
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VINICIUS DE ANTONI

An Asynchronous Algorithm to Improve
Scheduling Quality in the Multiagent

Simple Temporal Problem

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Álvaro Moreira
Advisor

Porto Alegre, January 2014

CIP – CATALOGING-IN-PUBLICATION

De Antoni, Vinicius

An Asynchronous Algorithm to Improve Scheduling Quality
in the Multiagent Simple Temporal Problem / Vinicius De Antoni.
– Porto Alegre: PPGC da UFRGS, 2014.

48 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2014. Advisor: Álvaro Moreira.

1. Multiagent Systems. 2. Simple Temporal Problem. I. Mor-
eira, Álvaro.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Luís da Cunha Lamb
Coordenador do PPGC: Luigi Carro
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ACKNOWLEDGMENTS

First of all, I would like to thank my parents Luiz Alberto De Antoni and Rosali Salete
Maschio De Antoni for their support throughout the whole process, also I would like to
thank my brother Rafael De Antoni for the frequent reviews and discussions. I thank
the CS department professors for the mind-opening classes, and my colleagues Gabriel,
Samir and Marcelo. Without a doubt, this work would be impossible to finish without the
discussions with my colleagues and without the courses.

Special thanks to my former advisor Dr. Rafael H. Bordini for the idea that made this
work possible and also to my current advisor Dr. Álvaro Moreira for the patience and
effort to make this dissertation happen.

Thank you all.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 6

LIST OF FIGURES . 7

LIST OF TABLES . 8

ABSTRACT . 9

RESUMO . 10

1 INTRODUCTION . 11

2 BACKGROUND . 14
2.1 Simple Temporal Problem - STP . 14
2.2 Agents and Multiagent Systems . 15
2.2.1 Multiagent Systems . 16
2.2.2 Agents . 16
2.3 Multiagent Simple Temporal Problem - MaSTP 16
2.4 Multiagent Temporal Decoupling Problem - MaTDP 19

3 ALGORITHMS . 21
3.1 Solving the STP . 21
3.2 Solving the MaSTP . 24

4 ASYNCHRONOUS TIME FINDER . 27
4.1 Constraint Satisfaction Problems . 29
4.2 Distributed Constraint Satisfaction Problems 29
4.3 Asynchronous Backtracking . 29
4.4 Asynchronous Time Finder . 32

5 A SCHEDULING SYSTEM USING ATF 35
5.1 Design . 35
5.2 Implementation . 35
5.2.1 Messages server . 36
5.2.2 Client application . 37

6 EVALUATION . 40
6.1 Methodology . 40
6.2 Results . 41

7 CONCLUSION . 43

APPENDIX A PRINCIPAIS RESULTADOS 44

REFERENCES . 47

LIST OF ABBREVIATIONS AND ACRONYMS

STP Simple temporal problem

MaSTP Multiagent simple temporal problem

TDP Temporal decoupling problem

MaTDP Multiagent temporal decoupling problem

ABT Asynchronous backtracking

CSP Constraint satisfaction problem

DCSP Distributed constraint satisfaction problem

ATF Asynchronous time finder

DAI Distributed artificial intelligence

MAS Multiagent systems

PC Path consistency

PPC Partial path consistency

HTTP Hypertext transfer protocol

TCP Transmission control protocol

LIST OF FIGURES

Figure 2.1: John’s STP instance . 14
Figure 2.2: The distance graph of Figure 2.1 . 14
Figure 2.3: Mary’s STP instance . 17
Figure 2.4: MaSTP instance . 18
Figure 2.5: MaTDP instance . 19

Figure 3.1: The minimal network of the distance graph of Figure 2.2 22
Figure 3.2: PPC applied to the distance graph of Figure 2.2 22
Figure 3.3: PPC applied to the distance graph of Figure 2.4 24

Figure 4.1: ATF workflow . 28
Figure 4.2: Example of a DCSP graph . 30
Figure 4.3: ATF’s execution flow example . 34

Figure 5.1: Add new shared activity sequence diagram. 37
Figure 5.2: User interface: Calendar view . 38
Figure 5.3: User interface: Add new activity . 38

Figure 6.1: Number of messages . 41
Figure 6.2: Number of messages per agent . 41
Figure 6.3: Total Time per number of agents . 42

LIST OF TABLES

Table 6.1: Total messages per number of agents 40
Table 6.2: Total time per number of agents . 42

ABSTRACT

In order to schedule an activity that depends on other people, we very often end up
wasting precious time trying to find compatible times and evaluating if they are accepted
by all involved. Even though modeling and solving multiagent scheduling problems seem
completely understood and several algorithms can be found in the literature, one limita-
tion still stands up: How to find a compatible time slot for an activity shared by many
users without requiring the users themselves to spend time going through their calendar
and choosing time slots until everybody agrees. The main contribution of this work is
an algorithm called Asynchronous Time Finder (ATF) based on the Asynchronous Back-
tracking (ABT) that enables applications to find compatible times when scheduling shared
activities among several users while requiring minimal user interaction. This disserta-
tion starts by revisiting the Simple Temporal Problem (STP) and its multiagent version
(MaSTP), it then shows how they can be used to solve the problem of managing agendas
and then finally it presents the ATF giving an experimental evaluation and the analysis of
its complexity.

Keywords: Multiagent Systems, Simple Temporal Problem.

RESUMO

Um Algoritmo Asíncrono para aprimorar a Qualidade de Agendamento no
Problema Temporal Simples Multiagente

Ao tentar agendar uma atividade que dependa da presença de outras pessoas, geral-
mente acabamos desperdiçando tempo precioso avaliando os possíveis horários e verifi-
cando se os mesmos são aceitos por todos envolvidos. Embora a modelagem e a resolu-
ção do problema de agendamento multiagente pareçam estar completamente entendidas e
ainda diversos algoritmos possam ser encontrados na literatura, uma questão ainda existe:
Como definir horários compatíveis para uma atividade compartilhada sem que os usuá-
rios tenham que manualmente escolher horários livres de seus calendários até que todos
envolvidos aceitem um horário. A principal contribuição é um algoritmo chamado Des-
cobridor Asíncrono de Horários (ATF) baseado no Rastreamento Asíncrono (ABT) que
permite que aplicações encontrem horários compatíveis para atividades compartilhadas
requerendo mínima intervenção manual dos usuários. Esta dissertação revisita o Pro-
blema Temporal Simples (STP) e a sua versão multiagente (MaSTP), demonstra como
eles podem ser utilizados para resolver o problema de agentamentos e ao final apresenta
o ATF, a avaliação experimental e a análise de complexidade.

Palavras-chave: Sistemas Multiagentes, Problema Temporal Simples.

11

1 INTRODUCTION

The study of Multiagent Systems (MAS) focuses on the analysis and development of
sophisticated mechanisms to solve problems related to coordination, cooperation, negoti-
ation, privacy, scalability, uncertainty and many other problems inherent to systems that
have more than one autonomous entity (agent) pursuing their goals. The problems a mul-
tiagent system deals are further extended when the agents’s goals are not compatible with
each other, resulting in a competitive system. For instance, an agent responsible for John’s
agenda might want to commit to the least number of activities possible, so John can go
home earlier, while the agent responsible for Mary’s agenda, according to her will, tends
to schedule the most activities possible in each day so Mary can take Friday off. It’s ob-
vious that in the case where both agents share one or more activities, without negotiation,
the conflicting nature of their goals may render them unable to be met and consequently
both John and Mary will perform poorly in the eyes of their manager. Therefore a mul-
tiagent system responsible for the week schedule must provide ways through which both
agents may reach an agreement so they can have the work done by the end of the week.

Recently, with the advent of intelligent personal assistants capable of managing users’s
activities, like the one introduced in (MYERS et al., 2007), the attention dedicated to
multiagent scheduling problems has increased among researchers of the field. At first the
Simple Temporal Problem (STP) (DECHTER; MEIRI; PEARL, 1991) which is a widely
accepted representation of the problem of determining if a plan or a schedule is feasible1,
seemed to be a suitable candidate for representing and solving a scheduling problem.
There are algorithms, like P3C (PLANKEN; WEERDT; KROGT, 2008), that solve the
STP in a centralized fashion, meaning that, in order to evaluate the schedules of a group
of agents, a single entity should gather all member’s activities and constraints, and solve
the corresponding STP. The main issues that arise in the centralized approaches are:

• Privacy: Every member would have to reveal their full schedule, which could
include information that people want to keep private;

• Flexibility: Having to send all their activities and constraints through the network
make it costly to change them, since every change must be sent again to the central
solver;

• Scalability: Relying on a single entity to deal with everyone’s schedule might lead
to performance issues as the number of agents grows;

1A schedule is said feasible if there is an assignment of time points in a way that all constraints are
respected, i.e., there is no time conflicting activities.

12

• Uncertainty: Information kept by the central solver might become stale if one or
more agents are not able to send their schedules as they change due to network
issues, hardware failures, etc...

In (BOERKOEL; DURFEE, 2010), the authors introduce the Multiagent Simple Tem-
poral Problem (MaSTP) which addresses the issues mentioned above that are not covered
by the centralized approaches for solving STP. Along with the MaSTP definition, a dis-
tributed algorithm called D∆P3C based on P3C is presented. In the algorithm, each agent
starts by processing its private schedule. If it is feasible the agents then send and re-
ceive constraints regarding shared activities, processing them as they arrive. If the private
schedule is not feasible the agent can fix it by removing conflicting activities or chang-
ing activities’s start time and/or duration before starting sending constraints of shared
activities to others. By processing locally the private activities, this approach guarantees
privacy since the private information is stored and processed within the agent, and by not
relying on a central entity, the algorithm also improves flexibility, reduces uncertainty and
becomes highly scalable because there is no bottleneck anymore, the load is distributed
between the agents, where each agent is only responsible for its own activities.

One drawback of that solution, as mentioned in (BOERKOEL; DURFEE, 2011), is
that since the MaSTP allows activities to have flexible start time and/or duration, e.g.,
an activity can be scheduled to start anytime from 10 a.m. to 11 a.m. and to last from
30 to 60 minutes, whenever agents agree upon a shared activity, every local change can
lead to unnecessary exchange of messages. Every agent involved with a specific shared
activity keeps information about the other agents, meaning that, if the shared activity is
supposed to start any time between 10 a.m. and 11 a.m. and one of the agents that has a
private activity before that, which is supposed to end at 10 a.m., for some reason delays
it until 10:30 a.m., this results in the agent sending constraints updates to every other
agent, even the delay not affecting the shared activity (it is OK as long as it starts by 11
a.m.). Thus, due to the fact that generally multiagent systems operate in time-critical and
highly-dynamic environments, the D∆P3C leaves room for improvement in regards of
the exchange of messages.

Hunsberger in (HUNSBERGER, 2002a) defined the Temporal Decoupling Problem
(TDP) as being an optimization problem with the objective to find a decoupling of a
constraint system. Planken et al. in (PLANKEN; WEERDT; WITTEVEEN, 2010), found
out that the TDP could be used to solve the MaSTP with the advantage of also addressing
the unnecessary constraints updates. The decoupling is obtained through the addition of
extra constraints to each shared activity so that each agent’s agenda is decoupled from
each other, and once the agents meet the constraints the execution avoids unnecessary
coordination. In the previous example, these extra constraints would tell that the shared
activity must happen by 11 a.m, so any change that does not conflict with that will not be
sent.

Originally, the TDP was specified to find a temporal decoupling in a centralized
fashion. Then, the multiagent version called Multiagent Temporal Decoupling Problem
(MaTDP) was presented in (BOERKOEL; DURFEE, 2011) along with a fully distributed
algorithm for named D-P3C (a newer version of D∆P3C) where agents maintain locally
decoupled consistent schedules that, when combined, produce a consistent joint sched-
ule. Nevertheless, when the addition of a new event or a new constraint make the global
schedule inconsistent, the agents must exchange messages to accommodate the changes
and consequently create a new and consistent decoupling. The MaTDP is obviously an
improvement of the MaSTP, but essentially they solve the same problem: given a dis-

13

tributed set of local schedules they both try to find out whether or not the global schedule
is feasible.

Even though solving a multiagent scheduling problem seems completely understood,
we believe that none of the approaches described above tackle properly the problem of
finding a compatible time for every agent involved in a shared activity. In order to find
a compatible time for every agent, the current solutions, require several executions with
different times for the shared activity until the activity is accepted by every one. For every
run, the user must manually specify the time for the activity, when this process clearly
could be automated by the scheduling system which has access to all the activities and
could automatically pick available time slots (time slots without activities) and find if
the others agents have available time slots in common. Hence, the main contribution of
this dissertation is a novel algorithm named Asynchronous Time Finder (ATF) that has
the goal of finding a compatible time for a new shared activity in a distributed fashion
ensuring privacy and performance while requiring minimal user interaction.

Although, there has been a huge improvement recently in the way we can solve the
distributed scheduling problem, being through MaSTP or even by seeing the problem
as a TDP and using a MaTDP algorithm, the lack of assistance when creating a shared
appointment is still out there. Therefore, the purpose of the ATF is not to replace any of
the algorithms that solve the MaSTP or the MaTDP but to complement them in a way
where users can easily find compatible times for a shared activity, and as soon as they find
a time slot for it, the activity then can be added to their schedules and managed by any of
the algorithms mentioned above.

The remainder of the dissertation is organized as follows. First, we formally revisit the
STP (Section 2.1), Agents and Multiagent Systems (Section 2.2), the MaSTP (Section 2.3)
and the MaTDP (Section 2.4). On Section 3 we describe the algorithms we mentioned
above and how they are used to solve the scheduling problem. Section 4 exposes the
problem that is still open and how this work tries to solve it by utilizing the ATF. We
designed and implemented a prototype of a scheduling system that uses ATF and Secion
5 explains how it was done. The evaluation is presented on Section 6 and finally, Section
7 states our conclusion and states the next steps of this work.

14

2 BACKGROUND

In this chapter we introduce the formalism of the Simple Temporal Problem and the
Multiagent Simple Temporal Problem along with a overview of Agents and Multiagent
Systems for the reader understanding using the taxonomy and terminology found in the
literature.

2.1 Simple Temporal Problem - STP

The Simple Temporal Problem (STP) was first introduced in (DECHTER; MEIRI;
PEARL, 1991), being defined as a pair (V,C), where V = {v1, ..., vn} is a set of time
point variables representing events, and C = {c1, ..., cm} is a set of binary constraints
over time points variables, bounding the time distance between two events.

Constraints are linear inequalities that establish an upper bound on the time distance
between two time points, represented by vj − vi ≤ wij where wij ∈ R is the upper
bound of the distance between vi and vj . Two constraints cij and cji can be combined
into a single constraint −wji ≤ vj − vi ≤ wij , or equivalently , vj − vi ∈ [−wji, wij],
resulting in both upper and lower bounds. If cij exists and cji does not, this is the same as
vj − vi ∈ [−∞, wij], meaning that there’s no lower bound between the two time points.
As an example, consider the two events (a) Waking up at 6 a.m and (b) Arriving at work at
8 a.m. Assume that one needs one hour to get ready plus thirty minutes to commute to the
office. Thus, we have vb− va ≤ 2 and va− vb ≤ −1.5 which leads to wab ∈ [−(−1.5), 2],
meaning that the time distance between va and vb can be any value between one and a half
to two hours.

Z

A

BC

DE

[−
∞

;∞
] [30; 45]

[15; 20]

[−∞
;∞

]

[90; 120]

[360; 360]

Figure 2.1: John’s STP instance

Z

A

BC

DE

∞ 45

20

∞

120

360

−∞
−
30

−15

−∞

−90

−
360

Figure 2.2: The distance graph of Figure 2.1

15

Given an STP instance, one might be interested in determining its consistency, i.e, if
there is an assignment of time points that satisfies all the constraints, or even inquiring
about possible time distances between a given pair of time points.

An STP instance can be seen as a graph where the nodes represent the time points
and the edges represent the lower and upper bounds of the distance between two time
points. A special node Z can be added to represent the "start of time" in the context of
the instance, e.g., it can be the first hour of the day (12 a.m.) so other events can stipulate
start times relative to that, like waking up at 6 a.m, where the distance to Z would be 6.

The Figure 2.1 illustrates the STP instance described by the following scenario where
we assume Z = 7a.m.: John wakes up some time after 7 a.m. (A) and takes 30 to
45 minutes to shower, get dressed and have breakfast (B). By car, John takes 15 to
20 minutes to commute to work (C), where he may have some time for doing some
paperwork before the meeting with Mary starts (D). The meeting requires from one hour
and a half to two hours. Both John and Mary are going to have lunch with their manager
at 1 p.m (E). Note that the label [−∞,∞] in the edge connecting Z to A means that John
can wake up at any time after 7 a.m. and the label [360, 360] in the edge between Z and
E tells that the lunch must happen after exactly six hours, which is the 1 p.m deadline.

After modeling this scenario as an STP instance, one can ask questions like:

• Is it possible for John to satisfy all these time constraints?

• What time does John need to set the alarm for in the morning?

• How much time will John have to do the paperwork if he wakes up at 9 a.m?

An STP assignment is an association of specific time values to time point variables
and it is considered a solution for the STP if it respects every constraint defined between
two time points in a given STP instance. An STP instance is consistent if it has at least
one solution.

Every STP instance is associated with a distance graph G = (V,E), which is a
weighted and directed graph. Figure 2.2 has the distance graph associated to the STP
instance of Figure 2.1, where the set of vertices V is the set of time point variables and
E is a set of directed edges, where each edge represents a constraint cij with the weight
wij and connects the vertices vi and vj . Again, a zero time point, Z ∈ V can be added to
express the "start of time".

The consistency of an STP instance can be determined by its distance graph having
no negative cycles (a cycle whose sum of edge weights is negative) (XU; CHOUEIRY,
2003). The chapter 3 discusses the algorithms that can tell if the graph has negative cycles
and consequently can solve the STP.

2.2 Agents and Multiagent Systems

Multiagent Systems (MAS) is a sub-area of Distributed Artificial Intelligence (DAI)
that focuses on the study and research of software that maintains an environment and au-
tonomous entities (agents). These agents interact with the environment basically through
perceptions and actions. Usually, each agent has a set of behavioral capabilities, a set of
goals and autonomy to use capabilities to achieve goals. Decisions on what actions to
take are made by taking into consideration the changes in the environment and the desire
to achieve goals.

16

2.2.1 Multiagent Systems

Historically, the ideas and concepts behind the MAS come from several different ar-
eas, not only computer science. We find influences from psychology, philosophy and
sociology as well. The modal concepts and modal logic (WRIGHT, 1951) helped define
the behaviors and the reasoning process that later would be used to build these software
entities called agents. Organizational studies, commonly seen in biology courses about
how cells organize themselves to form a complete organism also influenced how agents
interact with each other in a MAS.

The purpose of a MAS is to reach a global intelligent behavior from each agent’s in-
dividual behavior, meaning that, an agent itself does not need to be considered intelligent
as long as it is able to reach its goals while respecting the constraints of the environment.

A scheduling system can be easily seen as a MAS. The environment is a calendar, in
which days are divided into time slots and time slots can contain activities. The agents
represent the users, and their goal is to allocate time slots for both private and shared
activities, respecting some predetermined rules, e.g, there cannot be conflicting activities.
The global behavior of maintaining a feasible schedule for everyone is reached iff each
agent reaches its goals and respects the constraints.

2.2.2 Agents

An agent is an autonomous computational entity, able to perceive, reason and act in
its environment to reach its goals (WOOLDRIDGE, 2009).

An agent can be seen as an improved object1 which maintains information about the
environment and other agents in its knowledge base (attributes) and has several different
actions (methods) which can change the environment and/or other agents’s knowledge
base. The main difference is that a regular object follows a thread of execution prede-
termined by the program while agents autonomously decide what to do based on their
knowledge base (WOOLDRIDGE, 2009).

In the context of this work, an agent is a piece of software responsible for helping users
to create and maintain a schedule, where the goal is to accommodate the user’s activities
and the actions are create, change and remove activities, and implicitly coordinate the
shared activities with other agents.

2.3 Multiagent Simple Temporal Problem - MaSTP

The algorithms for solving the STP mentioned in the previous section were devised
in the context of a single agent. In order to use STP to evaluate the schedules of a group
of agents, a central entity should gather all member’s activities and constraints, and solve
the corresponding STP instance. As already discussed in the introduction, this solution
has a series of drawbacks such as: the lack of privacy due to the fact that all the data
has to be sent to the central solver and the obvious performance bottleneck. Multiagent
Simple Temporal Problem (MaSTP) is a version of STP specifically defined for working
with multiple agents.

Informally, we can define the Multiagent Simple Temporal Problem as being com-
posed of n local STP instances, each one assigned to one agent, and a set of constraints
that allow relationships between local instances. Formally, Boerkoel and Durfee in (BOERKOEL;

1Concept taken from object-oriented programming, that refers to a structure in memory that describes
something, e.g, a person, a chair, a data base connection, etc.

17

Z

U

VW

XY

[1
20

; 1
35

] [45; 45]

[30; 40]

[60;∞
]

[−∞; 120]

[360; 360]

Figure 2.3: Mary’s STP instance

DURFEE, 2010) defined the MaSTP’s specification as follows:

• Si = (V i, Ci) is the agent i’s local STP instance;

• V i is partitioned into V i
A which is the set of time point variables agent i is responsi-

ble for assigning and V i
X the set of time point variables known to agent i due to its

involvement in some inter-agent constraint;

• Ci is partitioned into Ci
A the set of intra-agent constraints, i.e. constraints only

between variables in V i
A, and Ci

X the set of inter-agent constraints, i.e. constraints
containing variables in V i

X ;

• M = (V,C) is the MaSTP instance, where V =
⋃

i V
i and C =

⋃
i C

i.

Furthermore, we can partition V i
A into two sets: V i

AP are agent i’s private time points
(which do not appear in V j

X for any agent j) and V i
AS are agent i’s shared time points

(which appear in V j
X for some other agent j). Similarly, we can partition Ci

A into two
sets: Ci

AP is the set of private constraints, or constraints that have at least one endpoint
in the set V i

AP , and Ci
AS is the set of shared intra-agent constraints whose endpoints are

contained within the set V i
AS .

To illustrate the MaSTP, consider the Mary’s scenario (Figure 2.3): Mary wakes up
between 9 a.m. and 9:15 a.m. (U), she works out for 45 minutes (V) and takes 30 to 40
minutes to get ready and walk to work (W). She needs at least one hour to finish a report
and send it to her manager before the meeting with John (X) which as far as she knows
can take up to two hours. After the meeting, Mary will join John and their manager for a
business lunch at 1pm (Y). For the sake of simplicity, we also consider the start of time
represented by the time point Z being 7 a.m.2.

The Figure 2.4 shows a MaSTP instance with Mary and John’s schedule (the bold
constraints are the inter-agent constraints) where we have:

• V John
A = {Z1, A, B, C, D, E}

• V John
AP = {A, B, C}

• V John
AS = {Z1, D, E}

2One can determine a different value for the time point Z as long as when modeling the MaSTP be sure
to set the constraint among all the Z time points accordingly.

18

• V John
X = {Z2, X, Y}

• CJohn
A = {cZ1 A, cA B, cB C, cC D, cD E, cZ1 E}

• CJohn
AP = {cZ1 A, cA B, cB C, cC D}

• CJohn
AS = {cD E, cZ1 E}

• CJohn
X = {cZ1 Z2, cD X, cE Y}

• V Mary
A = {Z2, U, V, W, X, Y}

• V Mary
AP = {U, V, W}

• V Mary
AS = {Z2, X, Y}

• V Mary
X = {Z1, D, E}

• CMary
A = {cZ2 U, cU V, cV W, cW X, cX Y, cZ2 Y}

• CMary
AP = {cZ2 U, cU V, cV W, cW X}

• CMary
AS = {cX Y, cZ2 Y}

• CMary
X = {cZ2 Z1, cX D, cY E}

Once the distributed schedule has been modeled as a MaSTP one can use an algo-
rithm such as D∆P3C (a more technical overview is presented in Chapter 3) to verify and
maintain the schedule consistent through all the agents. Similarly, questions related to
the schedule can be made to a MaSTP instance, for example, one could ask the following
questions given the instance showed in Figure 2.4:

• Is it possible for both John and Mary to satisfy their time constraints?

Z2

U

V

W X

Y

[1
20

; 1
35

]

[4
5
;4

5
]

[3
0
;4

0
]

[60;∞]

[−
∞

;1
2
0
]

[3
6
0
;3

6
0
]

Z1

A

B

CD

E

[−∞
;∞

]

[3
0
;4

5
]

[1
5
;2

0
]

[−∞;∞]

[9
0
;1

2
0
]

[3
6
0
;3

6
0
]

[0;0]

[0;0]

[0;0]

Figure 2.4: MaSTP instance

19

• How does the time constraint that says that Mary needs at least an hour to work on
the report affect the start of the meeting?

• What if the manager changes the lunch time to 11:30 a.m? Is it going to break any
constraint?

• What if John gets stuck in a traffic jam for 30 minutes? Does he need to let Mary
know about it?

The main differences between the MaSTP and the STP are the new constraints that are
added in order to allow the agents to hide their private schedules and coordinate only the
shared activities. It is important to note that the MaSTP is also a STP and it could also be
solved by one of the STP algorithms but by doing so, no advantage from the partitioning
would be taken for improving privacy, flexibility and performance.

Even though the time complexity of D∆P3C to verify a static MaSTP instance is
O(|∆|) (∆ is the set of triangles in the graph) it does not perform well in environments
where constraints are constantly changing due to the fact that new messages need to be
sent every time. The next section talks about the MaTDP which address exactly this issue.

2.4 Multiagent Temporal Decoupling Problem - MaTDP

The Multiagent Temporal Decoupling Problem adds new constraints C∆ to a MaSTP
instance M , guaranteeing that each agent i can execute its local STP instance S inde-
pendently of the other agents without the risk of running into inconsistency (PLANKEN;
WEERDT; WITTEVEEN, 2010). Since the local STPs are completely decoupled due to
the new C∆ constraints, no coordination with other agents is required as long as the C∆

constraints are satisfied. This is the main difference from the regular MaSTP, where the
agents shared constraints and were responsible to maintain them, thus the need to send
messages to coordinate every time something changes in the local STPs.

Therefore, the MaTDP is defined as, for each agent i, finding a set of constraints Ci
∆

such that if Si
∆ = (V i, Ci ∪ Ci

∆), then {S ′1, S ′2, ..., S ′n} is a temporal decoupling of
MaSTP M (BOERKOEL; DURFEE, 2011).

Z2

U

V

W X

Y

[1
20

; 1
35

]

[4
5
;4

5
]

[3
0
;4

0
]

[60;∞

[−
∞

;1
2
0
]

[3
6
0
;3

6
0
]

Z1

A

B

CD

E

[−∞
; 225]

[3
0
;4

5
]

[1
5
;2

0
]

[−∞;∞]

[9
0
;1

2
0
]

[3
6
0
; 3

6
0
]

[−
∞

; 2
7
0
] [−

∞
; 2

7
0
]

Figure 2.5: MaTDP instance

20

An example of a temporal decoupling is displayed in Figure 2.5, where John and
Mary have agreed to start the meeting at most at 11:30 a.m by adding a new temporal
constraint between the meeting and Z (dashed lines). This new constraint allows both
agents to process its local STP independently of each other and communication will not
be required as long as both local STPs remain consistent.

Finding a temporal decoupling is the key of the MaTDP, mainly because after the
decoupling is found the agents need only to solve their own private STP instances with
one of the algorithms shown above.

The questions that an instance of the MaTDP can answer are the same as those for the
MaSTP, the difference is that due to the new constraints the communication among the
agents is reduced, leading to better performance in dynamic environments where changes
occur constantly. For instance, a traffic jam or an electric power outage that might prevent
users for strictly following the schedule do not necessarily lead to the need of letting all
the users know about them through update messages, unless one of the Ci

∆ constraints can
not be satisfied anymore. Then, agents may need to reschedule or even cancel the activity.

As mentioned in Chapter 1, the D-P3C is the state-of-the-art algorithm to solve the
MaTDP which naturally evolved from the D∆P3C. The authors showed that the D-P3C
decreased both the computational effort and the number of messages when compared to
the D∆P3C. It is important to note, though, that the MaTDP and the MaSTP are es-
sentially the same problem, with the same input and output, the difference lying on the
techniques each one employs to solve the problem.

The problem that remains is that whenever an instance is inconsistent, being a STP,
MaSTP or a MaTDP, is up to the user to make changes to the schedule so it can be con-
sistent again. The algorithms themselves are unable to fix inconsistencies like conflicting
activities. For example, if Mary had already plans for lunch by the time John invited her,
the algorithms would have found an inconsistency in the schedule and would finish its
execution, leaving the schedule inconsistent until John removes the lunch activity. Alter-
natively, John could try adding it again in a different time, which could either work or
render the schedule inconsistent one more time. This cycle could happen several times
until the activity can be added to the schedule.

The next chapters present the algorithms to solve both the STP and MaSTP and a new
algorithm we developed to address inconsistencies requiring minimal user input. With
this new algorithm we prevent inconsistencies by finding compatible times beforehand,
thus avoiding the try and error scenario described above.

21

3 ALGORITHMS

In this section we show the algorithms known in the literature to solve the STP and
the MaSTP. We present the implementation and discuss the details of each solution, the
∆P3C for the STP and the D∆P3C for the MaSTP. We choose not to discuss the imple-
mentation of the D-P3C because, as highlighted in the previous chapter, both the MaSTP
and the MaTDP have the same goal. Hence, to avoid overwhelming the reader we focus
only on the MaSTP. For further information on the MaTDP and D-P3C please refer to
(BOERKOEL; DURFEE, 2011).

The contribution of this dissertation is focused on addressing the inconsistencies when
adding new activities to a multiagent schedule and not on proposing a new algorithm for
solving the STP or the MaSTP. The content of this chapter can then be skipped by those
who are already familiar with these algorithms.

3.1 Solving the STP

As mentioned in Chapter 2 the STP consistency depends on its associated distance
graph having no negative cycles and one way of determining if a distance graph has nega-
tive cycles is by calculating its minimal network. The minimal network can be calculated
through path consistency (PC) (DECHTER, 2003), which works by computing the tight-
est possible path, i.e., the path with the shortest distance possible, between every pair
of time points with an all-pairs-shortest-path algorithm such as Floyd-Warshall (COR-
MEN; LEISERSON; RIVEST, 1990). The minimal network obtained is then checked
for consistency by validating that there are no negative cycles, that is, ensuring that
wij + wji ≥ 0 ∀i 6= j. The worst case of a PC algorithm can be O(|V |3).

In Figure 3.1 we show the result of applying the Floyd-Warshall algorithm on the STP
instance of Figure 2.2. It is worth mentioning that with the minimal network we are able
to say that John needs to wake up between 7 a.m. and 10:45 a.m., we also know that the
meeting with Mary is going to start any time between 11 a.m. and 11:30 a.m., and the
earliest John wakes up the more time he will have to do the paperwork.

In (XU; CHOUEIRY, 2003), Xu and Choueiry were the first to recognize that partial
path consistency (PPC)1 is sufficient for solving the STP, and they proposed the algo-
rithm ∆STP. PPC is defined for chordal (or triangulated) graphs. A graph is chordal if
each cycle of size greater than three contains a chord, i.e. an edge connecting two non-
adjacent vertices in the cycle (PLANKEN; WEERDT; KROGT, 2008). One graph can
be made chordal by the process of graph triangulation. Depending on constraint struc-

1The authors discovered that one need not a complete graph to compute the shortest path between every
node, thus the name partial path consistency.

22

Z

A B

C

DE

[0
; 2

25
]

[45; 270]

[360; 360]

[30; 45]

[45; 270]

[1
3
5
;3

6
0
]

[15; 20]

[1
5
;2

4
0
]

[1
05

; 3
30

]

[0
; 2

25
]

[90; 315]

[90; 120]

[30; 255]

[240; 270]

[45; 65]

Figure 3.1: The minimal network of the distance graph of Figure 2.2

ture, the number of edges in the triangulated graph may be much smaller than the number
of edges in the complete graph (required for PC) (BOERKOEL; DURFEE, 2010). If a
user is interested in learning the tightest bounds between two time point variables that are
not mutually constrained (and thus have no edge in the distance graph), the scheduling
agent can add this edge explicitly prior to triangulation to ensure its inclusion in the STP
calculation. The ∆STP then processes and updates a list of every potential inconsistent
triangles from the triangulated graph.

Instead of a simple list, the algorithm P3C (PLANKEN; WEERDT; KROGT, 2008),
processes the triangles in a systematic order2, resulting in a improved performance over
∆STP. While ∆STP’s worst case is O(|∆2|), the P3C’s is O(|∆|), with ∆ being the set
of triangles in the graph.

Z

A

BC

DE

[0
; 2

25
] [30; 45]

[15; 20]

[0; 225]

[90; 120]

[360; 360]

Figure 3.2: PPC applied to the distance graph of Figure 2.2

In (BOERKOEL; DURFEE, 2010) the authors introduced an algorithm for solving
the STP in a centralized fashion called ∆P3C as an improvement of the P3C where the
input graph does not need to be triangulated, instead, the triangulation will be done on the
fly while maintaining the asymptotic behavior of O(|∆|). The algorithm takes, as input,

2The order in which the triangles are processed is based on the order the triangles are created during the
graph triangulation

23

a STP instance and the subset of time points to process 3, and returns whether or not the
instance is consistent. There are two main differences between the ∆P3C and the P3C,
(1) the former does not need the STP instance to be triangulated, instead it triangulates
the STP on the fly, and (2) the ∆P3C does not take a time point processing order as input,
just the subset of time points from where it heuristically chooses the next one to process 4.

Algorithm 1 ∆P3C-1 (BOERKOEL; DURFEE, 2010)
1: procedure ∆P3C-1(S, Ve)
2: ∆← new stack of triangles
3: while Ve ∩ V 6= {} do
4: vk ← SELECTNEXT(Ve)
5: V ← V − vk
6: for all vi, vj ∈ N(vk), i 6= j do
7: E ← E ∪ JOINNEIGHBORS(vk, vi, vj)
8: return INCONSISTENT if (wij + wji < 0)
9: ∆.push(vi, vj , vk)

10: end for
11: end while
12: V ← V ∪ Ve

13: return ∆
14: end procedure

JOINNEIGHBORS(vk, vi, vj): Creates edges, eij and eji, if they do not already exist, ini-
tializing the weights to ∞. Then tightens the bounds of these edges using the rule wij ←
min(wij , wik, wkj). Returns the set of any edges that are created during the process.

Algorithm 2 ∆P3C-2 (BOERKOEL; DURFEE, 2010)
1: procedure ∆P3C-2(∆)
2: while ∆.size() > 0 do
3: t← ∆.pop()
4: TIGHTENTRIANGLE(t)
5: end while
6: end procedure

TIGHTENTRIANGLE(vi, vj , vk): Tightens any of the triangle edges that need to be tightened
using the rule wij ← min(wij , wik, wkj). Returns the set of any edges that are tightened during
the process.

The ∆P3C, like P3C, operates in two stages: ∆P3C-1 (Algorithm 1) and ∆P3C-2 (Al-
gorithm 2). Roughly, ∆P3C-1 heuristically chooses time points through SELECTNEXT
procedure (line 4) in order to propagate its temporal constraints to the adjacent time points
(line 6). Then, for each triangle, it creates and tightens new fill edges as needed (line 7)
and returns a stack containing all the triangles that were added in order to calculate the
PPC. With the stack as input, ∆P3C-2 then re-tightens each triangle (line 4).

3In the general case the subset is the whole set of time points, meaning that all the time points will be
processed.

4The heuristic selection of time points must lead to the addition of the fewest fill edges possible. In
(BOERKOEL; DURFEE, 2010), the heuristic consist of prioritizing private time points over shared ones.

24

Figure 3.2 shows the resulting graph after after applying ∆P3C on the STP instance
presented in Figure 2.1. Due to the fact that when calculating the PPC all the triangles
are tightened the resulted network has also the tightest possible constraints. For instance,
John had to wake up sometime after 7:30 a.m., the constraint initially was [−∞,∞] and
after running the ∆P3C we know that John needs to wake up at most 225 minutes after
7:30 a.m. [0, 225] to be able to complete all his tasks on time.

The ∆P3C could also be used to solve the MaSTP, however, this requires a central
agent with access to everyone’s schedule in order to process and propagate all the con-
straints. In the next section, we show that the ∆P3C-1 is part of the D∆P3C, it is used as
a subroutine to process the local STPs.

3.2 Solving the MaSTP

The D∆P3C (Algorithm 3) is a fully distributed algorithm that solves the MaSTP. In
its implementation each agent i starts by applying the ∆P3C-1 on its local STP and set
of private time points V i

AP (line 2). If it is consistent, in order to process their shared
time points V i

AS , the agent selects a time point vk and computes what edges to add and/or
update. The agent i then tries to obtain write permission on the set of shared time points
and theirs constraints (line 14). First, the agent must confirm that no neighbors of vk
have been processed (line 15). If not, the agent can commit the constraint changes (lines
16-19). Otherwise, it extracts all updates (line 21) to any affected edges to review its
local STP and abandons the changes already calculated. After all time points have been
processed, the agent sweeps the stack tightening and broadcasting each triangle (line 27
to 34), during this process the agent can also receive notifications from other agents.

Z2

U

V

W X

Y

[1
20

; 1
35

]

[4
5
;4

5
]

[3
0
;4

0
]

[60; 75

[9
0
;1

0
5
]

[3
6
0
;3

6
0
]

Z1

A

B

CD

E

[0; 225]

[3
0
;4

5
]

[1
5
;2

0
]

[0; 225]

[9
0
;1

0
5
]

[3
6
0
;3

6
0
]

[0; 0]

[0; 0]

[0; 0]

Figure 3.3: PPC applied to the distance graph of Figure 2.4

The result of applying D∆P3C on the MaSTP instance of Figure 2.4 is displayed in
the Figure 3.3. Note that, with the new constraints, the meeting between Mary and John
(X and D) must finish in at most 105 minutes due to the time Mary needs to finish the
report (constraint between W and X).

As mentioned before, users are constantly changing their schedules, adding new pri-
vate and shared activities, canceling and updating meetings as the days go by, and every
time a change happens they need to reevaluate the private STP and send the new con-

25

straints to everyone involved in the shared activities so the MaSTP instance can remain
consistent. This is tackled by the Algorithm 3 inside the while loop on line 27.

Algorithm 3 D∆P3C (BOERKOEL; DURFEE, 2010)
1: procedure D∆P3C(Si)
2: ∆i ← ∆P3C-1(Si, V i

AP)
3: return INCONSISTENT if ∆P3C-1 does
4: V i

E ← V i
AS .copy()

5: while V i
E ∩ V i 6= {} do

6: Ẽi ← Ei.copy()
7: ∆̃i ← ∆i.copy()
8: vk ← SELECTNEXT(V i ∩ V i

E)
9: for all vi, vj ∈ N(vk), i 6= j do

10: Ẽi ← Ẽi ∪ JOINNEIGHBORS(vk, vi, vj)
11: return INCONSISTENT if (wij + wji < 0)
12: ∆̃i.push(vi, vj , vk)
13: end for
14: o← REQUESTPROCESSINGORDERLOCK()
15: if (o ∩N(vk) = ∅)) then
16: o.append(vk)
17: V i.remove(vk)
18: Ei ← Ẽi

19: ∆i ← ∆̃i

20: else
21: Si ← UPDATEDEDGES(o ∩N(vk))
22: end if
23: RELEASEPROCESSINGORDERLOCK(o)
24: end while
25: V i ← V i ∪ V i

E

26: U ← new updated edge stack
27: while ∆i.size() > 0 or PENDINGEDGEUPDATES do
28: U .push(RECEIVEEDGEUPDATES())
29: ∆i.INSERTADJACENTTRIANGLES(U)
30: U .clear()
31: t← ∆i.pop()
32: U .push(TIGHTENTRIANGLE(t))
33: BROADCASTANYSHAREDEDGEUPDATES(U)
34: end while
35: return Si

36: end procedure

INSERTADJACENTTRIANGLES(U): Updates the triangle stack to include any (externally or
internally) updated triangle adjacent to updated edges (except the triangle that caused the update)
to its specified location in the triangle stack ∆i.
N(vk): Returns the neighbors of vk.

Now, imagine agent i wants to add a new shared activity with agents j and k. Since
agent i does not know anything about agent j’s and agent k’s private schedule, agent i
would have to send as many updates as it takes until the MaSTP is consistent. In other
words, agent i would have to request the user to input a new time for the activity every time
the schedule is inconsistent and rerun the D∆P3C, wasting processing power, network

26

resources and mainly user’s time. It gets worse as the number of agents involved in the
activities grows. In the next chapter we show how we addressed this problem.

27

4 ASYNCHRONOUS TIME FINDER

In this section we show the Asynchronous Time Finder (ATF) and we explain how
it deals with inconsistencies when adding new shared activities, an issue which is not
addressed by any algorithm we have discussed so far.

This issue is elucidated in this following scenario: Jane, Matt and Annie are college
classmates sharing several classes during the week. They need to meet some time in the
next few days to work on a paper they must submit by the end of the month. They don’t
know about each other’s activities after the classes. Matt is responsible for finding a time
that works for everybody.

When using one of the previous algorithms, like the D∆P3C, Matt would have to try
and add the activity several times with different times until nobody’s agenda is incon-
sistent. This is impracticable in a multiagent environment where communication is not
cheap and we want to avoid human interaction where it is not really needed. In cases
like this it would be much better if some assistance were provided for Matt to easily find
compatible time slots instead of just failing.

Our solution consists in Matt sending out his available time slots to the other invitees.
As soon as the others receive Matt’s request they check if there is an intersection between
their time slots and Matt’s. When a time slot is available for all participants the meeting
can be added as a shared activity to the MaSTP instance. If no compatible time is found,
Matt may need to extend the period in which the available times are obtained (e.g from
the current week to the whole next month). Even though this requires Matt to manually
specify a new time period, we expect that to happen rarely. In other words, the number of
times Matt needs to interact with the system is greatly reduced.

Figure 4.1 shows the workflow of the ATF when used in the scenario described above.
During the first step (1) the MaSTP is composed of the private STP instances of Matt,
Jane and Annie. The next step (2) involves Matt creating the new shared activity. Matt
sends the invitation to Jane and Annie and waits for either a confirmation or a decline due
to incompatible times (3), in case of the latter (4), Matt chooses a new time and sends
new invitations for both Jane and Annie until they all reach an agreement (5). In the last
step (6) the new activity is added as a shared activity to each STP instance and it’s now
managed by the MaSTP algorithm.

Our algorithm is based on the Asynchronous Backtracking (ABT) (YOKOO et al.,
1998), that was presented as an alternative for solving the Distributed Constraint Satis-
faction Problem (DCSP) (YOKOO et al., 1998) where agents run concurrently and asyn-
chronously exchanging variable values to achieve a stable state where all the known con-
straints of the environment are satisfied. Our problem can be easily seen as DCSP, where
the people involved in a shared activity (agents) have to reach an agreement (respect con-
straints) regarding the time of the activity (variables).

28

Figure 4.1: ATF workflow

29

The following sections revisit the Constraint Satisfaction Problem (CSP) and the
Asynchronous Backtracking (ABT) in order to give the reader the knowledge necessary
to understand how the Asynchronous Time Finder works.

4.1 Constraint Satisfaction Problems

Formally, a Constraint Satisfaction Problem (CSP) is defined as a triple (X,D,C),
where X is a set of variables {x1, ..., xn}, D is a domain of values {D1, ..., Dn}, and
C is a set of constraints {c1, ..., cn} (YOKOO et al., 1998). A CSP consists of finding
an assignment of values to all variables while satisfying all constraints. A constraint is
defined by a predicate. That is, the constraint ck(xk1, ..., xkj) is a predicate that is defined
on the Cartesian product Dk1 × Dkj . This predicate is true iff the value assignment of
these variables satisfies this constraint.

A classic example of a CSP is the eight queens puzzle, where a position on a 8x8
chessboard must be found for each queen, such that none of them threat each other. Thus,
a solution requires that no two queens share the same row, column, or diagonal.

The variable set X contains the position of each queen and the domain of the vari-
ables D represents all possible locations on the chessboard, i.e., D = {(1, 1), ..., (8, 8)}.
The constraints set C define the no-threat rule, for example, for subset X12 = (x1, x2)
which contains the variables of the first two queens, the constraint subset would be
C12 = {[(1, 1), (2, 3)], [(1, 1), (2, 4)], ...}, and all the other valid assignments of x1 and
x2 where they are not threating each other.

4.2 Distributed Constraint Satisfaction Problems

A DCSP is a CSP in which the variables and constraints are distributed among auto-
mated agents (YOKOO et al., 1998). In order to define the DCSP, the authors assumed:

• Agents communicate by sending messages. An agent can send messages to other
agents iff the agent knows the addresses of the agents;

• The delay in delivering a message is finite, though random. For the transmission
between any pair of agents, messages are received in the order in which they were
sent.

Each agent owns a local variable and it is the agent’s responsibility to maintain it. The
agent’s variable may be constrained by local and shared constraints (inter-agent con-
straints) and both must be respected. Formally, there exist m agents 1, 2, ...,m. Each
variable xj belongs exactly to one agent i (represented by belongs(xj, i)). The inter-
agent constraint ck is known to all agents whose variables are influenced by the constraint
(known(ck, i)). Thus, the DCSP is solved if the following is true:

• ∀i, ∀xj where belongs(xj, i), the value of xj is assigned to dj , and ∀l, ∀ck where
known(ck, l), ck is true under the assignment xj = dj .

4.3 Asynchronous Backtracking

The ABT is an algorithm to solve the DCSP. The DCSP is represented as a directed
graph, where the variables are nodes and the constraints are edges. Since each agent has
only one variable a node can also be seen as the agent itself. An edge is directed from

30

the value-sending agent to the constraint-evaluating agent. In (YOKOO et al., 1998) an
example of DSCP graph is shown and it is illustrated on Figure 4.2, where there are three
agents, x1, x2, x3, with variable domains {1, 2}, {2}, {1, 2}, respectively, and constraints
x1 6= x3 and x2 6= x3.

The algorithm then consists in each agent instantiating its variables in a concurrent
fashion and sending them to other agents that are connected by outgoing edges. After that,
each agent waits for incoming messages and responds them according to the procedures
described in Algorithm 4.

Each agent has its own set of the other agents’s current values (that are connected by
incoming edges). This set is defined as the agent’s agentview, which is composed by
pairs (xk, dk), where xk is the agent’s identifier and dk is the agent’s current value.

The agents can receive two kinds of messages: One kind is an ok? message, that
is sent from an agent willing to check if its variable is compatible with the destination
agent’s constraints (line 1). Every time an agent receives an ok? message, it adds the
source agent’s value to its agentview (line 2) and checks whether its currentvalue is
consistent with the agentview (line 3).

The other kind of message is a nogood message sent by an agent whose constraints
were not satisfied by the destination agent’s current value (line 5). As soon as the agent
receives a nogood message it adds the nogood set passed on the message to its nogoodlist
(line 6). When an agentview is not compatible it is called a nogood, and the nogoodlist
contains every nogood the agent has received in order to avoid infinite looping 1. If the
nogood contains an agent that is not currently connected to the agent that received the
message, a request is sent to this new agent so the connection can be made. This new
connection will allow both agents to exchange messages and negotiate their values (line
8).

An assignment is consistent with the agentview if all constraints the agent evaluates
are true under the value assignments described in the agentview and currentvalue, and
also if the following holds for all nogood in the set nogoodlist: nogood /∈ (agentview∪
(xi, currentvalue)). If the assignment is not consistent with the agentview, the agent
tries to change the currentvalue so that it will be consistent with the agentview (line
19). If the agent is not able to find a value consistent with its current agentview the
backtracking takes place (line 20).

The backtracking happens every time an agent xi does not find any valid assignment
of its currentvalue and then notifies the agent with the lowest priority xj that is involved
in the nogood (line 28). The purpose is that xj might have other values that will make xi

1By maintaining a nogoodlist, the agent can avoid choosing a value that caused an inconsistency before,
thus preventing it from infinite looping.

x1

{1; 2}

x3

{1; 2}

x2

{2}
6= 6=

Figure 4.2: Example of a DCSP graph

31

Algorithm 4 ABT
1: procedure RECEIVE(ok?, (xj , dj))
2: add (xj , dj) to agentview
3: CHECKAGENTVIEW
4: end procedure
5: procedure RECEIVE(nogood, xj , nogood)
6: add nogood to nogoodlist
7: for all xk ∈ nogood, xk /∈ NEIGHBORSIN(xi) do
8: request xk to add an edge from xk to xi
9: add (xk, dk) to agentview

10: end for
11: oldvalue← currentvalue
12: CHECKAGENTVIEW
13: if oldvalue = currentvalue then
14: send (ok?, (xj , currentvalue)) to xj
15: end if
16: end procedure
17: procedure CHECKAGENTVIEW
18: if agentview and currentvalue are not consistent then
19: if no value in Di is consistent with agentview then
20: BACKTRACK
21: else
22: select d ∈ Di where agentview and d are consistent
23: currentvalue← d
24: send (ok?, (xi, currentvalue)) to NEIGHBORSOUT(xi)
25: end if
26: end if
27: end procedure
28: procedure BACKTRACK
29: nogoods← { V | V = inconsistent subset of agentview}
30: if an empty set is an element of nogoods then
31: broadcast to other agents there is no solution
32: terminate
33: end if
34: for all V ∈ nogoods do
35: select (xj , dj) where xj has the lowest priority in V
36: send (nogood, xi, V) to xj
37: remove (xj , dj) from agentview
38: end for
39: CHECKAGENTVIEW
40: end procedure

NEIGHBORSOUT(xi): Returns all agents xi is connected to.
NEIGHBORSIN(xi): Returns all agents connected to xi.

consistent with one of its possible values. If xj also does not have any valid assignment
it notifies the lowest priority agent in its nogood and the backtracking goes on until some
agent find a new valid assignment. If at some point no valid assignment can be found
whatsoever the execution is terminated with a fail state.

32

The authors of ABT showed that if there exists a solution, the algorithm reaches a sta-
ble state where all the variable values satisfy all the constraints and all agents are waiting
for an incoming message 2. Thus, the algorithm is complete, in that it finds a solution if
one exists and terminates with failure otherwise.

4.4 Asynchronous Time Finder

The algorithm Asynchronous Time Finder (ATF) presented in this section is based on
the ABT plus a few mechanisms to deal with the assumptions we make in order to model
the problem described in the previous section as a DCSP. We assume that:

• One single agent is the owner of the activity, meaning that it is responsible for
creating the activity and sending the invitations to all agents involved;

• The invitees (agents who are invited to the activity) only exchange their values with
the owner of the activity;

• If one invitee can’t find any compatible time it notifies only the owner;

• The owner knows when all invitees agreed with a given time or if any or some of
them have declined the invitation. Thus, at the end, the owner let the others know
if the activity is confirmed or canceled.

We divided the algorithm in three phases: activity creation, time negotiation and ac-
tivity termination (confirmation or cancellation).

During the first phase the agent who owns the activity sends a create message to every
invitee passing the duration d of the activity and a set S with all possible start times.

Upon receiving the invite the agents execute the procedure shown in Algorithm 5 (line
1), where the owner of the activity is set and the available values set D is calculated based
on the intersection of the agent’s available time D and the times set S sent by the owner
of the activity.

The second phase is fundamentally led by the exchange of ok? and nogood messages
between the invitees and the owner until everybody agrees with a time or someone give
up due to no compatible time available.

The third phase consists of determining when the execution is completed. It can hap-
pen as soon as the owner receives a decline from an invitee 3 or when everybody has
agreed with the time of the activity. In order to determine if every invitee is synchronized
the owner sends a snapshot message to the agents and waits for everyone to respond.
The snapshot message asks the agents’ current value (line 5) which is store in the own-
ers’ snapshotview. If everyone responds with the same value the owner then sends a ok!
message to confirm the activity, if there is someone with a different value, the owner waits
for a random period of time and re-sends the snapshot messages. A maximum number
of attempts can be set to avoid infinite waiting.

An example of the ATF execution with the scenario discussed in the beginning of the
chapter is shown in Figure 4.3. (1) Matt decided that 3 hours is enough for the meet-
ing, and he is available every Monday and Wednesday from 1pm to 6pm, thus the mes-
sage create has the values d = 3 and S = {Mon1pm,Mon2pm,Mon3pm,Wed1pm,

2For our purposes this is too vague because we need strong evidence that the algorithm is finished. We
address this in our algorithm where we know when the execution terminated successfully

3This behavior can be improved by adding optional invitees to the algorithm where the meeting can
happen even if one or more of the optional invitees can’t make it.

33

Algorithm 5 ATF
1: procedure RECEIVE(create, xj , d, S)
2: owner = xj
3: D = CALCULATEAVAILABLETIMES(S, d, D)
4: end procedure
5: procedure RECEIVE(snapshot?)
6: send (snapshot!, xi, currentvalue) to owner
7: end procedure
8: procedure RECEIVE(snapshot!, xj , d)
9: add (xj , d) to snapshotview

10: if INVITEES() ⊂ AGENTS(snapshotview) then
11: if ∀(xj , dj), (xk, dk) ∈ snapshotview, di = dj then
12: broadcasts (ok!) to AGENTS(snapshotview)
13: else
14: wait
15: CHECKACTIVITY()
16: end if
17: end if
18: end procedure
19: procedure RECEIVE(ok!)
20: send currentvalue to owner
21: end procedure
22: procedure CHECKACTIVITY
23: send (snapshot?) to INVITEES()
24: end procedure

CALCULATEAVAILABLETIMES(S, d, D): Returns the set of available times based on the in-
tersection of D and S, the duration d of the activity is also taken into account.
INVITEES(): Returns all agents involved in the current activity being negotiated.
AGENTS(view): Returns the set of agents present in the view.
VALUES(view): Returns the set of values present in the view.

Wed2pm,Wed3pm}. Upon receiving the message, the agents responsible for Jane and
Annie’s schedule calculate the set of available times D. (2) After sending the create
message, Matt’s agent sends an ok? message to both Jane and Annie along with the pro-
visional start time Mon1pm chosen arbitrarily by Matt. (3) Annie’s agent is OK with
Mon1pm and sets its current value d to Mon1pm. Jane’s agent does not have Mon1pm
in its D so it sends a nogood message back to Matt. (4) Matt’s agent choose another time
and send a new ok? message with d = Mon2pm. Both Jane and Annie can make it to
Mon2pm. (5) After some time without receiving a nogood message, Matt’s agent sends
a snapshot? message to check the current values of Jane and Annie. (6) Jane and Annie’s
agent reply the snapshot? message with their current values. (7) Matt’s agent knows that
both are OK with Mon2pm so it sends an ok! message to confirm the activity.

At the end of the ATF execution, the agents can then add the activity to their schedules
without breaking the consistency of the MaSTP. Once the activity is added it is managed
by the algorithm that is being used by the scheduling system (D∆3PC for example). It is
important to note that the ATF is independent of the algorithm that manages the schedule,
its goal is to find a compatible time among several distributed intervals of time maintained

34

 S = Monpm, Monpm,
 Monpm, Wedpm,
 Wedpm, Wedpm

create
duration =

duration =
 S = Monpm, Monpm,
 Monpm, Wedpm,
 Wedpm, Wedpm

create

d =
agentview =

Matt

D = Monpm,
 Thupm

d =

Jane

D = Monpm,
 Monpm

d =

Annie

 d = Monpm
ok

 d = Monpm
ok

d = Monpm
agentview =

Matt

D = Monpm,
 Thupm

d =

Jane

D = Monpm,
 Monpm

d = Monpm

Annie

nogood
d = Monpm
agentview =

Matt

D = Monpm,
 Thupm

d =

Jane

D = Monpm,
 Monpm

d = Monpm

Annie

 d = Monpm
ok

 d = Monpm
ok

D = Monpm,
 Thupm

d = Monpm

Jane

D = Monpm,
 Monpm

d = Monpm

Annie

d = Monpm
agentview =

Matt

snapshot

snapshot
d = Monpm
agentview =

Matt

D = Monpm,
 Thupm

d = Monpm

Jane

D = Monpm,
 Monpm

d = Monpm

Annie

snapshot
d = Monpm

snapshot
d = Monpm

D = Monpm,
 Thupm

d = Monpm

Jane

D = Monpm,
 Monpm

d = Monpm

Annie

d = Monpm
agentview =
Jane : Monpm,
Annie : Monpm

Matt

ok

ok

D = Monpm,
 Thupm

d = Monpm

Jane

D = Monpm,
 Monpm

d = Monpm

Annie

d = Monpm
agentview =
Jane : Monpm,
Annie : Monpm

Matt

Figure 4.3: ATF’s execution flow example

by several different agents and then hand it to the scheduling system. ATF does not know
about the MaSTP structure and how the constraints are being coordinated, ATF is, at the
end of the day, an extension that can be used to reduce the user interaction when the
system already has all the information it needs.

35

5 A SCHEDULING SYSTEM USING ATF

As a way to evaluate our algorithm performance and usefulness in a scheduling sys-
tem, we developed a prototype of a system that allows multiple users to manage private
and shared activities. This chapter explains the pieces of the system, its design and im-
plementation and discuss the challenges of developing a multiagent system.

5.1 Design

We started the design of our prototype by assuming a few things about how the users
would like to use the system:

• Users can be anywhere in the world;

• Users are not always connected, they might miss invitations and schedules changes.

• As soon as users are connected their schedule needs to be updated;

The first challenge was how to design a reliable communication channel that could
support these requirements. Mainly, how to deal with the possibly high churn rate, where
it is not guaranteed that a given user will be available to receive a message at some given
moment. We, then, decided to create a message server that is accessible on the internet
through which users would exchange messages. It is important to mention that this server
is only responsible for forwarding messages, it will not process or maintain any data about
the users’s schedule.

This message server can eventually become a bottleneck as the number of agents grow.
For the purpose of this prototype one server is enough, but for a real world system more
than one message server might be needed so the load of the messages can be distributed.

Each user will run a client program (agent) that is responsible to maintain their local
STPs through the D∆P3C and to find time slots for shared activities using the ATF. All
the exchange of messages needed by both algorithms must occur via the message server.
Whenever a user is online, the agent must establish a connection with the message server
to fetch any messages that might have arrived when it was offline in order to keep the
local STP up to date. The client program will be the interface to the system and will allow
users to add, remove and change activities.

5.2 Implementation

This section explains in a technical level how both the message server and the agent
application were implemented.

36

5.2.1 Messages server

Since our system runs on the internet, HTTP is the protocol that allows all the mes-
sages to be exchanged. The message server is essentially an HTTP server that maintains
a connection map of agents1 and websockets (WANG, 2013), which are channels over a
TCP connection that allow full-duplex communication between the agent and the mes-
sage server. Once the agent connects to the system, a websocket connection is established
and the agent starts receiving and sending messages.

We chose to implement the message server using node.js (TEIXEIRA, 2012) and the
websocket library socket.io (RAI, 2013) due to the short learning curve, mainly because
of the amount of documentation and examples that are available, and also due to the fact
that node.js uses an event-driven, non-blocking I/O model, that makes it well suited for
data-intensive real-time applications, filling the needs of our system.

Algorithm 6 Message Server
1: var io = require(’socket.io’).listen(80);
2:
3: var map = { };
4:
5: io.sockets.on(’connection’, function (socket) {
6: socket.on(’login’, function (data) {
7: if (validateAgent(data.id, data.password)) {
8: map[data.name].socket = socket;
9: sendPendingMessages(data.name, socket);

10: }
11: });
12:
13: socket.on(’logout’, function (data) {
14: map[data.name] = undefined;
15: });
16:
17: socket.on(’message’, function (msg) {
18: if (map[msg.to] != undefined) {
19: map[msg.to].socket.emit(’message’, { ’msg’ : msg });
20: } else {
21: savePendingMessage(msg);
22: }
23: });
24: });

Algorithm 6 shows a snippet of the message server code. It starts by defining a de-
pendency to socket.io, opening port 80 for incoming connections (line 1), and declaring
an empty map (line 3). The callback function declared on line 5 is called every time a
new websocket connection is made, inside of it, callbacks for login (line 6), logout (line
13) and message (line 17) are declared in the same context as the websocket. After es-
tablishing a new connection, the agent must send a login message with its credentials, the
server will validate them and add the agent and the websocket to the connection map. At

1The agent is identified by a unique id that is assigned when the user is added to system.

37

User ATF D∆P3C Message Server

findSharedTime()

negotiateTimes()

LoopLoop

return
addSharedActivity()

broadcastUpdates()

return

Add new shared activityAdd new shared activity

Figure 5.1: Add new shared activity sequence diagram.

this time, the server goes through the messages that could not be delivered before to see
if there are pending messages to this agent. Whenever an agent wants to send messages
it must send a message message with the fields from, to and content, which will be for-
warded to the destination agent, if available, or stored as a pending message otherwise. In
order to gracefully exit the system the agent can send a logout message. To avoid main-
taining stale data into the connection map the message server sends health checks every
minute and removes agents after three consecutive unsuccessful checks.

5.2.2 Client application

The client implements both the D∆P3C and the ATF and integrates them with the
websocket connection channel, so all the messages are sent via the message server.

The Figure 5.1 is the sequence diagram that shows the client workflow when adding a
new shared activity. On the client application, the user selects to add a new shared activity,
the client then asks the ATF to find a compatible time between all invitees. ATF starts its
execution as described in section 4 and negotiates the times with the other agents through
the message server. Once ATF finds a compatible time it returns it to the client that asks
the D∆P3C to add the new activity with the time found by the ATF.

The user interface that allows users to interact with the system by managing activities
is shown in Figure 5.2 with an example of how Matt’s schedule would look like. College
classes in the mornings, working three afternoons a week, piano classes on Mondays from
4 pm to 6 pm and studying on Wednesdays from 4 pm to 6 pm. A weekly view of the
calendar is presented to the user where the blue boxes represent activities and the grey
ones represent available time slots.

In order to add new activities the user has two options: to inform the start and end
time or to inform the duration of the activity as shown in Figure 5.3. The system behaves

38

Figure 5.2: User interface: Calendar view

differently based on the option chosen, the former tells the system that the user wants the
activity to happen at an specific time, it may fail if there is a conflicting activity already
in place. The latter tells the system to find any time slots available, it also can fail if there
is no available time slots. The user can also inform a list of invitees to the activity being
added, this will trigger the ATF before adding the activity to the local STP through the
D∆P3C. If no invitees are listed, the activity can be added directly to the local STP.

The client application was implemented as a web page using HTML and Javascript,
taking advantage of the fact that socket.io also provides a client library for websockets.
Algorithm 7 shows a snippet of the client code. It starts by specifying where the socket.io
library is located (line 1), then it connects to the message server (line 3) and once the
connection is made a login message is sent. Every time ATF or D∆P3C wants to send
a message to another agent the function sendMessage() (line 6) is called. The agent can

Figure 5.3: User interface: Add new activity

39

receive messages related to both ATF or D∆P3C (line 10), consequently, the code needs
to check the message type every time it receives a new message so it can redirect the
message to the correct handler.

Algorithm 7 Client Application
1: <script src="/socket.io/socket.io.js"> </script>
2: <script>
3: var socket = io.connect(’http://messageserver.com’);
4: socket.emit(’login’, { ’id’ : id, ’password’ : password });
5:
6: function sendMessage(agent, content) {
7: socket.emit(’message’, { ’from’ : id, ’to’ : agent, ’content’ : content });
8: });
9:

10: socket.on(’message’, function (msg) {
11: if (msg.content.type == ’ATF’) {
12: ATF.handleMessage(msg);
13: } else {
14: D∆P3C.handleMessage(msg);
15: }
16: });
17: </script>

The system is functional and we were able to test it with some crafted examples and
also with some randomly generated problems. In the next section, we show, among other
results, how the system performed during our tests.

40

6 EVALUATION

In this chapter, we discuss the methodology we use to evaluate the performance of the
ATF algorithm with respect to the number of messages exchanged, along with the results
we collected from testing our system.

6.1 Methodology

In order to evaluate the performance of the ATF we use the random problem gener-
ator described in (HUNSBERGER, 2002b) to generate MaSTP instances. The instances
are separated in different configurations, each one having a different number of agents
varying from 2 to 128. Each agent in a given configuration has 10 to 20 private activities
with duration varying from 1 to 4 hours separated from each other by 0 to 4 hours. we
define STARTTIME as being the absolute time 0 (when the first activity starts) and the
ENDTIME assumes the end time of the last activity.

Our experiments consist in randomly selecting an agent as the owner of 10 new shared
activities involving every agent and sending them the invitations. The experiment finishes
when every agent has agreed to every activity start time and duration. Each agent calcu-
lates the available time it will use to decide whether or not to commit to an activity, based
on a set of hours ranging from STARTTIME to ENDTIME+100. In this way, if the agents
cannot find times in between their private activities they will have enough time after them,
this mechanisms allows every configuration to finish.

Each test was run 25 times and we use the average of the number of exchanged mes-
sages as the metric to be compared between configurations. All the tests were run in a
single machine with a 4-core CPU of 3.4GHz and 16GB of RAM. The communication
channel was emulated by a message queue in memory.

Number of Agents Total Messages
2 55
4 163
8 378
16 757
32 1605
64 3286
128 6579

Table 6.1: Total messages per number of agents

41

24 8 16 32 64 128

0

2,000

4,000

6,000

Agents

M
es

sa
ge

s

Figure 6.1: Number of messages

We also performed tests with the system described in Chapter 5. The tests consisted
in adding one new shared activitie between a few agents and measuring how long it took
for the activity to be added to the calendar. The message server was hosted by Amazon
Elastic Compute Cloud (Amazon EC2) and was located on the west region of USA. The
clients were running in the same machine located on the same region as the message
server.

6.2 Results

Table 6.1 introduces the results of our evaluation tests. Each line shows how many
messages on average (2nd column) were sent between the agents (1st column) in order to
reach an agreement for the 10 shared activities. The results are also illustrated in Figure
6.1.

It is important to note that the complexity of the number of messages is O(n), where
n, in this case, is the number of agents. In other words, the number of message grows
linearly as the number of agents increase. This is due to the fact that the agents involved
in a shared activity exchange messages only with the owner of the activity and not with
every other agent (mentioned in Section 4.4). We believe that this is a good thing because
the agents should be only concerned about negotiating with the owner, and consequently

24 8 16 32 64 128

30

40

50

Agents

M
es

sa
ge

s

Figure 6.2: Number of messages per agent

42

Number of Agents Total Time (ms)
2 442
4 870
8 1525
16 2783

Table 6.2: Total time per number of agents

the owner will negotiate with every other agent.
The Figure 6.2 shows how many messages were sent per each agent during the tests,

which technically is constant as does not change as the number of agents grow. We do
see a slightly increase and this is due to the conflicts between agents schedules leading to
more messages until an agreement is reached. The higher the number of agents the harder
is to find a compatible time for everyone.

The Table 6.2 has the time results of the tests we conducted with the system. Each
line shows on the second column how much time it took on average to add a new activity
between the number of agents in the first column. The time results also show a linear
growth as shown in Figure 6.3.

2 4 8 16

1,000

2,000

Agents

Ti
m

e
(m

s)

Figure 6.3: Total Time per number of agents

The system tests were executed with all invitees online and ready to send and receive
messages, in the real world though, users might be offline for a while and might take a
significantly amount of time to respond to invitations.

43

7 CONCLUSION

In this dissertation, we presented an algorithm to aid the management of shared ac-
tivities within the MaSTP. We evaluated our algorithm and realized that the number of
messages generated in order to negotiate activities’ time slots grows linearly with the
number of agents, making it scalable and cost efficient. The benefits of the ATF include
a reliable way to schedule shared activities with minimal user interaction and a better use
of the communication channel since the messages being exchanged have a common goal,
i.e, one is not just trying out some possible time slots. We showed, through examples,
how current scheduling systems can take advantage of the ATF, giving their users a better
experience.

A prototypal, yet functional, scheduling system that uses ATF was shown and dis-
cussed. The design and implementation have room for improvement but it worked great
as a proof of concept. We currently do not have the tools to test the system with real-
istic numbers, such as hundreds or even more users managing their agendas through the
system, which could give us more data to work with.

In the future, we would like to improve our system by adding more features like offline
mode and support to flexible start time and duration (as supported by the MaSTP). We will
also be working on a test platform that can simulate hundreds of users and collect data
about the system correctness and performance.

44

APPENDIX A PRINCIPAIS RESULTADOS

Este apêndice tem como objetivo sumarizar em português o que foi apresentado em
inglês neste trabalho. O conteúdo aborda a introdução do problema, nossa proposta e os
resultados obtidos.

O estudo dos sistemas multiagentes se concentra na análise e desenvolvimento de
mecanismos sofisticados para resolver problemas relacionados com coordenação, coop-
eração, negociação, privacidade, performance, incerteza e muitos outros problemas iner-
entes aos sistemas que possuem mais de uma entidade autônoma (agente) buscando atingir
seus objetivos.

Recentemente, com o advento de assistentes pessoais inteligentes capazes de gerir
as atividades dos usuários, como o apresentado em (MYERS et al., 2007), a atenção
dedicada a problemas de cronograma multiagentes tem aumentado entre os pesquisadores
da área. No início, o Problema Temporal Simples (STP) (DECHTER; MEIRI; PEARL,
1991) que é uma representação amplamente aceita do problema de determinar se um
plano ou cronograma é viável1, parecia ser um candidato adequado para representar e
resolver um problema de cronograma. Existem algoritmos que resolvem STP de forma
centralizada, o que significa que, a fim de avaliar os horários de um grupo de agentes,
uma única entidade deve reunir atividades e restrições de todos os membros e resolver o
STP correspondente, pondo em risco a privacidade pois cada membro terá de revelar o seu
cronograma, o que pode incluir informações que os usuários não querem compartilhar.

Em (BOERKOEL; DURFEE, 2010), os autores introduzem o Problema Temporal
Simples Multiagente (MaSTP), que aborda as questões mencionadas acima, principal-
mente a privacidade, que não são cobertos pelas abordagens centralizadas para resolver
STP. Junto com a definição do MaSTP, um algoritmo distribuído chamado D∆P3C baseado
em (PLANKEN; WEERDT; KROGT, 2008) é apresentado. No algoritmo, cada agente
começa processando seu cronograma privado, se é viável os agentes enviam e recebem
as restrições sobre as atividades compartilhados, processndo-as assim que chegarem. Se
o cronograma privado não é viável o agente pode consertá-lo removendo atividades con-
flitantes ou alterando o tempo e/ou a duração das atividades antes de iniciar o envio de
restrições de atividades compartilhadas.

Mesmo que a solução de um problema de cronograma multiagente pareça comple-
tamente entendida, acreditamos que nenhuma das abordagens encontradas na literatura
ataca o problema de encontrar um tempo compatível para cada agente envolvido em uma
atividade compartilhada. A fim de encontrar um horário compatível as soluções atu-
ais exigem vários ciclos de negociação entre os usuários, quando claramente isso pode

1o cronograma é dito viável se houver uma atribuição de pontos no tempo de uma forma que todas as
restrições sejam respeitadas, ou seja, não há atividades conflitantes.

45

ser automatizadas pelo sistema, que tem acesso a todas as informações de que necessita
para encontrar uma boa solução que satisfaça todos os usuários. Assim, a principal con-
tribuição deste trabalho é um novo algoritmo chamado Asynchronous Time Finder (ATF),
que tem o objetivo de encontrar um horário compatível para uma determinada atividade
de uma forma distribuída assegurando a privacidade.

O cenário a seguir é adotado para explicar o problema a ser resolvido: Jane, Matt
e Annie são colegas que atendem juntos à várias aulas durante a semana. Eles precisam
definir algum horário nos próximos dias para trabalhar em um artigo que deve ser entregue
até o final do mês. Eles não sabem sobre as atividades de cada um após as aulas. Matt é
o responsável por encontrar um horário que seja bom para todos.

A nossa proposta consiste em Matt enviar seus horários disponíveis para os outros
convidados e assim que os outros recebem a mensagem de Matt eles verificam se existe
uma interseção entre os horários deles e do Matt. Quando um horário está disponível para
todos os participantes, a atividade pode ser adicionada na instância do MaSTP. Se não for
encontrado um horário viável, Matt pode precisar ampliar o período em que são obtidos
os horários disponíveis (por exemplo, ao invés de apenas na semana seguinte, Matt irá
procurar horários disponíveis durante todo o próximo mês).

O algoritmo é baseado no Asynchronous Backtracking (ABT) (YOKOO et al., 1998)
e é dividido em três fases: criação da atividade, negociação de horários e término da
atividade (confirmação ou cancelamento).

Durante a primeira fase, o agente que quer criar a atividade envia uma mensagem de
criação para cada convidado passando a duração da atividade e um conjunto com todos os
horários disponíveis possíveis. Ao receber o convite, os agentes executam o procedimento
onde o criador da atividade é definido e os valores disponíveis são calculados com base
na intersecção de horários.

A segunda fase é fundamentalmente conduzida pela troca de mensagens entre os con-
vidados e o criador da atividade até que todos concordem com o horário ou até que alguém
desista devido à falta de horários compatíveis.

A terceira fase consiste em determinar quando a execução está concluída. Pode acon-
tecer logo que o criador receba uma recusa de um convidado ou quando todo mundo
aceitou o mesmo horário. A fim de determinar se cada convidado concordou com o
mesmo horário, o criador envia uma mensagem para os agentes e espera pela resposta
de todos. Se todos respondem com o mesmo valor o criador em seguida envia uma men-
sagem de confirmação, se há alguém com um valor diferente, o criador espera por um
período de tempo aleatório e re-envia o pedido. Um número máximo de tentativas deve
ser ajustado para evitar a espera infinita.

A fim de avaliar o desempenho do ATF usamos um gerador aleatório descrito em
(HUNSBERGER, 2002b) para gerar instâncias do MaSTP. Os exemplos são separados em
diferentes configurações, cada uma tendo um número diferente de agentes variando de 2 a
128. Cada agente numa determinada configuração tem de 10 a 20 atividades privadas com
duração variando de 1 a 4 horas, separadas umas das outras por 0 a 4 horas. Definimos
STARTTIME como sendo o tempo absoluto 0 (quando a primeira atividade começa) e
ENDTIME como sendo a hora de término da última atividade.

Nossos experimentos consistem em selecionar aleatoriamente um agente como o cri-
ador de 10 novas atividades compartilhadas envolvendo todos os agentes. O experi-
mento termina quando todos agentes concordaram com o horários de todas atividades.
Cada agente calcula o tempo disponível que irá utilizar para decidir se deve ou não
comprometer-se a uma atividade, com base em um conjunto de horários que vão de

46

STARTTIME a ENDTIME+100. Desta forma, se os agentes não conseguirem encontrar
horários disponíveis entre suas atividades privadas terão tempo suficiente após a última
atividade (este mecanismo permite que todas configurações terminem).

Os testes foram realizado 25 vezes, e usamos a média do número de mensagens tro-
cadas como a métrica a ser comparada entre as configurações. Todos os testes foram
executados em uma única máquina com um processador de 4 núcleos de 3.4GHz e 16GB
de RAM. O canal de comunicação foi emulado por uma fila de mensagens na memória.

A Tabela 6.1 apresenta os resultados de nossos testes de avaliação. Cada linha mostra
quantas mensagens em média (2a coluna) foram enviados entre os agentes (1a coluna),
a fim de chegar a um acordo para as 10 atividades compartilhadas. Os resultados são
também ilustrados na Figura 6.1.

É importante observar que a complexidade do número de mensagens é O(n) , onde
n, neste caso, é o número de agentes. Em outras palavras, o número de mensagem cresce
linearmente conforme o número de agentes aumenta. Isto é devido ao fato de que os
agentes envolvidos em uma atividade compartilhada só trocam mensagens com o criador
da atividade e não com outros convidados. Acreditamos que isso é positivo, pois os
agentes devem apenas se preocupar em negociar com o criador.

47

REFERENCES

BOERKOEL, J. C.; DURFEE, E. H. A Comparison of Algorithms for Solving the Mul-
tiagent Simple Temporal Problem. In: INTERNATIONAL CONFERENCE ON AU-
TOMATED PLANNING AND SCHEDULING, 20., Toronto, Canada. Proceedings. . .
[S.l.: s.n.], 2010. p.26–33.

BOERKOEL, J. C.; DURFEE, E. H. Distributed Algorithms for Solving the Multia-
gent Temporal Decoupling Problem. In: INTERNATIONAL CONFERENCE ON AU-
TONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 10., Taipei, Taiwan. Pro-
ceedings. . . [S.l.: s.n.], 2011. p.141–148.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L. The Floyd-Warshall Algorithm.
[S.l.]: MIT Press and McGraw-Hill, 1990. 558-565p.

DECHTER, R. Constraint Processing. 1st.ed. San Francisco, USA: Morgan Kaufmann
Publishers, 2003.

DECHTER, R.; MEIRI, I.; PEARL, J. Temporal Constraint Networks. Artificial Intelli-
gence Magazine, [S.l.], v.49, n.1-3, May 1991.

HUNSBERGER, L. Group Decision Making and Temporal Reasoning. 2002. PhD
Thesis — Harvard University, Cambridge, Massachusetts.

HUNSBERGER, L. Algorithms for a Temporal Decoupling Problem in Multi-agent Plan-
ning. In: NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, 18., Sydney,
Australia. Proceedings. . . [S.l.: s.n.], 2002. p.468–475.

MYERS, K. et al. An Intelligent Personal Assistant for Task and Time Management.
Artificial Intelligence Magazine, [S.l.], v.28, n.2, June/July 2007.

PLANKEN, L. R.; WEERDT, M. M. de; KROGT, R. van der. P3C: a new algorithm
for the simple temporal problem. In: INTERNATIONAL CONFERENCE ON AUTO-
MATED PLANNING AND SCHEDULING, 18., Sydney, Australia. Proceedings. . .
[S.l.: s.n.], 2008. p.256–263.

PLANKEN, L. R.; WEERDT, M. M. de; WITTEVEEN, C. Optimal Temporal De-
coupling in Multiagent Systems. In: INTERNATIONAL CONFERENCE ON AU-
TONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 9., Toronto, Canada. Pro-
ceedings. . . [S.l.: s.n.], 2010.

RAI, R. Socket.io Real-time Web Application Development. Birmingham: Packt Pub,
2013.

48

TEIXEIRA, P. Professional Node.js building Javascript based scalable software.
Hoboken, N.J. Chichester: Wiley John Wiley distributor, 2012.

WANG, V. The definitive guide to HTML5 WebSocket. Berkeley, Calif. Birmingham:
Apress Computer Bookshops distributor, 2013.

WOOLDRIDGE, M. An Introduction to Multiagent Systems. 2nd.ed. [S.l.]: John Wi-
ley & Sons, 2009.

WRIGHT, G. H. Deontic Logic. Oxford Journals, Mind Association, [S.l.], v.60, n.237,
p.1–15, 1951.

XU, L.; CHOUEIRY, B. Y. A New Efficient Algorithm for Solving the Simple Temporal
Problem. In: INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION
AND REASONING. Proceedings. . . [S.l.: s.n.], 2003.

YOKOO, M. et al. The Distributed Constraint Satisfaction Problem: formalization and
algorithms. IEEE Transactions on Knowledge and Data Engineering, [S.l.], v.10, n.5,
p.673–685, 1998.

