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Resumo: This paper discusses the application of the concept of linearization around the equilibrium manifold 
(LEM) already presented in the literature in order to construct model structures that can be viewed as extensions 
of the conventional Wiener and Hammerstein models. Instead of linear time-invariant subsystems in association 
with static nonlinearities, these extensions exhibit variable dynamic character and can therefore model a broader 
class of system than the original approaches. Moreover, the identification strategy already used with LEM 
systems can be applied in order to construct such models from experiments, and the techniques destined for 
analysis and control of Wiener and Hammerstein systems can be applied promptly. To application of these 
concepts to the modeling and identification is demonstrated with a numerical example, considering a heat 
exchange system.   

 
 

1 INTRODUÇÃO 

In order to control satisfactorily a nonlinear plant, 
two main approaches exist: either the use of 
“inherent” nonlinear control techniques or the use 
of robust linear methods to guarantee stability and 
adequate performance even in the presence of 
nonlinear effects. In the first approach, it is 
necessary that nonlinear dynamic models are 
available, what is very often not the case. This is 
mainly due to the cost of nonlinear modeling and/or 
identification, but also to the fact that universal and 
fail-free methods allowing for the identification of 
accurate nonlinear models are still missing.  
 
In order to describe the nonlinear characteristics 
that are encountered in the practice, it is often 
adequate to consider a given dynamic system as the 
composition of a linear dynamic block followed by 
a static nonlinearity, the so-called Wiener system. 
By reversing the order of the blocks, the result is 

the Hammerstein model. There is a plenty of 
literature on specific methods for identification of 
either Hammerstein or Wiener models, or both. A 
good survey on these model structures can be found 
in (Pearson, 1995). 
 
Although interesting from the practical point of 
view, these approaches may be too simple if the 
description of a nonlinear dynamics is sought. 
Therefore, the concept of linearization around the 
equilibrium manifold (LEM) can be used to include 
such characteristic in the model representation. The 
advantage of the LEM systems is that they can be 
constructed in a straightforward manner and result 
in simple, transparent model structures. 
 
This paper is organized as follows: Section 2A 
reviews the concept of LEM systems already 
discussed in the literature, which is the basis for the 
two proposed model structures. An extended 
Hammerstein structure is shown in Section 2B, that 
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is, a system composed by a nonlinear static gain 
function followed by a dynamic block with 
nonlinear dynamics. Section 2C presents a structure 
based on the Wiener model resulting by reverting 
the order of the elements cited before. The models 
are then applied in Section 3 in the modeling and 
identification of a nonlinear system in a numerical 
example. Concluding remarks can be found in 
Section 4. 
 
 

2 MATERIAIS E MÉTODOS 

2A. LEM SYSTEMS 
Consider a continuous SISO nonlinear dynamic 
system of the form 
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where r: X × U→ ℜ n
 is at least once continuously 

differentiable on X ⊆  ℜ n
, U ⊆  ℜ , and h: X → ℜ  is 

at least once continuously differentiable. The output 
equation will be frequently omitted in the sequel for 
shortness. The equilibrium manifold of (1) is 
defined as the family of constant equilibrium points  
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Similarly, the family of linearizations of (1) at the 
set of equilibrium points determined by (2) is given 
in the usual way as 
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and similarly for the output equation. Under the 
condition that the rank of [∂r(xs,us)/∂x] is n for all 
points in the set Ξ (Wang and Rugh, 1987, 
Fernandes 2005), the equilibrium manifold and 
consequently the family of linearizations of (1) will 
be specified by one among the n + 1 variables (x,u). 
Therefore, if this matrix is full rank, the input fully 
parameterizes both families of equilibrium points 
and linearizations. Calling the steady-state map 
Ω: ℜ  → ℜ n

, such that r(Ω(u),u) = 0 (that is, the 
function Ω gives the steady-state xs corresponding 
to the constant input us), the input-parameterized 
linearization around the equilibrium manifold 

(LEM) of (1) is defined as the system (Fernandes 
2005, Fernandes and Engell, 2005). 

 
 ))()(( uu ΩxAx −=&                      (4) 

 
where A(u) represents the evaluation of the 
Jacobian matrix [∂r(x,u)/∂x] on (Ω(u),u). The 
output equation can be linearized in an analogous 
way, considering the stationary output mapping 
Ψ: ℜ  → ℜ . The output function Ω(u) can be 
obtained on the basis of the family of parameterized 
linearizations by integration of 
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 where A and B are the Jacobian matrices of 
r(x,u) with respect to x and u, respectively, 
evaluated on the equilibrium manifold. The model 
(4) has to be interpreted as a (state-affine) nonlinear 
system that possesses the same family of 
equilibrium points (2) and the same linearization 
family (3) as the nonlinear system (1). Following 
the discussion in (Fernandes, 2005), the LEM 
system can constitute also a good approximation of 
(1) in transient regimes away from the equilibrium 
manifold, depending on the “degree” of 
nonlinearity of the original system. Obviously, 
other representations that are equivalent on the 
equilibrium manifold can be constructed on the 
basis of a single parameter. Moreover, these 
representations can be easily interchanged, 
provided that the inverses of the corresponding 
elements in Ω(u) and Ψ(u) exist. 
 
The focus on input parameterization is due to the 
fact that identification experiments are carried out 
by exciting the plant with a designed input signal. 
In this sense, if one assumes that the local models 
can be identified by perturbing the plant around 
isolated equilibrium points, it is natural to use the 
input in order to parameterize the linearization 
family. Therefore, an approximation to (1) can be 
constructed by means of a finite number of linear 
local models that are considered as members of its 
linearization family, obtained by means of a few 
“local” identification experiments. Since the exact 
LEM system (4) involves the infinite family of 
linearizations and of the equilibrium points of (1), 
described by the matrix functions A(u) and Ω(u), in 
the identification context just a finite and probably 
small number of the members of these families are 
known, but one can still use approximation or 
interpolation methods in order to “reconstruct” 
these functions from the known members. In order 
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to solve the problem of constructing a state-space 
representation from local models obtained from 
input-output experiments, these can be transformed 
to a linear canonical normal form prior to the 
constructions of approximate functions )(

~
uA  and 

)(
~

uΩ (Fernandes and Engell, 2005). In the absence 

of the numerical value of the steady-states, the last 
function can be obtained by integration of 
−A(u)−1B(u) (Fernandes, 2005). 
 

2B. SISO LEM-HAMMERSTEIN MODELS 
The LEM concept can be used to construct a 
Hammerstein-like model of (1) in which the 
dynamics depends on the operating point instead of 
the LTI dynamics encountered in the usual 
Hammerstein structure (Fig. 1). 
 

 
 
Fig. 1. LEM-Hammerstein model 
 
A generic model with this structure can be defined 
in state-space form by 
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where b and c are vectors of proper dimensions. A 
possibility of constructing a model of the form of 
Eq. (6) on the basis of the LEM models is to 
separate the static nonlinear gain function from the 
family of transfer functions (Pearson and Pottmann, 
2000), that is,  
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where δ is a scalar parameterizing the set of 
equilibrium points/linearizations (us in this case). 
The resulting LEM-Hammerstein system is of the 
form 

 

 
xy

uqwww

c

ΩxAx

=
=−= )()),(

~
)((

~
&          

(8) 
with 
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such that the overall family of transfer functions 
correspond to that of (1). The LEM system (8) can 
be constructed with realizations of the 
parameterized transfer function of Eq. (7) in a 
suitable chosen coordinate basis, as for example a 
canonical or normal form. Obviously, Eq. (8) 
depends on the new input w, but an equivalent 
state- or output-parameterization can be easily 
constructed, as discussed above. These are 
nevertheless dynamically “worse” than the input-
parameterized version (Fernandes, Engell and 
Trierweiler, 2004). This model can be obtained 
from experiments using the LEM approach as 
follows: 
•  identification of local linear models around 

some isolated operating points; 
•  transformation of the family of local models 

into a family of unit-gain linearizations; 
•  integration of k(us) = −C(us)A(us)

−1B(us) in 
order to obtain q(u); 

•  interpolation of A and B in some suitable 
canonical form and integration of in 

)()( 1 ww BA −−  order to generate )(
~

wΩ . 

Alternatively, since the “local” gain is the 
derivative of the stationary mapping with respect to 
u at a given operating point, q can be directly 
obtained by means of observations of the stationary 
output. This procedure can also be used iteratively, 
that is, values of ys can be used to refine the 
interpolation of k and vice-versa. 
 

2C. SISO LEM-WIENER MODELS 
In parallel to the Hammerstein-type structure 
considered above, it is also possible to define an 
“extended” Wiener model by replacing the linear 
block with an element possessing variable 
dynamics (Fig. 2). 
 

 
 
Fig. 2. LEM-Wiener model 
 
Note that this model is not obtained by simply 
reversing the order of the blocks in Fig. 1, since the 
function h is a scalar valued function of n 
arguments whereas q is a n-valued function of one 
argument (that is, a collection of scalar functions). 
 
This model can be defined in the state-space in the 
same fashion as in Eq. (6). Nevertheless, due to the 
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nonlinear dependence of h on x, the input-
parameterized LEM model would exhibit a direct 
feedthrough characteristic, what is not desirable for 
simulation (Fernandes, 2005). In this case, it is 
possible to construct an output-parameterized LEM 
system, provided that the adequate conditions hold 
(Wang and Rugh, 1987); in the SISO case, for 
example, this implies that there is no change of the 
sign of the stationary gain. In any case, the LEM-
Wiener model is given by 
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where  
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where the functions ai(x1), bj(x1), j, i = 0,…, n – 1, 
j ≠ 0, correspond to the coefficients of the 
parameterized transfer function 
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where δ is a scalar parameterizing the set of 
equilibrium points/linearizations (x1,s in this case), 
and a0(x1) = −gn(x1)⋅dφ(x1)/dx1. The “advantage” of 
this form for identification is that all involved 
functions are scalar and can be therefore identified 
by means of the variation of one single parameter. 
Moreover, since the steady-states of this 
representation are of the form x1,s = ys, xj,s = 0, 
j = 2,…, n, these functions can be obtained by 
means of local linear models parameterized by the 
output. 
 
Another advantage of the LEM-Wiener model 
structure is that it can be further extended by 
including a second-order term in the output 
equation, in order to improve the accuracy of the 
model away from the equilibrium manifold, that is,  
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where Φ(x) is such that Φ(xs) = 0 and 
[∂Φ(x)/∂x]xs = 01 × n. In particular, one possibility 

for Φ(x) is  
 

           ( ) ( ))()()( 11 xx T ΩxHΩxxΦ −−=        (14) 
 

where the n × n matrix H has to be adjusted from 
experiments, and Ω(x1) = [ x1 0 … 0 ]T. The 
advantage is that H does not affect the dynamics of 
(10) and consequently does not cause problems of 
unbounded responses, for example. Moreover, 
since output depends linearly on H, it can be 
adjusted by means of computationally simple 
methods (least-squares, for example). 
. 
 

3 RESULTADOS E DISCUSSÕES 

The model structures presented in the previous 
sections will be tested in the modeling and 
simulation of the heat exchange system (Duraiski, 
2001) depicted in Fig. 3.  
 
 
 

Fci ,  Tci 

Fi , Ti 

Fhi ,  Thi 

Fc , Tc 

F, T 

Fh , Th 

Vh

Vh V Vc

V Vc 

Uh

Vh V Vc

Uc 

 
Fig. 3. Heat exchange system 
 
This system is constituted by an insulated tank 
divided in three separate chambers that are allowed 
to transfer heat but not mass. The central chamber 
is in contact with both hot (h) and cold (c) 
chambers, but these are in contact just with the 
central one. The volumes of the chambers Vh, V and 
Vc, are constant, and all chambers are well-mixed. 
Water is fed to and removed from each chamber 
separately. Under these assumptions, the system 
can be described by means of the following 
differential equations: 
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where Th, Tc and T are the temperatures of each 
chamber, Cp and ρ are the specific heat and specific 
mass of water (considered to be independent of the 
temperature), Uh/Uc and Ah/Ac are respectively the 
overall heat exchange coefficient and heat exchange 
area between the corresponding chambers. A more 
detailed description of this system can be found in 
(Duraiski, 2001). In this example, the input variable 
is considered to be the feed flowrate of hot water, 
Fh,i, which has constant temperature Th,i. The output 
is the temperature of the central chamber, T. The 
values considered for the physical parameters and 
other inflows can be found in the Appendix. The 
variation of the dynamic character is obvious from 
the analysis of Fig. 3 and Fig. 4. 
 
3.1 Constructing an approximated model in LEM, 

LEM-Hammerstein and LEM-Wiener forms 
 
 The original LEM, LEM-Hammerstein and 
LEM-Wiener models described in the previous 
sections can be constructed analytically on the basis 
of the model (14). In the first case, we have a 
system in the form of Eq. (4) with 
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and y = x3. For the LEM-Hammerstein model, it is 
first necessary to convert the matrices above to a 
normal form in order that the individual transfer 
functions from w to y in Fig. 1 have unit gain. The 
system is of the form: 
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where u has to be substituted by q−1(w) for 
implementation, with 
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The LEM-Wiener model (10)-(11) can be 
constructed similarly, giving 

 

21

1

1
1

11

3
1

1

2
1

1

5.12)(

03040211

00041801250
871

000064500238.0)(

)03040211(

)11403830(
5070

)03040211(

)271003420(
5070)(

xxh

 x. - .

 x. - .
.

 x. -  xg

x
 x. - .

. x.-
.

x
 x. - .

 .  x.- 
.f

n

n

+=

−=φ

=

+−

+−=

x

x

.  

(18) 
 
The systems described above were simulated in 
Matlab with respect to the input function shown in 
Fig. 4; the responses are plotted in Fig. 5. The 
response of the linearized model at the operating 
point determined by us = 1 is also shown for 
comparison. Excepting this system, the other curves 
are practically indistinguishable. 
 

 
Fig. 4. Test input signal 
 

 
Fig. 5. Responses of the several systems to the 

signal in Fig. 3 
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3.2 Constructing the approximated models with 

identified local models 
 
 Approximated versions of the models derived 
in the previous section can be constructed with 
local models obtained either from linearizations or 
from identification experiments; only the last 
approach is exemplified here. The following 
procedure was adopted: three linear local models 
corresponding to the operating points defined by 
us,1 = 1 L/s (ys,1 = 334.76 K), us,2 = 8 L/s (ys,2 = 
361.46 K), us,3 = 15 L/s (ys,3 = 364.78 K) were 
identified by means of “local experiments”, that is, 
with identification signals of small amplitude 
around these operating points. No special 
methodology was employed to select the number or 
the location of these points; they were simply 
distributed over a desired range of the manipulated 
input. For each operating point, an identification 
signal uid of the form depicted in Fig. 6 was 
designed. The switching period σ of the signal was 
determined as t63/20, where t63 is the time needed 
from the step response to reach 63% of its steady-
state value, what was obtained previously for each 
point by means of a step test with the nonlinear 
model (positive step of 0.2 L/s in u). The amplitude 
of the identification signal was fixed to 30% of us,i. 
An input sequence of the form us,i − uid was 
employed with validation purposes. 
 

 
Fig. 6. Identification input signal 
 
The response of the nonlinear model (14) was 
simulated in Matlab for the identification signal uid. 
In order to simulate the effect of measurement 
error, a white-noise, Gaussian sequence with zero 
mean and standard deviation of 0.01 K was added 
to the output. A typical plot of the noisy output 
measurement is given in Fig. 7. The simulated 
signals were sampled with a convenient sample 
period in order to be used with the identification 
algorithms. 

 

 
Fig. 6. Noisy and filtered output 
 
Since an accurate representation of the local 
linearizations is necessary, the following procedure 
was adopted. First, a set of two runs was performed 
with uid for each operating point and the average of 
the corresponding outputs yid was taken as the 
identification data; this has the objective of 
reducing the effect of noise. Second, the data was 
filtered by means of a least-squares smoothing 
cubic spline (Matlab function spap2). The best 
parameter set of the spline function was determined 
iteratively in function of the results of the 
identification procedure achieved in the subsequent 
step. 
 
The linear local models in discrete form were 
identified through the combined use of subspace 
(Matlab functions n4sid/subid) and state-space 
prediction error methods (Matlab function pem). 
The subspace methods gave the initial estimates for 
the prediction error method and were also used for 
determining the order of the state-space models. As 
already suggested in the literature (Fernandes, 
2005), the authors found that a good local 
identification is generally achieved when the order 
of the model is clearly evidenced by the singular 
value test provided by the subspace routines. 
Moreover, a frequent indication of excessive model 
order and poor identification is the generation of 
unstable poles, complex zeros, etc by these 
methods. The identification procedure was as 
follows: first, the filtered data was used in the 
subspace methods; the model order was selected 
and the estimates were passed to the pem routine. 
This result was then simulated and validated against 
the identification and validation data. If necessary, 
the parameters of the smoothing spline function 
were changed, the data was filtered again and the 
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local models identified once more; this procedure 
was repeated until a good result was found. 
 
The local models identified in this manner were 
used in the construction of the model structures 
presented in the sections 2. The LEM and LEM-
Hammerstein models were constructed with local 
models in observability form. The last one differs 
from the analytical case because the linear 
transformation to normal form depends on the 
relative degree which is not a “robust” quantity to 
be obtained from experiments. In all cases, proper 
spline or rational interpolation of the necessary 
functions was performed (the results are omitted 
due to the space limitations). The responses of the 
three structures with identified local models for the 
input signal in Fig. 4 are shown in Fig 8. The most 
significant difference with respect to the analytical 
case refers to the Wiener model, due to the 
identification/interpolation of the bi parameters that 
appear in the output function. 
 

4 CONCLUSÕES 

This paper presented new model structures based 
on the concept of linearization around the 
equilibrium manifold (LEM). These models extend 
the conventional Hammerstein and Wiener systems, 
in the sense that they allow for the inclusion of 
variable dynamics. These representations can be 
constructed on the basis of the local models; a 
possibility of obtaining them is for by 
identification. A numerical example (bilinear 
system) showed that these structures are almost 
equivalent if the models are obtained analytically, 
but the effect of the errors in the estimated 
parameter can affect differently the distinct model 
classes. 

 
Fig. 8. Responses of the several systems 
constructed on the basis of identified local models 
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APPENDIX 
 
Parameter values used in the example: 
ρ = 1000  kg/m3, Cp = 4180 J/kg/K, V = Vc = Vh = 0.3 m3 

Uh
.Ah = 300.000 J/K/s, Uc

.Ac = 100.000 J/K/s 
Fci = 0 m3/s, Tci = 280 K, Fi = 0.001 m3/s, Ti = 300 K 
Thi = 370 K 
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