aspects of assembly. This work searches for another kind of simulator to teach
the microcoding/microarchitectures and, once found, conceptualizes and implements one
of those. The work documents the steps and problems encountered while achieving that
objective. It begins by studying which kinds of simulators and emulators there are avail-
able today, then proceeds to presenting a conceptualization of a framework that allows for
creation of simulators using microinstruction listings. It then shows the implementation
choices, the implementation and concludes by showing which lessons were taken from
the whole enterprise.

Keywords: Computer Architectures, Machine Simulation, Microarchitectures, Computer
Organization.

RESUMO

Uma Descrição e Simulação Genérica de Arquiteturas Baseada em
Microarquiteturas

No ensino de arquiteturas de computadores, simuladores didáticos têm sido a regra em
ensinar os aspectos básicos de programação de máquina. Esse trabalho busca um outro
tipo de simulador para o ensino de microcódigo/microarquiteturas e, quando o encontra,
conceptualiza e implementa um destes. O trabalho documenta os passos e problemas
encontrados durante a conquista desse objetivo. Começa estudando quais tipos de simu-
ladores e emuladores estão disponíveis hoje, então apresenta uma conceptualização de
um framework que permite a crição de simuladores usando listagens de microinstruções.
Mostra as escolhas de implementação, a própria implementação e conclui apresentando
quais lições foram aprendidas durante esta empreitada.

Palavras-chave: Arquiteturas de Computadores, Simulação de Máquinas, Microarquite-
turas, Organização de Computadores.

21

1 INTRODUCTION

In this chapter, motivation and goals for the present bachelor thesis will be presented.
A brief description of the work’s structure is also shown.

1.1 Motivation

Teaching computer architectures is a very interesting endeavour and making the learn-
ing more dynamic helps the students a lot in retaining contents. Prof. Weber’s didactic
machines (WEBER, 2000) helped me a lot and many of my colleagues learning machine
language, but I’ve also noted some of them had problems grasping the concepts of mi-
croarchitectures. Besides that, a lot of ’less useful’ didactic machines from this set were
not converted to Windows 32, since it would be some effort to convert them all.

Connecting those two, came the idea to create a framework for designing almost any
machine that, at the same time, could teach students microarchitectures.

1.2 Goals

This bachelor thesis intends to achieve two basic goals by conceptualizing and imple-
menting a a basic framework for simulating architectures, based on microinstructions.

The first goal is for this framework to be usable in classes, where the professor pre-
pares some (more complex and/or outside the classes scope) configurations, but leaves for
the student to make other configurations in order to learn specific topics in architecture
and organization by doing instead of being lectured. As an example, section 3.3 shows a
case study for teaching how different addressing modes work by implementing them on
the system.

The second goal is to allow a professor to define a wide range of machines, in order
to teach basics of assembly for the students in those machines. Maybe even configure a
real processor in it, in order for the students to study it.

Some extra nice features would be that the student would not have to know any pro-
gramming language, besides what is being learned to use it, since these topics are usually
taught in very early introductory courses. Other desired feature would be for the professor
to have powerful configuration tools, that allow him to code the widest possible range of
machines.

22

1.3 Structure of this work

In chapter 2 (State-of-the-Art), many simulation and emulation systems that already
exist are shown. Followed by chapter 3 (Conceptualization), which presents the concep-
tual idea for this work and a use case. Chapter 4 (The ’Tanuki’ implementation) then
presents a concrete implementation of this idea. After showing the implementation, chap-
ter 5 (Description Languages) describes the description laguages for the input files the
system uses. The work is then concluded in chapter 6 (Conclusions and Future Work).

23

2 STATE-OF-THE-ART

In this chapter, some simulation systems will be presented, with some of its main
features, motivations and goals. Simulation / emulation of architectures is a vast area and
in no way this list is intended to be extensive. The chapter’s intent is only to show some
of what can be achieved with those concepts and to put this work in perspective.

2.1 p-code Machines

A p-code machine is virtual machine that runs a instruction set for a hypothetical Cen-
tral Processing Unit (CPU) that is run by multiple interpreters in different platforms. As
examples, we could cite the Java Virtual Machine (JVM)’s p-code, Pascal-P’s p-machine,
MATLAB’s precompiled code and many others.

The term was p-code was first used in implementation notes for Pascal-P (AMMAN
et al., 1974). The main motivation to use p-code instead of compiling directly to each
machine is that you can "compile once and run anywhere". Thus, the goals of a p-code
architecture is to be easily implementable in a big range of machines to achieve portability.

2.1.1 JVM Architecture

To better understand p-code, the JVM architecture will be taken as an example. Its in-
structions are similar to what you would expect from any architecture, whilst also keeping
some features quite useful for an Object Oriented (OO) language like Java. That is done
intentionally, so that programmers are able to write efficient implementations for every
processor and, at the same time, making the compiler’s work a bit simpler.

There are 8 data types and many operation codes, but not every operation code op-
erates every data type (See examples in table 2.1). The instructions can be divided in
9 main types: ’Load and Store’, ’Arithmetic’, ’Type Conversion’, ’Object Creation and
Manipulation’, ’Stack Management Instructions’, ’Control Transfer Instructions’ (jump
instructions), ’Method Invocation and Return Instructions’, ’Throwing Exceptions’ and
’Synchronization’.

The instruction cycle follows the algorithm presented in Figure 2.1, which is: calculate
Program Counter (PC) and fetch next instruction atomically; fetch any operands if needed;
and execute code for the instruction.

24

Table 2.1: Type support in the Java Virtual Machine instruction set
Table 2.2 from chapter 2.11 of the specification (LINDHOLM et al., 2013)

001. do {
002. atomically calculate pc and fetch opcode at pc;
003. if (operands) fetch operands;
004. execute the action for the opcode;
005. } while (there is more to do);

Figure 2.1: JVM instruction cycle pseudo-code description
Description of the instruction cycle as in chapter 2.11 of the specification (LINDHOLM

et al., 2013)

25

2.2 Historical and Legacy Code Emulators

Emulation nowadays is a very common way to execute legacy code that can’t run on
a given software/hardware platform. Those emulators can work in many ways, from sim-
ulating the whole hardware circuits, to simulating at organization or architectural levels,
or even using clues from how the code was made to make ’tweaks’ in order to get perfor-
mance improvements. Those give different grades of fidelity and, inversely, performance.

2.2.1 The SIMH Simulator set

One important example of a historical simulator is SIMH, created and maintained by
the The Computer History Simulation Project (BURNET; SUPNIK, 1996), which is a
collective of people that are interested in restoring by simulation computers that are his-
torically significant. With that goal, they decided to create and freely publish a simulator
for those systems, alongside with their most important software.

As of the writing of this text, it supports 29 machines (not including beta versions).
Each one is its own executable program, but they all follow the same rules, documenta-
tion and use the same command-line commands. They have no Graphical User Interface
(GUI), but are very well documented and with some effort can be easily used. For most
machines there’s even specific documentation. A key point is that, being able to have I/O
with files in the host machine, it’s possible to connect physical devices to the simulators
(even easier in *NIX systems).

2.3 Gaming Console Platform Emulators

From ZSNES (ZSNES, 2001) to Dolphin (DOLPHIN, 2013), there are many systems
that intend to emulate the experience from a given console platform.

Their basic goal is to provide performance and experience as good (or even better)
than the original platform. This is done by emphasizing on performance and experience
much more than an emulation of the same instructions run in the same order with the
same outcome, sometimes using tricks to improve computing speed in order to run in a
speed that is consistent with playing the games. At some cases, they even use the host’s
computational power to have improved graphics compared to what is being emulated,
usually by running at higher resolution or applying image filters on the final screens.

In structure, they are very similar to legacy code emulators, but since the systems
are closed and almost no documentation is available, some documentation has to be built
from scratch by reverse engineering and trial-and-error methods before even starting the
emulators construction. Sometimes, legal issues make it impossible to distribute the con-
sole’s BIOS with the emulator, which is solved by either rewriting it or asking for the user
to take it from his physical video game system.

Since it’s usually very hard to code the peripherals (video, sound, input), they’re usu-
ally programmed as plugins, as to allow for improvement and customization of those
systems directly.

26

2.4 Didactic Machine Simulators

A didactic machine is a computer architecture designed to teach students some basic
concepts of computer architectures. It can also embed what a professor thinks would
have been the correct way for computers to evolve in a pure academical view, without the
interference of market and economic forces.

In a way, the didactic machines created by Professor Raul Fernando Weber (WEBER,
2000) do exactly that, each one introducing a new concept for the student and, at the same
time, projecting the author’s view of how computers should have evolved. That means
students can experience decades of computer history in a controlled environment and
learn by programming machine level code. Most of the machine names are of historical
marks, in order to give a sense of progress, starting with an 8-bit very simple Neander and
ending in a much more complex 16-bit ’Cesar’.

2.4.1 Neander Machine

Inspired by Von Neumanns IAS, it aims to teach the basics of binary code program-
ming. Being so basic it has no practical uses, yet it’s simplicity allows students to, in no
time, program it (or even design it’s architecture and organization in class).

Features: 8-bit-sized data and address, 1 register accessible to the programmer, 8-bit
PC, 2 state registers (N and Z)

2.4.2 Ahmes Machine

Completely compatible with neander code, it adds some instructions to allow the exe-
cution of the four basic arithmetic operations, with addition and subtraction being instruc-
tions. Binary Multiplication and Binary Division being learned by the student by coding
it as software, as it was done in the old age of computing.

Features: 8-bit-sized data and address, 1 register accessible to the programmer, 8-bit
PC, 5 state registers (N, C, Z, B, V)

2.4.3 Ramses Machine

Ramses is a third architecture that adds even more features to the neander base. For
example, there are many registers (instead of just one). This allows the student to work
with more complex data structures like arrays, matrixes, lists and pointers at assembler
level. This allows for ’more efficient’ running, while still keeping compatibility with the
Neander architecture.

Features: 8-bit-sized data and address, 2 general purpose registers, 1 index register,
8-bit PC, 4 addressing modes (Direct, Indirect, Imediate and Indexed), 3 state registers
(N, C, Z)

2.4.4 Cesar Machine

Inspired by the PDP-11 family from Digital Equipments Corporation (DEC) from the
70’s, this hypothetical machine has all the basic features of modern computers: Eight
general purpose registers, eight address modes and a complex instruction set. It also has

27

the ability to manage a Memory Stack for sub-routines and parameter (passing?). It also
includes some basic I/O system.

Features: 16-bit-sized data and address, 6 general purpose registers, 1 stack register,
16-bit PC, 8 addressing modes, 4 state registers (N, C, Z, V)

2.4.5 Other Machines

There are also other machines in the set that are variations of the ones presented be-
fore: Cromag, Queops, Pitagoras, Pericles, REG and Volta.

Cromag

8-bit-sized data and address, 1 register accessible to the programmer, 8-bit PC, 2 ad-
dressing modes (Direct, Indirect), 3 state registers (N, Z, C).

Queops

8-bit-sized data and address, 1 register accessible to the programmer, 8-bit PC, 4 ad-
dressing modes (Direct, Indirect, Imediate and PC Relative), 3 state registers (N, Z, C).

Pitagoras

8-bit-sized data and address, 1 register accessible to the programmer, 8-bit PC, 3 state
registers (N, Z, C).

Pericles

8-bit-sized data and 12-bit-sized addresses, 2 general purpose registers, 1 index regis-
ter, 8-bit PC, 4 addressing modes (Direct, Indirect, Imediate and Indexed), 3 state registers
(N, C, Z).

REG

8-bit-sized data, 64 general purpose registers, 8-bit PC, no explicit condition codes.

Volta

8-bit-sized data, no general purpose registers, 1 stack register, 8-bit PC, no explicit
condition codes.

2.5 Instruction Set Simulators

An Instruction Set Simulator (ISS) is a computer model written in a high level pro-
gramming language that interprets instructions and keeps registers and other internal in-
formation in variables. In this work, whenever the term ISS appears, it will refer to a sub-
set of those that also have configurable instruction sets written in any sort of microcode
language.

Two main examples would be MikroSim (CZERWINSKI; PUTTKAMER, 1979) and
CPU Sim (SKRIEN, 2001), which are presented below.

2.5.1 MikroSim

MikroSim (CZERWINSKI; PUTTKAMER, 1979) is a paid closed-source ISS. It
should be noted that some of the information comes from the attached documentation,

28

Figure 2.2: MikroSim Microcode ROM Editor
Allows for a graphic ROM coding, that is, defining the signals that activate each part of

the processor

since the demonstration version does not allow for full functionality.

Instead of allowing you to build any architecture/organization, it gives you a CPU that
can be configured by ROM. This means that you can’t really change what is available,
but you can define the internal signalling for the CPU. All the registers come predefined,
so it’s not possible to implement a machine with more than 8 user registers directly. The
microcode ROM coding is very low-level and consists of defining which signal bits are
activated in a specific microcode cycle, as show in Figure 2.2.

The simulated I/O Systems are also very complete and allow for DMA, IRQ, I2C,
Ports, Event, Clock, Sensor, Keyboard, IO-RAM and some on-screen displays. It doesn’t
seem to be possible to write any kind of plugins to improve the simulator.

2.5.2 CPU Sim

CPU Sim (SKRIEN, 2001) is a cost-free closed-source ISS. It has the look-and-fell of
an IDE, integrated with an assembler, views for registers, RAM and a simple I/O console,
which can be seen in Figure 2.3.

To build an architecture, you have as tools a couple of editors: registers and condition
codes can be added or removed freely, microinstructions can be created and removed in a
very simple, albeit limited, system (Figure 2.4), the fetch cycle can be changed to any list

29

Figure 2.3: CPU Sim Running an Assembly Program

of microinstructions, instructions can be also easily created based on those microinstruc-
tion lists and the memory size can also be changed in a simple way.

As can be also seen in Figure 2.3, the I/O system is quite limited, being just a text
console. As with MikroSim, it isn’t possible to write any kind of plugins to improve the
simulator.

2.6 Feature Comparison

Many different systems were presented in this chapter, ranging from didactic to efficiency-
driven ones. A direct comparison is a complicated endeavour, but their features can be
seen side-by-side in table 2.2.

Considering that what is intended to be built is some kind of ISS, it makes sense to
compare those in a deeper way. Table 2.3 shows that more specific feature comparison.

2.7 Conclusions

After considering all these systems, we can conclude that these many different systems
have something we can take for the creation of a new ISS, a term that was learned through
the research for this chapter.

From SIMH and MikroSIM, we took the lesson that too much complexity may be a

30

Figure 2.4: CPU Sim Microinstruction Editor
It’s basically about choosing a pre-existing operation, then selecting condition codes,

registers, etc it operates with

Table 2.2: State-of-the-art Comparison Table
Compares the software seen in this chapter

31

Table 2.3: Instruction Set Simulators Comparison Table
Compares the ISS seen in this chapter

bad thing, but that a versatile I/O system is a good idea. The gaming console emulators
teach us that plugin system can be a good way to manage that I/O complexity and give
some versatility. The Weber machines show us that teaching by doing is much better
than by being lecture and were, probably, the biggest inspiration for this work. Last, but
no least, CPU Sim gives us a pretty good system to compare with and, albeit with some
minor issues, is probably the one that closest comes to the vision at the beginning of this
work.

32

33

3 CONCEPTUALIZATION

Based on the conclusions from chapter 2 and the goals set on chapter 1, we can start
specifying the system. As said before, a plugin system seems a good way to develop an
I/O system, but it could also be used for defining an Arithmetic Logic Unit (ALU), giving
freedom for the professor to include any operation he chooses by coding it. That consid-
ered, it seems like a good idea to separate in a basic system that manages the computer
and an GUI system that manages the interface.

Two different definitions for the microinstructions appear in last chapter: one defined
by which processor signals it activates and other based on mnemonics. Since on the
architecture text book used for this text (WEBER, 2000), the microinstructions follow the
mnemonic choice, that’s also the one the proposed system will be using.

Being an educational tool, another very nice feature would be for it to be cross-
platform.

Both plugins and machine definitions would have to be files with a defined structure,
as shown in figure 3.1. The use of OO seems also like a good idea, the same figure also
shows a proposed class diagram with 7 classes, where lines are communication paths
and arrows mean reference in files or the fact that files are read by the ’Parser’ class.
The classes represent the CPU parts they emulate and the communication/control class is
called ’Circuit’.

The applications goal would be to with some plugins developed by the professor (or
coming with the application), any student with no programming language knowledge that
is learning computer organization would be able, with microinstruction listings for every
instructions, design a didactic simulator for a Von Neumann architecture in the style of the
didactic machines presented in chapter 2. This is specially useful in a teaching context,
where to teach the concepts of microinstructions, a professor could ask the students to
implement simple computer architectures or to modify an existing architecture with some
extra features.

Another feature that comes as a side-effect is that it is also easier for the professor to
make small changes to the machines students have to work every semester, making sure
every semester the challenge is a bit different. On the same page, it could be possible to
update the machines with new concepts very easily for a specific course.

34

Figure 3.1: Class diagram of the simulator concept
Proposed class diagram, with 7 classes. Lines are communication paths, arrows mean

file requirement/input

3.1 System

The basic system should be an ISS that receives a Machine Definition and it’s neces-
sary plugins. With those, it runs a didactic simulator for that machine, similar to those
presented before in chapter 2.4.

It should have 7 classes, as shown in figure 3.1.

’Memory’ class manages the computer’s memory accesses, its reads and writes, keeps
its data structure and counts the accesses.

’Register’ class manages the computer’s registers and condition codes (also called
state registers and keeps their data structure.

’Instruction Set’ class manages the translation of operation codes into references to
runnable code.

’ALU’ class manages the code that comes from the ALU plugin file and makes it
available to ’Instruction Set’ through ’Circuit’.

’Peripherals’ class manages the GUI and all Input/Output (I/O) plugins available.

’Circuit’ is the system’s communication and control class, managing the other classes.

’Parser’ class reads the input files and creates the object structures to run the system.

3.2 Machine and Plugin Files

Any machine that runs on the proposed ISS will consist of at least 3 files: a machine
definition, an ALU plugin file and one or more I/O plugin files.

35

001. mem val1 << val2
002. reg << mem val
003. reg << val
004. reg << op val
005. reg << op val1 val2
006. if statereg then reg << val
007. if !statereg then reg << val

Figure 3.2: Supported Microinstructions

3.2.1 Machine Definitions

A Machine Definition is a set of information useful for the framework to create a
machine, it consists basically in everything that can be configured in the machines the
system is able to run. It includes base, word size, memory size, a list of registers available,
microinstruction listings for every instruction and a microinstruction listing for the fetch
cycle.

3.2.1.1 Base and Word Size

A computer has to have a numerical base and word size, and nothing says it must be
8-bit binary. Why not test a 7-sized base-3 or a 5-decimal base-10 computer? In this
system, it should be as easy as changing two input values.

3.2.1.2 Memory Size

Once you know how many representations one "byte" can accept, it makes sense to
define how many positions the memory has. For simplicity, you can’t define a value that
cannot be addressed by the "byte".

3.2.1.3 Registers

Any computer has to have a set of registers that will be used in the microinstructions
and fetch phase.

3.2.1.4 Microinstruction Listings

A computer needs to have an instruction set and, in this system, every instruction is
defined of microinstructions. In the following lines, all the line number references are
from figure 3.2 and a value can be either an integer or a register.

The transfer microinstruction on line 001 copies the value val2 to the memory posi-
tion val1.

The transfer microinstruction on line 002 copies the value stored in memory val to
the register reg.

The transfer microinstruction on line 003 copies the value val to the register reg.

The operation microinstruction on line 004 puts the result of unary operation op (de-

36

001. MAR << PC
002. MDR << mem MAR
003. IR << MDR
004. PC << add PC 1

Figure 3.3: Fetch code example

fined in the ALU) with value val as parameter in the register reg.

The operation microinstruction on line 005 puts the result of binary operation op
(defined in the ALU) with values val1 and val2 as parameters in the register reg.

The test microinstruction on line 006, if state register statereg has the value true,
copies the value val to the register reg.

The test microinstruction on line 007, if state register statereg has the value false,
copies the value val to the register reg.

3.2.1.5 Fetch Code

The fetch code is constructed like an instruction, using the same microinstructions to
create the fetch instruction code. Figure 3.3 shows an example, in which the lines do, in
order: copy the Program Counter to the Memory Address Register, read memory position
in Memory Address Register to Memory Data Register, copy Memory Data Register to
Instruction Register and increment Program Counter.

3.2.2 ALU and I/O Plugin Files

The ALU plugin file should contain three things: a list of state registers it supports,
some executable code that updates the state registers after the ALU operations and, for
each operation available, executable code that does any calculation that is needed to per-
form that operation. For each of those ALU operations, a microinstruction mnemonic
would be created for the activation of the ALU with that operation.

The I/O plugin files should define an element of the user interface, in order to allow
versatility in choosing which plugins to use when configuring a machine file. They don’t
need to be restricted to graphical interfaces, as they may offer sound, read/write files or
any other use needed by the users.

File format and what information must be in each plugin file is very hard to spec-
ify before choosing the programming language and beginning the implementation phase.
Because of that, those details will be defined only in the next chapters.

3.3 Use Case Scenario

In this section a use case will be described where a professor wants to teach a class on
addressing modes, using the proposed system. The addressing modes he wants to teach
are in table 3.1. The use case steps are as follows:

1. The professor would define a machine with plugins, similar to the NEANDER

37

Table 3.1: Address Modes

001. MAR << PC
002. PC << add PC 1
003. MDR << mem MAR
004. AC << add AC MDR

Figure 3.4: Absolute ADD operation

discussed in section 2.4. This machine has at least one operation defined. In this example,
we will assume it is an absolute ADD instruction (shown in figure 3.4), and that the ALU
has support for the ’add’ operation.

2. Professor would explain to the students how the addressing modes work.

3. Students would be expected to create a new index register (here called ’IX’) and
produce three new instructions for the other addressing modes as shown in figures 3.5,
3.6 and 3.7.

4. The students could, then, test their instruction’s behavior with the simulator.

001. MAR << PC
002. PC << add PC 1
003. MDR << mem MAR
004. MAR << MDR
005. MDR << mem MAR
006. AC << add AC MDR

Figure 3.5: Direct ADD operation

38

001. MAR << PC
002. PC << add PC 1
003. MDR << mem MAR
004. MAR << MDR
005. MDR << mem MAR
006. MAR << MDR
007. MDR << mem MAR
008. AC << add AC MDR

Figure 3.6: Indirect ADD operation

001. MAR << PC
002. PC << add PC 1
003. MDR << mem MAR
004. MDR << add IX MDR
004. AC << add AC MDR

Figure 3.7: IX-indexed ADD operation

39

4 THE ’TANUKI’ IMPLEMENTATION

Tanuki is an implementation of the concept presented in the previous chapter. The
name comes from a Japanese species of racoon that, according to legend, has the ability
to change into any form it wants. It follows the concepts defined before and tries to
implements them.

It must be noted that plugins (both ALU and GUI) do execute code in you computer
and are NOT secure (Running just a machine definition is). A Professor should never use
a student’s plugin without checking it’s code beforehand.

4.1 Programming Language

The first step in implementing was to decide which language to use. Given time
constraints, only three programming languages were considered, that is, the ones I already
had previous knowledge of in bigger or smaller degrees. Those were Ruby, Java and C.

Important factors that needed to be taken on account were time needed, how hard it
was to implement the plugin systems and the simplicity for parsing the machine files.

4.1.1 Java

Java in an OO programming language, compiled to a p-code (as seen in chapter 2),
which guarantees a good portability. It’s type safe, has garbage-collection and, at the cost
of a highly verbose code, makes it harder to have run-time errors, as they are usually catch
in compile time. For the plugins that our system needs, it offers an interesting solution,
OSGi (HALL et al., 2011).

OSGi is a powerful modular service architecture, in which bundles of code are run
separately and can be started or terminated in run-time. For this work’s case, it’s probably
too complicated and not a time-effective solution to implement.

4.1.2 C

C is a widely-used imperative language, it is also the language that is taught at the
first semester at our university and would be a nice option for the students to also be, by
default, able to write the system’s plugins. It’s at the same time the lowest-level of the
common high-level languages and brings some relationship to what the system intends to
teach.

40

Plugins in C are usually implemented using Dynamic Shared Objects (DSOs) (in Win-
dows systems, Dynamic-Link Librarys (DLLs)), which are not cross-platform and would
defeat the portability that would be very interesting for an educational system like this.
Besides that, having to care about every little implementation detail, as C usually does,
would take more time than I had available.

4.1.3 Ruby

Ruby (RUBY, 2013) is an interpreted OO imperative and functional programming
language, it’s very simple to code and takes not much time and effort and, because of that,
is one of the most used for rapid prototyping.

Being interpreted, it has support for what is called metaprogramming, which is the
possibility of writing code that writes code and treating any string as code. This can be
easily used to define plugins that include strings that are supposed to be run as code.

4.1.4 Choice

Giving the time restrictions and how much faster it would be to be implemented in
Ruby, the obvious choice was Ruby. It also had an easy way to support the plugins and
was portable, so it fit all the features I was looking for.

4.2 Graphical User Interface

The biggest project error was probably to start implementing in Ruby before getting
to know the available GUIs. When the internal code was done and working and came
time to decide which GUI to use, I discovered there were only bad choices, as they all had
big drawbacks and most of the choices for Ruby either weren’t native or were bad.

Some solutions were bindings for either C++ or Java code, so I decided to try some-
thing that could be written in Ruby. The only choice available was Ruby Shoes (SHOES,
2013), a lightweight and multi-platform framework that is able to generate executables
that include the interpreter for easy deployment.

It seemed easy to use and was working well in first tests, so that was the choice taken.
But when it came time to test the plugins working and updating, it became very slow.
That was indeed because of the way Shoes worked, the only practical way to update was
to make every object update some times per second and with a whole memory displaying,
there were more than 200 objects to be updated and no event system was available to
solve that issue.

To complicate the fact, the way plugins were developed made it impossible to imple-
ment any work-around, given the fact that a plugin could not access other plugin’s code
and objects. The end-result was, then, a graphical interface that worked, but took around
10 seconds to update its information.

Another problem with Shoes was that ’for’ loops simply didn’t operate correctly for
updating the screen, because of the way Shoes was developed (using metaprogramming)
and the way Ruby treats parameters (which is always call-by-value, but variables really
store object names, which has some of the drawbacks of a call-by-reference language).

41

Figure 4.1: Tanuki Main Screen

The only way to solve that was repeating the same code many times in plugins like ’Mem-
ory Inspector’.

Figure 4.1 shows the main screen, after the system was complete.

4.3 How to Run a Machine

0. Copy the machine to Tanuki’s machine folder

1. Open Tanuki

2. Click in ’Run a Machine’

3. Select the right machine

4. Done :)

4.4 Coding

The class structure projected in figure 3.1 ended up being a good project and suffered
no major changes, except that some outside class code was needed to load Shoes and the
main screen, everything else followed that diagram.

Some design choices clearly were not the best, specially in the way accessors for
the registers were made. In many cases, instead of setting them up as Hash structures,
they were added as fields (taking advantage of the metaprogramming) and that made
the code much more complicated than it should. On the other hand, the translation of
parsed microcode into instructions was made very easy by the advantages of using said
metaprogramming and Ruby’s excellent support for regular expressions.

Building a instruction’s code consisted basically of concatenating strings that con-
tained code, some of them originally from the ALU plugin, and then setting this resulting
code as a method that was called whenever a call with the correct opcode was sent to the
’Instruction Set’ class.

The ’Parser’ class was a very simple parser, which indeed never needed to look back,
because of the way the description languages were created (these languages are shown
in chapter 5). It created the whole object structure when called and returned the con-
trol/access class ’Circuit’.

The ’Register’ and ’Memory’ classes were just data structures that kept those values
and counted how many times each one was accessed, in case a plugin wanted to display
that information.

The ’ALU’ class was a repository for the code read from the ALU file. It was used in

42

the construction of the ’Instruction Set’ class, as its operations were microinstructions to
be translated.

The ’Circuit’ class contained the logic behind running the system, running the whole
instruction cycle, including the translated fetch code. It also contained references for all
the others and was referenced by all (the whole communication process went through it).

4.5 Implementation Scope

The system created can only simulate Von Neumann architectures, that is, the ones
based on a Control Unit, an Arithmetic-Logic Unit, Registers and Memory. It also was
defined for an instruction cycle that includes a fetch cycle. This means that a data flow
computer would be very hard, if not impossible, to be implemented in this system.

In theory, with some operations in the ALU and some registers, the defined microin-
struction system can perform any operation any Von Neumann architecture can, even if
not in the most efficient way, as trivial corollary of the Church–Turing thesis. As excep-
tion to that would be operations depending on what would be considered external in a
Classic Von Neumann model, like Clock, Interruptions or an extra processor. Instructions
designed to gain efficiency may also make no sense to be implemented, since they proba-
bly would have no real effect (but they could, in theory, make sense if the implementation
is done taking account of the Ruby interpreter’s implementation).

Because of practical implementation reasons, no machine with more than 32 bits can
be implemented, nor any machine in which basewordsize is greater than 232.

No memory stress test were performed, but at best case scenario, you can‘t use mem-
ory size bigger than half the host‘s available memory. (Since don’t cares are treated
internally by making multiple references to the same code, memory would end up at least
twice as fast)

4.6 Comparison with other ISSs

On chapter 2 there was a table (2.3) that compared both ISSs presented. Now, it makes
sense to revisit that comparison table, including Tanuki, as we can see in table 4.1.

Tanuki is certainly not perfect, but it has some advantages in relation to the others,
specially in the scope of machines that can be simulated by it. In that sense, we can
compare it’s register system with MikroSIM and see that it can have any number of reg-
isters. We can also compare it with CPU Sim and see that it’s able to simulate any one or
two-operand ALU operation, and not only those predefined.

CPU Sim still offers an IDE and Assembler that was out of scope for Tanuki, but could
well be implemented in another version.

4.7 Implementation Conclusions and Lessons Learned

The biggest lesson taken from this implementation was to never assume things, since
not checking if there was a good GUI in Ruby made it look like the best option, when

43

Table 4.1: Revisited Instruction Set Simulators Comparison Table
Compares Tanuki with the ISS seen in chapter 2

with that factored in, I would probably choose another language.

Other lesson was to not choose a not very tested framework: although there is a big
Ruby community, the ones that used Shoes are not that many and those who tried building
something more complicated with it are even less. The fact that the documentation not
only wasn’t complete, but there was almost no other source of information, except for the
source code and a book (GILLETTE, 2013) that looks more like a modern art project than
a documentation manual.

I don’t really have anything to complain about Ruby, as it was an excellent language
to work with and I recommend it for projects with no or simple GUIs. It’s also very good
for web, specially with the Ruby on Rails framework. It probably has better options for
GUIs than the one I used, but there’s not that much information about graphical ruby
applications available and you have to search a lot for it in the web forums.

In essence, after comparing with the other ISSs, it seems that Tanuki achieved exactly
the goal it wanted in concept and, except for some GUI problems that can be solved by
rewriting that part, seems like a success.

44

45

5 DESCRIPTION LANGUAGES

The files conceptualized in section 3.2.2 need well-defined description languages in
order to be implemented. This chapter describes such languages and some of its limita-
tions. All the figures in this chapter are excerpts from the machine definition examples
presented in Appendix A, with their original line numbers.

5.1 The Machine File

The machine file is a plain text file that contains all the definitions needed to run a
machine in the Tanuki System.

5.1.1 Base, Wordsize, Memory and Registers

It contains lines starting with ’BASE: ’, ’WORDSIZE: ’ and ’MEM_SIZE: ’, fol-
lowed by numbers. Those lines define, respectively: the numerical base used by the
computer (not bigger than 32), how many base-sized numerals form the minimal infor-
mational unit (as an example, the byte we are accustomed has 8 base-2 numerals) and the
size of the memory (capped at base times wordsize, for addressing reasons). They are
presented in figure 5.1.

Another line in the file starts with ’REGS: ’ and is followed by all the registers the
user wants in his machine separated by spaces. Figure 5.2 shows a definition of 5 registers
(AC, IR, MDR, MAR and PC).

5.1.2 ALU Reference

The ALU file is referenced by a line starting with ’ALU: ’ followed by the filename.
The file is expected to be in the ALU folder of the program and its description is in section
5.2. Figure 5.3 shows the reference to a file named neander.alu in the ALU folder.

001. BASE: 2
002. WORDSIZE: 8
003. MEM_SIZE: 256

Figure 5.1: Base, Wordsize and Memory Size Definitions

46

004. REGS: AC IR MDR MAR PC

Figure 5.2: Register Definition

012. ALU: neander.alu

Figure 5.3: ALU File Name Definition

5.1.3 Fetch Code

The fetch code, which is the code run before every instruction in order to prepare the
Instruction Register, is defined using the microinstruction mnemonics conceptualized in
section 3.2.1.4. The code begins with a starting word ’FETCH_START’ and ends with
the word ’FETCH_END’. Between those words, every line is read as a microinstruction
mnemonic. Figure 5.4 has an example.

5.1.4 Instruction Codes

As with the fetch code, instructions are also defined using the microinstruction mnemon-
ics conceptualized in section 3.2.1.4.

To start defining the instructions, the word ’INST_CODES_START’ is used. Then,
every instruction, starts with a line containing an operation code (that may or may not
include so-called don’t cares) followed or not by a mnemonic for that instruction (this
is just intended for compatibility with any future assembler that could be created for the
system) and ends with a line containing the word ’INST_END’. After the last instruction
is defined, the word ’INST_CODES_END’ must be used.

This operation code is a sequence of numbers lesser than the base defined before or
’X’s meaning that any value is accepted (also known as don’t cares). If the base is greater
than 10, after the number 9, the letters of the alphabet are used (until ’v’ since bases go
up to 32).

Two additions were also made to the microinstruction mnemonics when writing in-
structions: they can have comment lines, if the first non-blank character is a ’#’, and they
can have a mnemonic ’SIGNAL_HALT’ that sends the machine a halt signal.

It’s also interesting to point out that the values of the don’t care bits can be obtained
by operating with ’IR’ (the computer‘s instruction register), making it possible to have
partial operands or choosing addressing modes with those bits by using masks and/or shift

006. FETCH_START
007. MAR << PC
008. MDR << mem MAR
009. IR << MDR
010. PC << add PC 1
011. FETCH_END

Figure 5.4: Fetch Code Definition

47

013. INST_CODES_START
014. 0000XXXX NOP
015. #DO NOTHING
016. INST_END
(..)
078. 1111XXXX HLT
079. SIGNAL_HALT
080. INST_END
081. INST_CODES_END

Figure 5.5: Instruction Code Definitions

083. GUI_PLUGIN
084. GRID_X: 2
085. GRID_Y: 2
086. PLUGIN simple_controller 0 0
087. PLUGIN simple_register 1 0
088. PLUGIN simple_memory 0 1
089. GUI_END

Figure 5.6: Peripheral Plugin References and GUI Box Definitions

operations.

The descriptions presented for instruction definition can all be seen in figure 5.5.

5.1.5 Peripheral/GUI Plugin References

Before referencing GUI plugins, the word ’GUI_PLUGIN’ is used. Then, you have to
define how many plugin boxes (of size 300 by 300 pixels) you want in X an Y directions,
by using the words ’GRID_X: ’ and ’GRID_Y: ’ followed by numbers (you should
make sure your computer fits the resolution of the hosts you want your machine to run
on).

Then, for every plugin you want to load, use the word ’PLUGIN’ followed by the
plugin’s name (it should be in the ’Peripherals’ folder) and the position plugin boxes
grid you defined before, where ’0 0’ is top left and ’GRID_X GRID_Y’ is bottom right.
Remember that plugins may have sizes different than one by one, as can be seen in section
5.3.

To complete, you have to use the word ’GUI_END’. All those definitions can be seen
in figure 5.6

Figure 5.7 shows the machine said code generates, with the following plugins:

• A controller, in position (0,0) with size (1,1)

• A register inspector, in position (1,0) with size (1,1)

• A memory inspector, in position (0,1) with size (1,2)

48

Figure 5.7: Tanuki Neander Simple - A very basic NEANDER implementation with sim-
ple plugins

49

001. STATE_REGS: N Z

Figure 5.8: State Register Definition

002. STATE_UPDATE
003. |val| val = val % @circuit.base_exp_word;
004. if val == 0 then @circuit.reg.state_Z = 1

else @circuit.reg.state_Z = 0 end ;
005. if val >= (@circuit.base_exp_word/

@circuit.base)
then @circuit.reg.state_N = 1
else @circuit.reg.state_N = 0
end;

006. END_SU

Figure 5.9: Code for Update Status

5.2 ALU file

The ALU file is a plain text file that contains the definitions of an ALU, which are:
state registers it operates with, Ruby code for updates of those registers and Ruby code
for every operation it supports.

5.2.1 State Register Definition

The file has a line that starts with ’STATE_REGS: ’ and is followed by all the state
registers the user wants his ALU to update separated by spaces. Figure 5.8 shows a
definition of 2 state registers (N and Z).

5.2.2 Code for Updating State Registers

The ALU contains some code used to update the condition codes (also called state
registers). This code begins with a starting word ’STATE_UPDATE’ and ends with the
word ’END_SU’. Between those words, a Ruby code is written that updates registers. This
code receives a value that is the result from the ALU before any overflow (as Ruby works
with more than 32 bit-sized numbers).

This code has access to internal variables and a state register can be accessed through
’@circuit.reg.state_X’, where ’X’ is that state register. It also has access to useful
information like base (’@circuit.base’), wordsize (’@circuit.wordsize’) and
number of representations available (’@circuit.base_exp_word’).

Figure 5.9 shows an example.

5.2.3 Operation Codes

For every operation, the ALU has to have a Ruby code for it. It should start with a line
containing the operator’s name and end with the word ’END_MI’. Between those lines, a
Ruby code block has to be inserted. This code can receive either one or two operands and

50

013. and
014. |op1, op2| result = op1 & op2;
015. END_MI
016. not
017. |op1| result = ~op1;
018. END_MI

Figure 5.10: Code for Operations

001. NAME: simple_controller
002. GRID_X: 1
003. GRID_Y: 1

Figure 5.11: Name and Grid Definitions

put the result in the variable ’result’. Figure 5.10 has examples of both.

5.3 Creating a Peripheral Plugin

The peripheral (or GUI) plugin file is a plain text file that contains the definitions of
a GUI plugin, which are: number of plugin boxes it uses both in X and Y directions and
the plugins code.

5.3.1 Name and Grid Sizes

Optionally, you can define a plugin name, starting a line with ’NAME: ’ and then
writing the name.

Then, you have to define how many plugin boxes (of size 300 by 300 pixels) you
want this plugin to occupy in X an Y directions, by using the words ’GRID_X: ’ and
’GRID_Y: ’, followed by a number. (Remember these sizes when using the plugin on a
machine).

Those can be seen in 5.11

5.3.2 Plugin Code

To complete, you have to write the plugin’s code, which begins with a starting word
’PLUGIN_CODE’ and ends with the word ’PLUGIN_END’. Between those words, a Ruby
Shoes code is written that displays the plugin and executes any logic needed. It has access
to internal variables and the ’Circuit’ object can be accessed as the variable ’c’, for
more information on the variables, the system’s code should be checked.

The code for the controller shown in figure 5.7 is shown in figure 5.12

51

004. PLUGIN_CODE
005. @controller = flow(:width => grid_size_x *

$square_size, :height => grid_size_y *
$square_size) do

006. @stop = false
007. @run_button = button "Run" do
008. $halt = false
009. @stop = false
010. @run = true
011. end
012. @step_button = button "Step" do
013. $halt = false
014. c.step_machine
015. if ($halt) then
016. alert("Found HALT")
017. end
018. end
019. @stop_button = button "Stop" do
020. @stop = true
021. end
022. animate(30) do |frame|
023. if (@run == true && $halt != true &&

@stop != true) then
024. c.step_machine
025. end
026. if (@run == true) then
027. @run = false
028. if ($halt) then
029. alert("Found HALT")
030. end
031. if (@stop) then
032. alert("Stopped by user!!")
033. end
034. end
035. end
036. @run_button.style(:width => grid_size_x *

$square_size/2, :height =>
grid_size_y*$square_size/2);

037. @step_button.style(:width => grid_size_x *
$square_size/2, :height =>
grid_size_y*$square_size/2);

038. @stop_button.style(:width => grid_size_x *
$square_size/2, :height =>
grid_size_y*$square_size/2);

039. end
040. @controller.move(pos_x*$square_size,

pos_y*$square_size)
041. PLUGIN_END

Figure 5.12: Plugin Code

52

53

6 CONCLUSIONS AND FUTURE WORK

This work was, in essence, the specification and development of a simple, but in-
teresting idea. The end result was a system that may have some practical functions, if
bugs are fixed, another GUI is implemented and some improvements made. It served also
as a good way to learn more about the Ruby language, including some quite complex
metaprogramming structures. The best that came from it probably was the fact that it was
a project developed, from idea to specification to implementation. This was one of the
first opportunities in my bachelor’s to do that.

6.1 Lessons

Besides the lessons already presented in chapter 4, some other lessons were also taken
from the project as whole, the main being that documentation is best written during execu-
tion, since after it ends, ideas become so clear to us that it’s more complicated to explain
it in detail and we may even consider everything too trivial. This became a problem in
earlier versions of this text and was quite hard to overcome.

Another good side-effect that could have come from having to explain my decisions
in writing before implementing is that it could have been a better method to find out if my
reasoning was sound and could have made me notice that I hadn’t researched enough on
the possible GUI frameworks available for Ruby.

6.2 Contribution

The biggest contribution this work gives is the full documentation of an implemen-
tation of an ISS using ruby and the problems that appeared. It also can be used as a
cautionary tale for not starting to implement forgetting to analyse one detail, as even one
minor detail can be the difference between success and failure.

6.3 Future Work

The most important thing would be to redo the whole GUI system. After that, an
IDE and assembler would be nice features. Other features like interruptions and multi-
threading that are not yet possible to implement using the framework would also be inter-
esting. A lot of good plugins could then be developed in order to allow for emulation of

54

more complete platforms. In my opinion, a quite interesting experience would be to try
to implement a working complete-set 8086.

55

REFERENCES

AMMAN, U. et al. The Pascal’P’Compiler: implementation notes. ETH Zurich, [S.l.],
1974.

BURNET, M. M.; SUPNIK, R. M. Preserving computing’s past: restoration and simula-
tion. Digital Technical Journal, [S.l.], v.8, p.23–38, 1996.

CZERWINSKI, M.; PUTTKAMER, E. MIKROSIM-SIMULATOR FOR
MICROPROGRAM-ASSISTED DIGITAL SYSTEMS. [S.l.]: FRIEDR VIEWEG
SOHN VERLAG GMBH PO BOX 5829, W-6200 WIESBADEN 1, GERMANY,
1979. 513–514p. n.11.

DOLPHIN. Dolphin: a wii and gamecube emulator. Available at: http://www.dolphin-
emulator.com/. Visited in November, 2013.

GILLETTE, J. Nobody Knows Shoes. [S.l.: s.n.], 2013. Available at:
http://cloud.github.com/downloads/shoes/shoes/nks.pdf. Visited in December, 2013.

HALL, R. et al. OSGi in action: creating modular applications in java. [S.l.]: Manning
Publications Co., 2011.

LINDHOLM, T. et al. The Java virtual machine specification. [S.l.]: Addison-Wesley,
2013.

RUBY. Ruby Documentation. Available at: https://www.ruby-
lang.org/en/documentation/. Visited in October, 2013.

SHOES. The Rules of Shoes. Available at: http://shoesrb.com/manual/Rules.html. Vis-
ited in October, 2013.

SKRIEN, D. CPU Sim 3.1: a tool for simulating computer architectures for computer
organization classes. Journal on Educational Resources in Computing (JERIC),
[S.l.], v.1, n.4, p.46–59, 2001.

TURING, A. Proposed electronic calculator. Report, National, [S.l.], 1946.

WEBER, R. F. Fundamentos de arquitetura de computadores. [S.l.: s.n.], 2000.

ZSNES. ZSNES: super nintendo entertainment system emulator. Available at:
http://www.zsnes.com/. Visited in November, 2013.

56

57

AppendixA

A.1 NEANDER_SIMPLE_PLUGIN

The following code is the listing for a Machine File describing the NEANDER com-
puter, seen in section 2.4, in the description language explained in section 5.1.

001. BASE: 2
002. WORDSIZE: 8
003. MEM_SIZE: 256
004. REGS: AC IR MDR MAR PC
005.
006. FETCH_START
007. MAR << PC
008. MDR << mem MAR
009. IR << MDR
010. PC << add PC 1
011. FETCH_END
012. ALU: neander.alu
013. INST_CODES_START
014. 0000XXXX NOP
015. #DO NOTHING
016. INST_END
017. 0001XXXX #STO
018. MAR << PC
019. PC << add PC 1
020. MDR << mem MAR
021. MAR << MDR
022. MDR << AC
023. mem MAR << MDR
024. INST_END
025. 0010XXXX LDA
026. MAR << PC
027. PC << add PC 1
028. MDR << mem MAR
029. MAR << MDR
030. MDR << mem MAR
031. AC << pass MDR

58

032. INST_END
033. 0011XXXX ADD
034. MAR << PC
035. PC << add PC 1
036. MDR << mem MAR
037. MAR << MDR
038. MDR << mem MAR
039. AC << add AC MDR
040. INST_END
041. 0100XXXX OR
042. MAR << PC
043. PC << add PC 1
044. MDR << mem MAR
045. MAR << MDR
046. MDR << mem MAR
047. AC << or AC MDR
048. INST_END
049. 0101XXXX AND
050. MAR << PC
051. PC << add PC 1
052. MDR << mem MAR
053. MAR << MDR
054. MDR << mem MAR
055. AC << and AC MDR
056. INST_END
057. 0110XXXX NOT
058. AC << not AC
059. INST_END
060. 1000XXXX JMP
061. MAR << PC
062. PC << add PC 1
063. MDR << mem MAR
064. PC << MDR
065. INST_END
066. 1001XXXX JN
067. MAR << PC
068. PC << add PC 1
069. MDR << mem MAR
070. if N then PC << MDR
071. INST_END
072. 1010XXXX JZ
073. MAR << PC
074. PC << add PC 1
075. MDR << mem MAR
076. if Z then PC << MDR
077. INST_END
078. 1111XXXX HLT
079. SIGNAL_HALT

59

080. INST_END
081. INST_CODES_END
082.
083. GUI_PLUGIN
084. GRID_X: 2
085. GRID_Y: 2
086. PLUGIN simple_controller 0 0
087. PLUGIN simple_register 1 0
088. PLUGIN simple_memory 0 1
089. GUI_END

A.2 Simple GUI Plugin (Controller)

The following code is the listing for a GUI Plugin File (Specifically, a machine con-
troller plugin), in the description language explained in section 5.1.5.

001. NAME: simple_controller
002. GRID_X: 1
003. GRID_Y: 1
004. PLUGIN_CODE
005. @controller = flow(:width => grid_size_x *

$square_size, :height => grid_size_y *
$square_size) do

006. @stop = false
007. @run_button = button "Run" do
008. $halt = false
009. @stop = false
010. @run = true
011. end
012. @step_button = button "Step" do
013. $halt = false
014. c.step_machine
015. if ($halt) then
016. alert("Found HALT")
017. end
018. end
019. @stop_button = button "Stop" do
020. @stop = true
021. end
022. animate(30) do |frame|
023. if (@run == true && $halt != true &&

@stop != true) then
024. c.step_machine
025. end
026. if (@run == true) then
027. @run = false
028. if ($halt) then
029. alert("Found HALT")

60

030. end
031. if (@stop) then
032. alert("Stopped by user!!")
033. end
034. end
035. end
036. @run_button.style(:width => grid_size_x *

$square_size/2, :height =>
grid_size_y*$square_size/2);

037. @step_button.style(:width => grid_size_x *
$square_size/2, :height =>
grid_size_y*$square_size/2);

038. @stop_button.style(:width => grid_size_x *
$square_size/2, :height =>
grid_size_y*$square_size/2);

039. end
040. @controller.move(pos_x*$square_size,

pos_y*$square_size)
041. PLUGIN_END

A.3 NEANDER ALU

The following code is the listing for an ALU File describing the ALU for the NE-
ANDER computer, seen in section 2.4, in the description language explained in section
5.2.

001. STATE_REGS: N Z
002. STATE_UPDATE
003. |val| val = val % @circuit.base_exp_word;
004. if val == 0 then @circuit.reg.state_Z = 1

else @circuit.reg.state_Z = 0 end ;
005. if val >= (@circuit.base_exp_word/

@circuit.base)
then @circuit.reg.state_N = 1
else @circuit.reg.state_N = 0
end;

006. END_SU
007. add
008. |op1, op2| result = (op1 + op2);
009. END_MI
010. or
011. |op1, op2| result = op1 | op2;
012. END_MI
013. and
014. |op1, op2| result = op1 & op2;
015. END_MI
016. not
017. |op1| result = ~op1;

61

018. END_MI
019. pass
020. |op1| result = op1;
021. END_MI

62

63

GLOSSARY

architecture See computer architecture. 21, 26, 33

base The numerical base in which a computer operates, usually 2. 35

computer architecture Computer architecture is a computer definition by it’s parts and
their relationships. 21, 26, 33

condition code A condition code is a value that is set by the ALU, considering what
happened in it’s operation. 27, 28, 34

emulation Emulation is the process of simulating a real machine in order to run legacy
code. 22, 23, 25, 53

fetch The act of gathering the next instruction or operand, updating the registers needed
for that i.e. program counter. 23

fetch code A set of microinstructions that prepares the next instruction the processor has
to run. 36, 42, 46

fetch cycle Is the first ste of the instruction cycle, where the instruction will be loaded
from memory in order to continue. 28, 35, 42

host In simulation or emulation, a host is the computar that runs the simulator or emula-
tor. 25

instruction A instruction is the minimal order a programmer can give to a processor. 27,
29, 33, 41, 46

microarchitecture Microarchitecture is a description of how to implement a given archi-
tecture on a processor. 21

microcode A code implemented using microinstructions. 27

microinstruction Microinstructions are internal instructions that a processor uses to build
more complex instructions. 21, 28, 29, 33, 35, 36

platform A set of Software, Computer and Peripherals that works together. 23, 25, 40,
54

64

register A processor component that stores a value. 26–28, 34, 35, 49

simulation Simulation is the process of simulating a machine using another. 22, 23

state register A processor component that stores a boolean value, usually a condition
code. 26, 27, 34, 36, 49

virtual machine A virtual machine is a software implementation of a computer. 23

word The size of the minimum information a computer can handle, usually 8-bits. 35

	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Resumo
	Introduction
	Motivation
	Goals
	Structure of this work

	State-of-the-Art
	p-code Machines
	JVM Architecture

	Historical and Legacy Code Emulators
	The SIMH Simulator set

	Gaming Console Platform Emulators
	Didactic Machine Simulators
	Neander Machine
	Ahmes Machine
	Ramses Machine
	Cesar Machine
	Other Machines

	Instruction Set Simulators
	MikroSim
	CPU Sim

	Feature Comparison
	Conclusions

	Conceptualization
	System
	Machine and Plugin Files
	Machine Definitions
	ALU and I/O Plugin Files

	Use Case Scenario

	The 'Tanuki' implementation
	Programming Language
	Java
	C
	Ruby
	Choice

	Graphical User Interface
	How to Run a Machine
	Coding
	Implementation Scope
	Comparison with other ISSs
	Implementation Conclusions and Lessons Learned

	Description Languages
	The Machine File
	Base, Wordsize, Memory and Registers
	ALU Reference
	Fetch Code
	Instruction Codes
	Peripheral/GUI Plugin References

	ALU file
	State Register Definition
	Code for Updating State Registers
	Operation Codes

	Creating a Peripheral Plugin
	Name and Grid Sizes
	Plugin Code

	Conclusions and Future Work
	Lessons
	Contribution
	Future Work

	References
	Appendices
	
	NEANDER_SIMPLE_PLUGIN
	Simple GUI Plugin (Controller)
	NEANDER ALU

	Glossary

