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If I have seen further than others, it is by
standing upon the shoulders of giants.

— Isaac Newton

When it is not in our power to follow what is
true, we ought to follow what is most probable.

— Rene Descartes



ACKNOWLEDGMENTS

First of all I would like to express my sincere thanks to my advisor, Dr. Paulo
Martins Engel, who has provided guidance, valuable comments and support, and
for his patience throughout the last two years.

I am very grateful to share the LIAC (Connectionist Artificial Intelligence Labo-
ratory) lab with great people and researchers, and for the long and useful discussions
that we had.

I wish to thank the Informatics Institute for providing a highly stimulating re-
search environment and excellent professors who afforded the knowledge necessary
to accomplish this work. Thanks also to CAPES for providing financial support.

I also thank my former supervisor Dr. Cheng Li who has helped me to improve
my research skills, providing me tips about organization of experiments and giving
technical talks during my internship at Bioinformatics Institute (BII), in agency
A*STAR, in Singapore.

I would like to thank my family, in special my parents and brothers for their
support in my education and in my life, and for their comprehension since we can
not actually be in the same place. I thank my friends Dr. Nildo Loiola and his
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ABSTRACT

Nowadays several sensory systems provide data in flows and these measured
observations are frequently high-dimensional, i.e., the number of measured variables
is large, and the observations are arriving in a sequence. This is in particular
the case of robot vision systems. Unsupervised and supervised learning with such
data streams is challenging, because the algorithm should be capable of learning
from each observation and then discard it before considering the next one, but
several methods require the whole dataset in order to estimate their parameters and,
therefore, are not suitable for online learning. Furthermore, many approaches suffer
with the so called curse of dimensionality (BELLMAN, 1961) and can not handle
high-dimensional input data. To overcome the problems described above, this work
proposes a new probabilistic and incremental neural network model, called Local
Projection Incremental Gaussian Mixture Network (LP-IGMN), which is capable to
perform life-long learning with high-dimensional data, i.e., it can continuously learn
considering the stability of the current model’s parameters and automatically adjust
its topology taking into account the subspace’s boundary found by each hidden
neuron. The proposed method can find the intrinsic subspace where the data lie,
which is called the principal subspace. Orthogonal to the principal subspace, there
are the dimensions that are noisy or carry little information, i.e., with small variance,
and they are described by a single estimated parameter. Therefore, LP-IGMN is
robust to different sources of data and can deal with large number of noise and/or
irrelevant variables in the measured data. To evaluate LP-IGMN we conducted
several experiments using simulated and real datasets. We also demonstrated several
applications of our method in image recognition tasks. The results have shown that
the LP-IGMN performance is competitive, and usually superior, with other state-
of-the-art approaches, and it can be successfully used in applications that require
life-long learning in high-dimensional spaces.

Keywords: Local projection, Probabilistic learning, Online learning, Incremental
learning, High-dimensional data, Gaussian mixture models, Image recognition.



RESUMO

Atualmente diversos sistemas sensoriais fornecem dados em fluxos e essas ob-
servações medidas são frequentemente de alta dimensionalidade, ou seja, o número
de variáveis medidas é grande, e as observações chegam em sequência. Este é, em
particular, o caso de sistemas de visão em robôs. Aprendizagem supervisionada e
não-supervisionada com esses fluxos de dados é um desafio, porque o algoritmo deve
ser capaz de aprender com cada observação e depois descartá-la antes de considerar
a próxima, mas diversos métodos requerem todo o conjunto de dados a fim de esti-
mar seus parâmetros e, portanto, não são adequados para aprendizagem em tempo
real. Além disso, muitas abordagens sofrem com a denominada maldição da dimen-
sionalidade (BELLMAN, 1961) e não conseguem lidar com dados de entrada de alta
dimensionalidade. Para superar os problemas descritos anteriormente, este trabalho
propõe um novo modelo de rede neural probabiĺıstico e incremental, denominado
Local Projection Incremental Gaussian Mixture Network (LP-IGMN), que é capaz
de realizar aprendizagem perpétua com dados de alta dimensionalidade, ou seja,
ele pode aprender continuamente considerando a estabilidade dos parâmetros do
modelo atual e automaticamente ajustar sua topologia levando em conta a fronteira
do subespaço encontrado por cada neurônio oculto. O método proposto pode en-
contrar o subespaço intŕısico onde os dados se localizam, o qual é denominado de
subespaço principal. Ortogonal ao subespaço principal, existem as dimensões que
são ruidosas ou que carregam pouca informação, ou seja, com pouca variância, e
elas são descritas por um único parâmetro estimado. Portanto, LP-IGMN é robusta
a diferentes fontes de dados e pode lidar com grande número de variáveis ruidosas
e/ou irrelevantes nos dados medidos. Para avaliar a LP-IGMN nós realizamos diver-
sos experimentos usando conjunto de dados simulados e reais. Demonstramos ainda
diversas aplicações do nosso método em tarefas de reconhecimento de imagens. Os
resultados mostraram que o desempenho da LP-IGMN é competitivo, e geralmente
superior, com outras abordagens do estado da arte, e que ela pode ser utilizada
com sucesso em aplicações que requerem aprendizagem perpétua em espaços de alta
dimensionalidade.

Palavras-chave: Projeção local, Aprendizagem probabiĺıstica, Aprendizagem perpétua,
Aprendizagem incremental, Dados de alta dimensionalidade, Modelos de mistura de
Gaussianas, Reconhecimento de imagens.
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1 INTRODUCTION

In unsupervised learning problems, the objective may be partition the data into
homogeneous groups, where it is called clustering, or to determine the distribution
of data within the input space, known as density estimation (BISHOP, 2006). In
particular, unsupervised learning in high-dimensional spaces is a problem in many
fields, including image analysis. The images can be represented by high-dimensional
vectors, where each variable is the intensity of each pixel, and learning with these
images can be very challenging for many algorithms. These algorithms suffer from
the well-known curse of dimensionality (BELLMAN, 1961).

However, it has been known that real data will often be confined to a region
of the space having lower effective dimensionality, and in particular the directions
over which important variations in the target variables occur may be so confined
(BISHOP, 2006). It is possible to develop successful methods able to work with high-
dimensional data if we can exploit this property and find the subspace where most
variation on data occurs. This is the case of well-known approaches such as Principal
Component Analysis (PCA) (JOLLIFFE, 2005) which is a dimensionality reduction
method that finds a compact representation of data through a linear transformation
of the original space to a lower dimensional subspace, then this new representation
of the input vector can be used to train an algorithm. A drawback of PCA and
several dimensionality reduction methods is that they need the whole dataset to
estimate their parameters and, therefore, they are not suitable for online settings.
In online learning the data points are arriving in a sequence (data streams) and we
need to learn from each data point and then discard it before considering the next
point. This type of learning requires low storage resources and is common applied
in robotic tasks (SAIDI et al., 2007), and it is our focus is this work.

Models which estimate the density of the input data are widely used because
their probabilistic foundations and their advantage in obtaining partitions of data
that can be interpreted from a statistical point of view. This is the case of the In-
cremental Gaussian Mixture Network (IGMN) (HEINEN, 2011)(ENGEL; HEINEN,
2010a)(ENGEL; HEINEN, 2010b) which is an online and incremental model-based
algorithm capable to perform supervised and unsupervised learning. Unlike most
artificial neural networks such as the Multilayer Perceptron (MLP) (RUMELHART;
HINTON; WILLIAMS, 1986) which has its topology (number of hidden layers and
neurons) predefined by the user and can not adapt itself using only the input data,
IGMN creates new neurons, dependent on the complexity of the current task, in
order to model the input data density correctly. The ability to continuously acquire
new knowledge considering an incremental topology and the stability of the already
learned knowledge makes IGMN a life-long (KIRSTEIN, 2010) learning algorithm.
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However, IGMN shows a disappointing behaviour in high-dimensional spaces which
is mainly due to the fact that it is over-parametrized in these spaces.

In this work we propose a new neural network model, called Local Projection
Incremental Gaussian Mixture Network (LP-IGMN), which is able to perform prob-
abilistic and life-long learning in high-dimensional spaces without suffering with the
curse of dimensionality, overcoming the IGMN problems described above. The main
advantages of LP-IGMN over other approaches are:

• It takes into account the specific subspace around which each neuron is located
and therefore limits the number of parameters to estimate;

• It models the data density (using Gaussian units) and therefore the learned
model is not a “black box” and can be analysed using statistical tools;

• LP-IGMN can be used as a visualization tool of high-dimensional data;

• The LP-IGMN just needs one scan over the training data to learn and each
data point can be immediately used and discarded, therefore, it requires low
storage resources;

• LP-IGMN is a life-long learning algorithm and therefore does not have a sep-
arate phase for learning and recalling, i.e., it can continuously acquire new
knowledge without forget the previous learned knowledge;

• It adjusts its topology incrementally considering the subspace’s boundary of
each neuron and the stability of the already learned knowledge;

• It has few non critical configuration parameters that are easy to configure;

• The LP-IGMN has a computational complexity that is linear in the number
of data points being suitable for online learning.

• LP-IGMN can be used in supervised and unsupervised learning tasks in high-
dimensional spaces with redundant and irrelevant input dimensions.

LP-IGMN is also particularly useful in image recognition tasks as we will show
later in chapter 4. In particular, we will demonstrate that LP-IGMN is an excellent
performer in face, handwritten digits and object recognition tasks and it can be
applied in image denoising and segmentation. This is because the input image
vectors have high dimensionality, but the important information lie in a subspace of
lower dimensionality and LP-IGMN can properly find it, even when the input data
are highly nonlinear.

1.1 Main Contributions

This Section summarizes the main contributions of this work. The main ob-
jective of this dissertation is to develop a new approach for life-long learning of
high-dimensional data streams. In particular, we want to be able of modelling effec-
tively the density of high-dimensional input data and to perform unsupervised and
supervised learning in image recognition tasks.
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The first contribution of this work is a new neural network model, called LP-
IGMN. This algorithm can be seen as an extension of the IGMN algorithm to deal
with high-dimensional data streams. IGMN is not capable of properly handle these
type of data and fails while is learning. LP-IGMN overcomes this problem and offers
interesting features for data analysis such as its capability of locally projecting the
high-dimensional data onto a 2-dimensional subspace where most variation on data
occurs, giving us an insight about the data. Furthermore, we will show that LP-
IGMN is a highly successful learning algorithm and an excellent performer on many
standard benchmarks and is also useful for practical applications.

The second contribution of this work is the use of LP-IGMN in many machine
learning and image recognition tasks. In fact, the efficiency of LP-IGMN opens
new possibilities and research directions where relevant developments can be made.
One of these directions is in learning complex image features hierarchies using our
proposed model embedded in a deep learning pipeline (BENGIO, 2009; HINTON;
SALAKHUTDINOV, 2006).

1.2 Outline

This dissertation will proceed as follows:

Chapter 2: Background. We review some state-of-the-art approaches to deal
with high-dimensional data and also the artificial neural networks used in this work.
These algorithms are used later in comparison with LP-IGMN, where we point out
the advantages of our proposed method over these standard approaches.

Chapter 3: Modelling High-dimensional Data Streams with the Local
Projection Incremental Gaussian Mixture Network. We present the new
neural network model proposed in this dissertation, called LP-IGMN, which is the
main contribution of this work. Throughout that chapter the mathematical deriva-
tion of LP-IGMN is presented as well as its new model parameters and its learning
and recalling algorithm. We also describe several analyses performed with real and
simulated high-dimensional data to evaluate the LP-IGMN performance and to show
its main features.

Chapter 4: Applications for Image Recognition and Representation. Many
applications of the proposed method are described. Specifically, we show how LP-
IGMN can be applied for face, handwritten digits and object recognition, image
denoising and segmentation. We will also compare our approach with other state-
of-the-art algorithms and find that, indeed, LP-IGMN performance is competitive,
and usually superior, to more sophisticated systems.

Finally, Chapter 5 concludes this monograph summarizing the main concepts
and contributions of this dissertation and suggesting directions for further work.
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2 BACKGROUND

Since the dimension of observed data is usually higher than their intrinsic di-
mension, it is theoretically possible to reduce the dimension of the original space
without losing relevant information. For this reason, dimension reduction methods
are frequently used in practice to reduce the dimension of the data before the clus-
tering or classification step and to deal with the curse of dimensionality. In next
Section, we briefly review some of these techniques that we will refer throughout
this dissertation. Another approach to handle with the curse of dimensionality is to
consider it as a problem of over-parametrized modelling. For instance, the number
of parameters in Gaussian models increases with the square of the dimensionality
and this yields inference problems with high-dimensional data. BOUVEYRON; GI-
RARD; SCHMID (2007) proposed a parametrization of the Gaussian mixture model
which yields a family of 28 parsimonious models. To this end, they re-parametrize
the covariance matrices into the group specific eigenspaces and constrain model
parameters within or across those eigenspaces.

In next Sections, we also describe the artificial neural networks used through-
out the experiments performed in next chapters. For instance, IGMN is the core
algorithm which we intend to extend to deal with high-dimensional data.

This chapter is organized as follows: Section 2.1 provides an overview of the main
dimensionality reduction techniques used in the literature and Section 2.2 describes
the artificial neural networks used throughout this dissertation.

2.1 Dimensionality Reduction

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) (JOLLIFFE, 2005) is a standard technique
for dimensionality reduction which finds a subspace spanned by a set of basis vectors
that correspond to the maximum-variance directions in the original space. PCA
learns a linear transformation matrix W = (w1, ...,wM) ∈ RD×M that maps the
original D-dimensional data point xn onto a lower dimensional representation zn =
WTxn ∈ RM , n = 1, ..., N , where usually M � D. We shall assume that the value
of M is given and that xn has zero mean. We can also retroproject the data onto the
original space using the inverse transformation x̃n = Wzn. The matrix W contains
the M eigenvectors w1, ...,wM of the data covariance matrix Σ = (1/N)

∑N
i=1 xix

T
i

corresponding to the M largest eigenvalues λ1, ..., λM .
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2.1.2 Incremental PCA

The Incremental PCA (HALL; MARSHALL; MARTIN, 1998) is a version of
PCA to deal with data streams. It estimates a set of parameters Θ(n+1) by suc-
cessively updating an earlier state Θ(n) as new observations become available. The
parameters Θ = (µ,Σ,W) consist of the mean vector µ, covariance matrix Σ and
the orthonormal eigenvectors matrix W which spans a M -dimensional subspace of
maximum variance of the data. Consider a data flow of N data points xn ∈ RD,
n = 1, ..., N . When a new observation xn+1 is presented to the model, the mean
vector is updated as:

µ(n+1) =
1

N + 1
(Nµ(n) + xn+1) (2.1)

and the covariance matrix as:

Σ(n+1) =
N

N + 1
Σ(n) +

N

(N + 1)2
(xn+1 − µ(n))(xn+1 − µ(n))T . (2.2)

The new eigenvectors matrix W(n+1) is calculated as a rotation R of the current
eigenvectors W(n) plus an orthonormal vector. The additional vector is a unit
residue vector r̃ = r

||r||2 for ||r||2 6= 0 and r̃ = 0 otherwise, where r = (xn+1−µ(n))−
WWT (xn+1−µ(n)). The new eigenvectors matrix W(n+1) ∈ RD×(M+1) is computed
by:

W(n+1) =
[
W(n), r̃

]
R, (2.3)

where R ∈ R(M+1)×(M+1) is a rotation matrix. R yields from the solution of the
following eigenproblem:[

W(n), r̃
]T

Σ(n+1)
[
W(n), r̃

]
R = RΛ. (2.4)

Note that the new eigenvectors matrix W(n+1) has (M + 1) eigenvectors, there-
fore, it spans a subspace of (M + 1) dimensions. If we want to keep the subspace
dimension as M , we need to discard one eigenvector. A simple approach is only to
keep the M eigenvectors associated to the M largest eigenvalues in Λ.

2.1.3 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) (SCHöLKOPF; SMOLA; MüLLER,
1998) is a nonlinear kernel-based extension of PCA. This algorithm first maps the
D-dimensional data into a high-dimensional feature space F of dimension M (which
can be infinite dimensional) via a (usually nonlinear) function φ(.) : RD → RM and
then performs linear PCA on the mapped data.

Given a set of N data points X = {x1, ...,xn, ...,xN}, xn ∈ RD, KPCA finds
directions in which the projected variables wTφ(xn), n = 1, ..., N have maximal
variance. Assuming zero-mean-mapped data

∑N
n=1 φ(xn) = 0, the covariance matrix

in the feature space becomes C = (1/N)
∑N

i=1 φ(xi)φ(xi)
T with eigendecomposition

Cw = λw. As the feature space F might be very high dimensional, the estimation
of φ(.) and C is complicated. KPCA employs Mercer kernels instead of carrying out
the mapping φ(.) explicitly (SCHöLKOPF; SMOLA; MüLLER, 1998). A Mercer
kernel is a function k : RD × RD → R that corresponds to a dot product in a high-
dimensional feature space k(xi,xj) = φ(xi)

Tφ(xj). A widely used kernel function is
the Gaussian kernel k(xi,xj) = exp(−||xi − xj||2/c), where c is a constant.
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The KPCA problem can be solved by means of the eigendecomposition of the
kernel matrix K ∈ RN×N which contains pairwise evaluations of the kernel function
Kij = k(xi,xj), i, j = 1, ..., N . Typically, the data are preprocessed in the feature
space by removing the mean. This step is accomplished by centering the kernel
matrix: Kc = K − 1NK −K1N + 1NK1N , where 1N denotes the N × N matrix
in which every element takes the value 1/N . Thus we can evaluate Kc using only
the kernel function and then use Kc to determine the eigenvalues and eigenvectors.
Note that the standard PCA algorithm is recovered as a special case if we use a
linear kernel k(xi,xj) = xTi xj.

2.1.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a method used to find a linear combi-
nation of features which characterizes or separates two or more classes and it can
be utilized to reduce the dimensionality of the input data (MCLACHLAN, 2004).
Let T = {(x1, y1), ..., (xn, yn), ...., (xN , yN)}, xn ∈ RD, yn ∈ Y = {1, 2, ..., C} be a
labelled training set with C classes. The within-class covariance matrix to the case
of C classes is given by:

SW =
C∑
c=1

∑
n∈Yc

(xn − µc)(xn − µc)
T , (2.5)

where µc is the mean of class c and is given by:

µc =
1

Nc

∑
n∈Yc

xn (2.6)

and Nc is the number of data points in class Yc. The between-class covariance matrix
is defined as:

SB =
C∑
c=1

Nc(µc − µ)(µc − µ)T , (2.7)

where µ is the overall mean:

µ =
1

N

N∑
n=1

xn. (2.8)

The goal of the LDA is to train the linear data projection:

z = WTx, (2.9)

such that the class separability criterion (DUDA; HART; STORK, 2001):

J(W) =
det(SB)

det(SW )
(2.10)

is maximized. In other words, LDA aims to maximize the between-class distance
while minimizing the within-class distance. Maximization of such criteria is straight-
forward. The weight values are determined by those eigenvectors of S−1W SB that
correspond to the M largest eigenvalues (FUKUNAGA, 1990). It should be noted
that there are at most (C − 1) nonzero eigenvalues and, therefore, the upper bound
on the subspace dimension is (C − 1) (i.e., M ≤ C − 1).
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2.2 Artificial Neural Networks

2.2.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) (RUMELHART; HINTON; WILLIAMS, 1986)
is a supervised feedforward artificial neural network composed of an input, an output
layer and an arbitrary number of hidden layers. In general MLPs are multi-layered
and fully connected networks composed of non-linear neurons which propagate sig-
nals through the hidden layers until the output layer. The output of each neuron is
calculated as the scalar product between its inputs and its incoming weights followed
by an activation function ϕ(.), usually a sigmoid function.

The back-propagation algorithm is used to train MLP networks. The error in
the output layer, which is computed as the difference between the output and the
desired output, is back-propagated through the different hidden layers in order to
update the network weights. The weight update of neuron k connected to neuron l
in the previous layer is calculated in the following way:

∆w
(n)
lk = ηδ

(n)
k y

(n)
l , (2.11)

where η is the learning rate, y
(n)
l is the output of neuron l for the input pattern xn

and δ
(n)
k is the local gradient defined as:

δ
(n)
k =

{
ϕ′(y

(n)
k )(t

(n)
o − y(n)o ) : for output neurons

ϕ′(y
(n)
k )

∑
j δ

(n)
j wkj : for hidden neurons

, (2.12)

where j are all the neurons that get input from node k, t
(n)
o is the desired network

output for the n-th input pattern and output neuron o and ϕ′(.) is the first derivative
of the activation function ϕ(.).

MLP networks are considered to be universal function approximators (HORNIK,
1991; MAXWELL; WHITE, 1989), given sufficient number of neurons, and can be
utilized for regression and classification tasks. If only few training patterns are
available and they change continuously, the network can not maintain the stability
of learned knowledge, therefore this kind of network is not suitable for online learning
tasks (KIRSTEIN, 2010). Furthermore the back-propagation algorithm is known to
converge very slowly (CHRISTIAN; LEBIERE, 1990), requiring many epochs of
training in order to find a global minimum of the cost function.

2.2.2 Incremental Gaussian Mixture Network

The Incremental Gaussian Mixture Network (IGMN) (HEINEN, 2011)(ENGEL;
HEINEN, 2010a)(ENGEL; HEINEN, 2010b) is a probabilistic neural network able
to model the distribution of data streams by a mixture of Gaussian components
represented by its neurons. It can perform supervised and unsupervised learning
in an online way, which means that only a single data point is used at a time
to estimate the model parameters. The learning process is fast and “one-shot”,
meaning that only a single scan through the data is necessary to obtain a consistent
model, and can immediately recognize trained data. The IGMN can also adjust
its topology incrementally adding or removing neurons as necessary, handling the
stability-plasticity dilemma. Furthermore, the IGMN is suitable for life-long learning
since it has the ability to continuously acquire new knowledge and considering the
stability of already learned knowledge.



20

The network operation can be summarized in two modes: (a) learning mode,
in which IGMN updates the neurons for new input patterns if at least one neu-
ron can properly represent the new information, or creates new neurons otherwise,
and removes noisy neurons, which represent noise data. The IGMN can perform
the learning mode online and perpetually, without suffering from catastrophic in-
terference. Thus, a complete retraining is not necessary when new training data is
presented to the network. After at least one learning step, the network can perform
the (b) recalling mode to estimate the missing elements at the input layer.

The network architecture is composed by two layers: the input layer or visible
layer represented by the input patterns and the hidden layer represented by the hid-
den neurons. The neurons are fully connected across the layers and the connections
are bidirectional and have no weights as can be seen in Figure 2.1. There is no need
for explicit weights on the connections since all necessary information is wrapped in
Gaussian components. The second layer adjusts its size to fit to the training data
and both layers work differently when the network is learning or estimating the
missing elements at the input layer (recalling). When the network is learning, the
input layer only receives the input data and sends them to the hidden layer, without
any computation. In IGMN, there is no explicit output layer, any neuron at the
input layer can be used as input or output by omitting its value (i.e., presenting an
incomplete pattern to the network) on the recalling mode. In this case, the neurons
whose input values are known, are used as input elements and their values are sent
to the hidden layer, then the neurons whose input values are unknown or missing,
receive an estimate of their values from the hidden layer.

The hidden layer is responsible to hold and handle all information of the network.
In the learning mode, the hidden layer receives the input pattern from the input
layer and assimilates this information by updating the current set of neurons or
creating new ones. At the same time, the layer can remove the neurons which are
considered noise (i.e., which do not have a minimum activation during a certain
number of steps). This process is incremental and “one-shot”, i.e., there is no need
to present the same information more than once to the network, the pattern is
learned in a single step, and it can be performed in an online way. In the recalling
mode, the hidden layer receives a partial information from the input layer and uses
it to estimate the missing information.

Figure 2.1: IGMN architecture.
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Learning mode

In classification or regression tasks, the IGMN learns a joint distribution p(xa,xb)
between an observed feature vector xa (i.e., the independent variables) and a target
vector xb. For clustering tasks, we just suppress the target value from the input
vector. In general case, we have an observed data vector x ∈ RD, where x =
(xa,xb)

T , i.e., x is the concatenation of the vectors xa and xb. Typically, the target
value assumes a real value in regression tasks and a binary vector in classification
tasks. For classification purpose, we define the target vector as a binary vector of
size m, where m is the number of classes, and we set the j-th position to one and
the others to zero, where j is the class label index for the observed feature vector
xa.

Let Θ = (Θ1, ...,Θk, ...,ΘK)T be the set of parameters in the hidden layer with
K neurons, where Θk = (µk,Σk, πk, spk, vk) corresponds to the mean vector µk ∈
RD, covariance matrix Σk ∈ RD×D, prior probability or mixing coefficient πk ∈ R,
posterior probability accumulator spk ∈ R and age vk ∈ N for the k-th neuron, with
k = 1, ..., K. Suppose we have a sequence of N data vectors, X = {x1, ...,xn, ...,xN},
the learning process in IGMN updates the current Θ after a presentation of xn,
drawn independently from X, in order to maximize the likelihood function:

ln p(X|Θ) =
N∑
n=1

ln

{
K∑
k=1

N (xn|µk,Σk)πk

}
, (2.13)

where N (xn|µk,Σk) is a multivariate Gaussian distribution represented by the k-th
neuron and takes the form:

N (xn|µk,Σk) =
1

(2π)D/2
√
|Σk|

exp

{
−1

2
(xn − µk)

TΣ−1k (xn − µk)

}
(2.14)

and the prior probability satisfy:

0 ≤ πk ≤ 1, ∀k, (2.15)

together with
K∑
k=1

πk = 1. (2.16)

Creating neurons

In IGMN a new neuron is added when there is no neuron in the hidden layer or
when the observed data vector x matches the minimum likelihood criterion:

N (x|µk,Σk) <
1

(2π)D/2
√
|Σk|

exp

{
−1

2
χ2
D,(1−β)

}
, ∀k, (2.17)

where χ2
D,(1−β) is the (1−β) quantile of the chi-squared distribution with D degrees

of freedom and β is a user defined parameter that specifies the probability that
x does not belong to the neuron’s Gaussian distribution. Since the Mahalanobis
distance has a chi-squared distribution (JOHNSON; WICHERN, 2007), i.e., (x −
µ)TΣ−1(x− µ) ∼ χ2

D, (2.17) can be rewritten to:

(x− µk)
TΣ−1k (x− µk) > χ2

D,(1−β), ∀k. (2.18)
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This new formulation prevents numeric errors when x is a high dimensional data
vector. When the minimum likelihood criterion is reached, a new neuron K is
created centered on x, i.e.:

K = K + 1, spK = 1, vK = 0,

µK = x, ΣK = σ2
ini, πK =

spK
K∑
q=1

spq

, (2.19)

where σ2
ini = diag(σ2

1, ..., σ
2
D) and σ2

1, ..., σ
2
D are an user defined fraction δ of the

overall variance (e.g., δ = 0.1) of the corresponding input variables, estimated from
the range of these values according to:

σ2
i = (δ [max(Xi)−min(Xi)])

2 , for i = 1, ..., D, (2.20)

where [max(Xi)−min(Xi)] defines the approximate domain of the i-th variable.
After the creation of a neuron, all the prior probabilities are adjusted to satisfy

constraints (2.15 and 2.16) by:

πk =
spk
K∑
q=1

spq

, ∀k. (2.21)

Updating neurons

The IGMN assumes that the density of the input x can be modelled by a linear
combination of multivariate Gaussian components in the form:

p(x) =
K∑
k=1

N (x|µk,Σk)πk. (2.22)

Thus the marginal distribution of x is a Gaussian mixture of the form (2.22). There-
fore, the set of parameters in the hidden layer, Θ, can be estimated by an online
version of the Expectation-Maximization (EM) algorithm (HEINEN, 2011). The
EM algorithm alternates between the following two steps that we shall call the E
step and the M step. In the expectation step, or E step, we use the current values
for the parameters Θ(n), in the n-th iteration, to evaluate the posterior probabilities,
given by:

p(k|x) =
N (x|µ(n)

k ,Σ
(n)
k )π

(n)
k

K∑
q=1

N (x|µ(n)
q ,Σ(n)

q )π(n)
q

, ∀k. (2.23)

We then use these probabilities in the maximization step, or M step, to re-estimate
the set of parameters Θ

(n+1)
k , for every neuron k = 1, ..., K using:

sp
(n+1)
k = sp

(n)
k + p(k|x), (2.24)

v
(n+1)
k = v

(n)
k + 1, (2.25)
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µ
(n+1)
k = µ

(n)
k +

p(k|x)

sp
(n+1)
k

(
x − µ

(n)
k

)
, (2.26)

Σ
(n+1)
k = Σ

(n)
k − (µ

(n+1)
k − µ

(n)
k )(µ

(n+1)
k − µ

(n)
k )T+

p(k|x)

sp
(n+1)
k

[
(x − µ

(n+1)
k )(x − µ

(n+1)
k )T −Σ

(n)
k

]
.

(2.27)

Then all the prior probabilities are adjusted using (2.21) and the updated posterior

probability accumulator sp
(n+1)
k .

Removing neurons

A neuron k is removed whenever vk > vmin and spk < spmin, where vmin and
spmin are manually chosen (e.g., 5.0 and 3.0, respectively). In that case, the prior
probabilities must also be adjusted for all remaining neurons q ∈ {1, ..., K}, q 6= k,
using (2.21). In other words, each neuron is given some time (vmin) to show its
importance to the model in the form of an accumulation of its posterior probabilities
spk.

Recalling mode

Let us recall that the input vector x can be partitioned into two disjoint subsets
xa and xb, i.e.:

x =

(
xa
xb

)
. (2.28)

We also define corresponding partitions of the mean vector µ given by:

µ =

(
µa

µb

)
(2.29)

and of the covariance matrix Σ given by:

Σ =

(
Σaa Σab

Σba Σbb

)
. (2.30)

After at least a single input presentation, the recalling process in IGMN can
estimate missing input values from known input values. To simplify our explanation,
we will consider that we are estimating a target vector x̂b from xa. In IGMN the
conditional distribution p(xb|xa) can be expressed as:

p(xb|xa) = N (x|µb|a,Σb|a), (2.31)

where µb|a is given by:

µb|a = µb + ΣbaΣ
−1
aa (xa − µa), (2.32)

and Σb|a is given by:
Σb|a = Σbb −ΣbaΣ

−1
aa Σab. (2.33)

This represents a linear-Gaussian model (BISHOP, 2006). During the recalling
mode, each hidden neuron can be viewed as a linear-Gaussian model and we can
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perform a probabilistic combination of these linear regressors to estimate x̂b as
(HEINEN, 2011; GHAHRAMANI; JORDAN, 1994):

x̂b =
K∑
k=1

p(k|xa)
[
µb,k + Σba,kΣ

−1
aa,k(xa − µa,k)

]
, (2.34)

where p(k|xa) is given by:

p(k|xa) =
N (xa|µa,k,Σaa,k)πk
K∑
q=1

N (xa|µa,q,Σaa,q)πq

, ∀k. (2.35)

Let us recall that in classification tasks, the estimated target vector x̂b has size
m, where m is the number of classes, i.e., x̂b = (x̂b,1, ..., x̂b,j, ..., x̂b,m). In this case,

the predicted label l̂ is given by the index of the highest response in x̂b, i.e.:

l̂ = arg max
j

x̂b,j. (2.36)

2.3 Summary

In this chapter we reviewed several state-of-the-art approaches to deal with high-
dimensional data and also the artificial neural networks used in this work. The
main drawback of PCA, KPCA and LDA is that they require the entire dataset to
estimate a linear transformation matrix which projects the high-dimensional data in
a low-dimensional representation. These methods are unsupervised, so if we intend
to perform classification, we need to train a classifier in a separate phase after
the reduction dimensionality step. Therefore, they can not be applied in online
settings. The Incremental PCA treats the problem of estimating the eigenvectors
matrix for each observation, being suitable for online learning, but it can only learn a
single subspace of the data which usually limits its representation capacity. We also
reviewed the classical MLP algorithm and the life-long learning algorithm called
IGMN. MLP is commonly used in classification and regression tasks because its
capacity to approximate complex non-linear functions. However, MLP is a batch
algorithm and its topology can not be adjusted automatically using the input data.
IGMN can learn with data flows and adjust its topology automatically to model
the data density, but it shows a disappointing behaviour when trained with high-
dimensional data. Its covariances matrices become singular in these spaces and fail
to invert during the learning process.

In next chapter we will describe an extension of the algorithm IGMN which is
capable to find specific subspaces for each group in the data, in contrast to the
classical approaches such as PCA, Incremental PCA, KPCA and LDA, and this
usually yields a more flexible model that better fits the data density and also obtains
better performance results.
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3 MODELLING HIGH-DIMENSIONAL DATA STREAMS
WITH THE LOCAL PROJECTION INCREMENTAL
GAUSSIAN MIXTURE NETWORK

This chapter describes the operation of the proposed model in this work, called
Local Projection Incremental Gaussian Mixture Network (LP-IGMN), which is an
extension for the IGMN algorithm to deal with high-dimensional data streams.
IGMN requires to estimate full covariance matrices and therefore the number of
parameters increases with the square of the dimension. However, because many
dimensions are noisy or carry redudant information it can be assumed that high-
dimensional data live around subspaces with a dimensionality lower than the one
of the original space (BOUVEYRON; GIRARD; SCHMID, 2007). In LP-IGMN,
we introduce local projections in low dimensional subspaces together with a prob-
abilistic version of the incremental PCA (HALL; MARSHALL; MARTIN, 1998) in
order to deal with such data and to limit the number of parameters to estimate.
We evaluated the performance of LP-IGMN using artificial and real datasets, and
the results showed that the algorithm is robust to such data and suitable for online
learning.

This chapter is structured as follows: Section 3.1 describes our proposed LP-
IGMN algorithm. Section 3.2 details several experiments that we conducted to
evaluate our model’s parameters and performance, and Section 3.3 presents a sum-
mary.

3.1 Local Projection Incremental Gaussian Mixture Network

The LP-IGMN assumes that the density of the input pattern x ∈ RD can be
modeled by a linear combination of multivariate Gaussian components represented
by its K hidden neurons, considering the orthogonal projection of the data onto a
lower dimensional linear space, known as the principal subspace, ξ, such that the
variance of the projected data is maximized. The process of orthogonal projection
is illustrated in Figure 3.1.

In LP-IGMN, each hidden neuron k assumes that the conditional density is Gaus-
sian N (µk,Σk) with mean µk and covariance matrix Σk. Consider the orthonormal
eigenvectors matrix Uk = (uk1, ...,uki, ...,ukD) ∈ RD×D of Σk. The projected co-
variance matrix, Λk, is a diagonal matrix which contains the eigenvalues of Σk and
it has the following form:
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Figure 3.1: Local projection of data points (red dots) onto a lower-dimensional
subspace ξ (denoted by the magenta line) found by a LP-IGMN hidden neuron, such
that the projection maximizes the variance of the projected points (green dots).

Λk = UT
kΣkUk =



λk1 0
. . . 0

0 λkd
λkd+1 0

0
. . .

0 λkD



 dD − d

(3.1)

with λk1 ≥ . . . ≥ λkd ≥ . . . ≥ λkD, k = 1, ..., K and d ∈ {1, ..., D − 1} is an
user defined parameter, which determines the number of eigenvectors to keep. We
restrict the model fixing the first d eigenvalues to be common within each neuron
component, i.e., we assume that Λk contains only two different eigenvalues, ak and
bk, where ak is given by:

ak =
1

d

d∑
i=1

λki, (3.2)

and bk is given by:

bk =
1

D − d

D∑
i=d+1

λki. (3.3)

It has been shown that adding this constraint is an efficient way to regularize the
estimation of Λk (BOUVEYRON; GIRARD; SCHMID, 2007). Given the projected
covariance matrix Λk, we can also retrieve the covariance matrix in the original
space using the expression Σk =

∑D
i=1 λkiukiu

T
ki (BISHOP, 2006).

Similarly to PCA (JOLLIFFE, 2005), LP-IGMN approximates a data point using
a representation involving a restricted number d < D of variables corresponding to a
projection onto a lower-dimensional subspace. Let X = {x1, ...,xn, ...,xN} ∈ RD×N

be a stream of N data points. The d-dimensional linear subspace found by a hidden
neuron k can be represented, without loss of generality, by the first d eigenvectors
in Uk, and so we approximate each data point xn by (BISHOP, 2006):

x̃n =
d∑
i=1

(xTnuki)uki +
D∑

i=d+1

(µT
kuki)uki (3.4)
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Since the mean vector µk can be written as:

µk =
D∑
i=1

(µT
kuki)uki (3.5)

we can rewrite (3.4) as:

x̃n = µk +
d∑
i=1

(xTnuki − µT
kuki)uki. (3.6)

In some situations, we need a global approximation of the data point instead of
a local approximation, which we define as a weighted projection:

x̃Gn =
K∑
k=1

p(k|xn)

{
µk +

d∑
i=1

(xTnuki − µT
kuki)uki

}
, (3.7)

where p(k|xn) is the posterior probability that xn has been generated from the k-th
neuron Gaussian component and the superscript G indicates the global approxima-
tion of xn. Therefore, we assume that each hidden unit contributes partially to the
the input vector global approximation x̃Gn .

We define the cost function used to measure the distortion introduced by the
reduction in dimensionality as a weighted average of the squared distance between
the original data point xn and its approximation x̃n, so that we want to minimize:

J =
K∑
k=1

N∑
n=1

p(k|xn) ||xn − x̃n||2
N∑
n=1

p(k|xn)

. (3.8)

Take into account that xn can be expressed by a linear combination of the eigen-
vectors of a neuron as:

xn =
D∑
i=1

(xTnuki)uki. (3.9)

Using (3.4) and (3.9) we obtain the expression for the projection error vector as
following:

xn − x̃n =
D∑

i=d+1

{(xn − µk)
Tuki}uki (3.10)

from which we see that the projection error vector lies in the space ξ⊥k , orthogonal to
the principal subspace, because it is a linear combination of uki for i = d+ 1, ..., D,
as illustrated in Figure 3.1.

We therefore obtain an expression for the distortion measure J as a function of
uki in the form:

J =
K∑
k=1

N∑
n=1

D∑
i=d+1

p(k|xn)(xTnuki − µT
kuki)

2

N∑
n=1

p(k|xn)

=
K∑
k=1

D∑
i=d+1

uTkiΣkuki, (3.11)

J =
K∑
k=1

(D − d)bk, (3.12)
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thus J is the sum of the eigenvalues of those eigenvectors that are orthogonal to
the principal subspace. We therefore obtain the minimum value of J when bk → 0.
LP-IGMN minimizes J by selecting the eigenvectors in the orthogonal subspace
ξ⊥k having the D − d smallest eigenvalues, and hence the eigenvectors defining the
principal subspace are those corresponding to the d largest eigenvalues.

3.1.1 Creating neurons

Considering the expression Σ−1k =
∑D

i=1
1
λki

ukiu
T
ki (BISHOP, 2006) for the inverse

covariance matrix written in the eigenvector space, we can rewrite the Mahalanobis
distance ∆k = (xn − µk)

TΣ−1k (xn − µk) as:

∆k = (xn − µk)
T

{
D∑
i=1

1

λki
ukiu

T
ki

}
(xn − µk), (3.13)

∆k = (xn − µk)
T

{
d∑
i=1

1

λki
ukiu

T
ki

}
(xn − µk)

+(xn − µk)
T

{
D∑

i=d+1

1

λki
ukiu

T
ki

}
(xn − µk).

(3.14)

Since Uk is an orthonormal matrix, uTkiuki = 1 and using (3.10), we can rewrite
(3.14) as:

∆k =
d∑
i=1

1

λki
(xn − µk)

Tuki(u
T
kiuki)u

T
ki(xn − µk)

+
D∑

i=d+1

1

λki
(xn − µk)

Tuki(u
T
kiuki)u

T
ki(xn − µk).

(3.15)

Assuming that the projected covariance matrix is regularized and has only two
eigenvalues ak and bk, we obtain from (3.15):

∆k =
1

ak
||x̃n − µk||

2 +
1

bk
||xn − x̃n||2 . (3.16)

Therefore the Mahalanobis distance in the eigenspace considers the squared dis-
tance between the vector approximation x̃n and the mean vector µk weighted by
the inverse of the eigenvalue ak of the principal subspace, and the squared norm of
the projection error vector weighted by the inverse of the eigenvalue bk of the space
that is orthogonal to the principal subspace.

Using this formulation for the Mahalanobis distance, we rewrite the IGMN cri-
terion (2.18) to add neurons in the hidden layer as:

1

ak
||x̃n − µk||

2 +
1

bk
||xn − x̃n||2 > χ2

D,(1−β), ∀k, (3.17)

where χ2
D,(1−β) is the (1−β) quantile of the chi-squared distribution with D degrees

of freedom and β is a probability set by the user that controls the sensitivity to com-
ponent creation. Setting a high value for the parameter β increases the sensitivity
and more neurons will be added.
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Since (3.16) only needs the d eigenvectors associated with the d largest eigen-
values of Σk to calculate the data point approximation x̃n, LP-IGMN does not
need to calculate the (D − d) eigenvectors associated with the smallest eigenval-
ues whose determination is numerically unstable. Considering the matrix Qk =
(uk1, ...,uki, ...,ukd) composed by the first d eigenvectors of Uk, the hidden layer in
LP-IGMN is fully parametrized by the set of parameters Θ = (Θ1, ...,Θk, ...,ΘK)T ,
where Θk = (µk,Σk, πk, spk, vk,Qk, ak, bk).

When a data point xn matches the criterion (3.17), a new neuron K is added to
the LP-IGMN hidden layer and its parameters are initialized as following:

K = K + 1, spK = 1, vK = 0, aK = aini, bK = bini,

QK = Qini, µK = xn, ΣK = σ2
ini, πK =

spK
K∑
q=1

spq

, (3.18)

where aini = 1
d

∑d
i=1 λki is the average of the first d largest eigenvalues of ΣK = σ2

ini

and bini = 1
D−d

∑D
i=d+1 λki is the average of the remaining eigenvalues, i.e., for the

d+ 1, ..., D eigenvalues, and they need to be calculated only once. The eigenvectors
matrix QK = Qini is initialized with d random orthonormal vectors. For this,
one can use the vectors of a matrix Qini from a QR decomposition A = QiniR,
where the matrix A ∈ Rd×d is drawn from the standard normal distribution, i.e.,
A ∼ N (0, I). After the creation of a neuron, all prior probabilities are adjusted to
satisfy constraints (2.15 and 2.16) using (2.21).

3.1.2 Expectation Step

As in IGMN, the set of parameters in the hidden layer, Θ, is estimated by an
online version of the EM algorithm. During the E-step or expectation step, we use
the current values for the parameters Θ(n), in the n-th iteration, to evaluate the pos-
terior probabilities p(k|xn), k = 1, ..., K. Then during the M-step or maximization
step, we update the values of the parameters.

Consider the logarithm formulation for the posterior probability:

p(k|xn) =
exp

{
logN (xn|µ(n)

k ,Σ
(n)
k ) + log π

(n)
k

}
K∑
q=1

exp
{

logN (xn|µ(n)
q ,Σ(n)

q ) + log π(n)
q

} , (3.19)

where we obtain logN (xn|µ(n)
k ,Σ

(n)
k ) using (3.16) and the fact that log |Σk| =

d log a
(n)
k + (D − d) log b

(n)
k :

logN (xn|µ(n)
k ,Σ

(n)
k ) = −1

2

(
1

a
(n)
k

||x̃n − µ
(n)
k ||

2 +
1

b
(n)
k

||xn − x̃n||2

+ d log a
(n)
k + (D − d) log b

(n)
k +D log 2π

)
.

(3.20)

3.1.3 Maximization Step

In order to adapt the LP-IGMN to be suitable for online learning, we developed
a probabilistic version of the incremental PCA (HALL; MARSHALL; MARTIN,
1998) to estimate the eigenvectors matrix Qk efficiently.
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To update the eigenvectors matrix Qk incrementally, we need to solve the fol-
lowing eigenproblem:

Σ
(n+1)
k Q

(n+1)
k = Q

(n+1)
k Λ

(n+1)
k ∀k. (3.21)

We define that the projection error for a data point xn is distributed along the sub-
spaces found by the hidden neurons according to the posterior probability p(k|xn),
k = 1, ..., K, and therefore we calculate the residue vector rk in a neuron’s subspace
as:

rk = (p(k|xn)xn − µk)−
d∑
i=1

(
p(k|xn)xTnuki − µT

kuki
)
uki, (3.22)

rk = yn − ỹn, (3.23)

where we set yn = p(k|xn)xn. In order to obtain the new eigenvectors matrix Q
(n+1)
k ,

we add the unit residue vector r̃k and apply a rotation transformation in the current
matrix Q

(n)
k :

r̃k =

{
rk
‖rk‖2

, if ‖rk‖2 6= 0,

0, otherwise,

and therefore we have:
Q

(n+1)
k =

[
Q

(n)
k , r̃k

]
R

(n+1)
k , (3.24)

where R
(n+1)
k ∈ R(d+1)×(d+1) is a rotation matrix. R

(n+1)
k is the solution of the

eigenproblem of the following form:

D
(n+1)
k R

(n+1)
k = R

(n+1)
k Λ

(n+1)
k , (3.25)

where we define D
(n+1)
k ∈ R(d+1)×(d+1) as:

D
(n+1)
k =

[
Q

(n)
k , r̃k

]T
Σ

(n+1)
k

[
Q

(n)
k , r̃k

]
. (3.26)

Solving (3.25) yields the rotation matrix R
(n+1)
k and the eigenvalues matrix

Λ
(n+1)
k . This intermediate eigenproblem is less complex than an eigenproblem over

a full covariance matrix Σ
(n+1)
k ∈ RD×D since we usually have d� D and the algo-

rithm complexity to solve an eigenproblem with D dimensions is O(D3). Then the

new eigenvectors can be obtained using (3.24). Since Q
(n+1)
k has d+ 1 eigenvectors

and we want to keep only d eigenvectors, we select those eigenvectors associated
with the d largest eigenvalues in Λ

(n+1)
k . We then update the variance parameters

ak and bk, for k = 1, ..., K:

a
(n+1)
k =

1

d

d∑
i=1

λki, (3.27)

b
(n+1)
k =

1

D − d

(
Tr(Σ

(n+1)
k )−

d∑
i=1

λki

)
. (3.28)

where λki is the i-th largest eigenvalue in Λ
(n+1)
k and Tr(Σ

(n+1)
k ) is the trace of the

matrix Σ
(n+1)
k . The other parameters in the LP-IGMN hidden layer are updated as

in IGMN, i.e., using (2.21), (2.24), (2.25), (2.26), (2.27). The LP-IGMN learning
algorithm is summarized in Algorithm 1.
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Algorithm 1 LP-IGMN Learning

Init: d, β, δ,σ2
ini, aini, bini, spmin, vmin

for all new data point xn do:
Compute the likelihood for all hidden neurons using (3.20).
if K < 1 or 1

ak
||x̃n − µk||

2 + 1
bk
||xn − x̃n||2 > χ2

D,(1−β),∀k, then

Create a new hidden neuron and initialize its parameters using (3.18).
end if
E-step: evaluate the posterior probabilities p(k|xn),∀k, using (3.19).
M-step: update the values of the parameters using (2.21), (2.24), (2.25), (2.26),

(2.27), solve the SVD problem (3.25), then update Qk, ak and bk for
k = 1, ..., K using (3.24), (3.27) and (3.28).

if vk > vmin and spk < spmin then
delete the k-th hidden neuron and adjust the prior probabilities using

(2.21).
end if

end for

3.1.4 Recalling

During the recalling mode, LP-IGMN works similarly to IGMN, but we need to
consider the subspaces found by the hidden neurons. Recall from Section 2.2.2 that
the input vector x can be divided into disjoint vectors xa and xb. In the same way,
consider the corresponding partition of the mean vector given by:

µ =

(
µa

µb

)
(3.29)

and of the covariance matrix given by:

Σ =

(
Σaa Σab

Σba Σbb

)
. (3.30)

We can also define the partition of the eigenvector u given by:

u =

(
ua
ub

)
. (3.31)

Note that during the recalling mode, only a partial data vector xa is observed
and we want to use it to estimate the missing data xb. First, we need to calculate
the posterior probability p(k|xa), which is given by:

p(k|xa) =
exp

{
logN (xa|µa,k,Σaa,k) + log πk

}
K∑
q=1

exp
{

logN (xa|µa,q,Σaa,q) + log πq
} , ∀k. (3.32)

In LP-IGMN we calculate the logN (xa|µa,k,Σaa,k) as:

logN (xa|µa,k,Σaa,k) = −1

2

(
1

ak

∣∣∣∣x̃a − µa,k

∣∣∣∣2 +
1

bk
||xa − x̃a||2

+d log ak + (D − d) log bk +D log 2π

)
,

(3.33)
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where the approximation x̃a of the data point xa is given by:

x̃a = µa,k +
d∑
i=1

(xTaua,ki − µT
a,kua,ki)ua,ki. (3.34)

Then recall from (2.34) that the missing vector xb can be estimated as:

x̂b =
K∑
k=1

p(k|xa)
[
µb,k + Σba,kΣ

−1
aa,k(xa − µa,k)

]
. (3.35)

3.1.5 Computation Complexity of LP-IGMN

As each input vector xn is processed just once by LP-IGMN, its computational
complexity is linear in N . However, during the updating it is necessary to perform
matrix multiplications, which requires Dlog2 7 operations using the Strassen algo-
rithm (STRASSEN, 1969), and is necessary to solve an eigenproblem of a matrix
of size (d + 1) × (d + 1), which requires O(d3) computation. Thus, the compu-
tational complexity of LP-IGMN is O(NK(Dlog2 7 + d3)). It can be noticed that,
although LP-IGMN is linear in N , the number of operations for each input vector
increases as new neurons are added. Since the computational complexity of IGMN is
O(NKDlog2 7), the execution time of LP-IGMN is similar to IGMN when d is small
(d � D). This usually happens since we want to keep only a few dimensions that
represent the subspace where data live. For large D (D � 10), the computational
cost is still high for both algorithms, and in IGMN this can also result in numeric
errors during the inversion of the covariance matrix in (2.14).

3.2 Experiments

In this Section, we present and discuss the results of the experiments that we
performed on simulated and real data, with the aim of validating the performance
of LP-IGMN and of comparing it to other algorithms. The LP-IGMN parameters
β, δ, vmin and spmin are found using grid search in order to achieve the best result
on the test data.

3.2.1 Simple 2D Data Simulation

We first perform a simple experiment on a 2D simulated dataset. We have
generated a dataset of N = 1000 data points {x1, ...,xN} ∈ R2 drawn from 3
Gaussian distributions with different means and covariance matrices. The prior
probabilities are defined as {π1, π2, π3} = {0.4, 0.4, 0.3}. We perform unsupervised
learning using the IGMN and LP-IGMN algorithms and for both we set the following
parameters β = 0.1, δ = 0.35, vmin = 3, spmin = 2. We assume that the data lie
on a 1-dimensional subspace and therefore we set d = 1 in LP-IGMN. Figure
3.2 shows the results for the assignments of the data points that is obtained by
maximum a posteriori rule (MAP), which assigns the data point xn to the group
k with the highest posterior probability p(k|xn). The principal component found
by each LP-IGMN hidden neuron is also illustraded in Figure 3.2. The results of
both algorithms are similar, this is already expected since the LP-IGMN shows its
advantage with more challenging datasets on high dimensional space that we will
discuss later in next Sections, however it is interesting that LP-IGMN is capable to
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find the 1-dimensional subspace of highest variance and correctly assign the data
points to the groups.

3.2.2 Evolution of the Parameters

In this experiment, we are interested in analysing the evolution of the LP-IGMN
parameters with the presentation of high-dimensional data and its impact on the
accuracy rate. For this, we have generated 3 Gaussian distributions in R30 with
the following parameters: {d1, d2, d3} = {10, 10, 10}, {π1, π2, π3} = {0.4, 0.3, 0.3},
{a1, a2, a3} = {120, 70, 40}, {b1, b2, b3} = {5, 5, 5}, close means and random eigen-
vectors matrices Uk. The parameter d1 = 10 indicates that 10 random dimensions
of the first Gaussian distribution have their corresponding eigenvalues set to a1 and
the remaining dimensions have their corresponding eigenvalues set to b1. We then
generated a stream of N = 10000 data points from the above Gaussian distributions
where the data points appear in sequence for each group, i.e., the first 4000 vectors
in this dataset were drawn from the first Gaussian, the next 3000 vectors were drawn
from the second Gaussian and so on. We set the parameters of the LP-IGMN as
follows: β = 0.01, δ = 0.3, vmin = 10, spmin = 3 and we gave the correct value d for
the LP-IGMN algorithm. In Figure 3.3 is shown the evolution of the parameters ak
for each neuron in the hidden layer of LP-IGMN. Even with a wrong initialization
of the parameters ak when a new neuron is created, the parameters values converge
to the true values when more data arrive.

In order to perform classification using the LP-IGMN, we first generated 11000
data points from the above Gaussian distributions and we separated a random sub-
set of 10000 data points to be used for training and the remaining 1000 to be used
for test. The same LP-IGMN parameters above were used and the input vector con-
sisted of a feature vector drawn from a Gaussian distribution concatenated with a
binary vector to represent the class label. In this experiment, we simulated a classi-
fication problem with 3 classes using each Gaussian distribution above as a different
class. We considered that the presentation of 100 data points to the learning pro-
cess in LP-IGMN is one epoch, and after each epoch of learning, we perform the
recalling process using the test data and we calculated the accuracy rate over these
data. We compare the results with a restricted version of the IGMN that we called
Diag-IGMN, which uses diagonal covariance matrices to deal with high-dimensional
data. We do not compare to IGMN with full covariance matrices because this algo-
rithm has not been designed to handle high-dimensional data and may fail due to
singularity reasons when attempting to invert its covariance matrices. The param-
eters in Diag-IGMN were set as the same of LP-IGMN. In Figure 3.4, the results
are presented. For the LP-IGMN when more data arrive the accuracy rate increases
until it stabilizes after the presentation of about 5000 data points. The Diag-IGMN
cannot fit the data correctly and does not obtain satisfying results, this is due to
the fact that the restriction it assumes about the data is wrong for the simulated
data. In Figure 3.5 is illustrated the projection of the training data on the two prin-
cipal axes (of highest variance) with the correct classes assignments and the result
of classification obtained by LP-IGMN. The results showed that LP-IGMN is very
effective even with high-dimensional data.
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Figure 3.2: Clustering results for (a) IGMN and (b) LP-IGMN. The color represents
a group, the mean vectors are marked with a cross and the principal component
found by LP-IGMN is illustrated by a black line.



35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

40

60

80

100

120

140

Number of data points

P
a
ra

m
e
te

r 
v
a
lu

e

Figure 3.3: Evolution and convergence of the estimated parameters ak for a sim-
ulated dataset with 30-dimensional vectors. The horizontal red lines are the true
values of the parameters.

3.2.3 Influence of the Dimensionality

In this experiment, our goal is to analyse the effect of the data dimensional-
ity in the LP-IGMN. We generated 3 Gaussian distributions with D-dimensional
feature vectors, for D = 30, ..., 150 with the parameters: {d1, d2, d3} = {10, 10, 5},
{π1, π2, π3} = {0.4, 0.3, 0.3}, {a1, a2, a3} = {250, 75, 50}, {b1, b2, b3} = {5, 5, 5}, close
means and different covariance matrices. A set of N = 1000 data points are drawn
from the Gaussian distributions above. The LP-IGMN was set with the same param-
eters as in the previous experiment. We then evaluate the performance of LP-IGMN
running 10 times 5-fold cross validation (HAYKIN, 2008) with different datasets of
size N generated by the above Gaussian distributions. The 5-fold cross validation
randomly divides the dataset into 5 subsets. The learning process is repeated 5
times using a different subset for testing (i.e., to compute the accuracy rate). This
procedure is repeated 10 times and the final accuracy rate is calculated as the mean
accuracy of the 10 replications. The classification performance for all datasets can
be seen in Figure 3.6. LP-IGMN obtained very high performance with these data
and therefore it is not influenced by the data dimensionality.

Note that the condition number of a matrix is the ratio of its largest and smallest
eigenvalues. If a covariance matrix has a high condition number (ill-conditioned), for
example, when one or more of the eigenvalues are zero, the distribution is singular
and is confined to a subspace of lower dimensionality. In this case, an attempt to
invert this covariance matrix fails due to numeric errors. This usually happens in
IGMN learning process when the input vector has high dimensionality. However,
note that this problem does not happen in LP-IGMN since it does not need to invert
its covariance matrices, therefore it is robust for high-dimensional data. In order
to analyse the condition number of the covariance matrices estimated by LP-IGMN
during the learning process we performed an experiment using the first Gaussian
distribution described above, which has condition number c = 50, since its largest
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Figure 3.4: Evolution of the accuracy rate with the arrival of data points.
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Figure 3.5: (a) 30-dimensional data points projected on two first principal axes with
the correct assignments of the data to the classes (each color represents a class) and
(b) the data points assignments obtained by the LP-IGMN.

eigenvalue is 250 and its smallest is 5. First, consider N = 1000 data points in
∈ RD drawn from this distribution. The condition number of the covariance matrix
estimated by LP-IGMN is calculated as the ratio â1/b̂1. Figure 3.7 shows that the
estimation of the condition number remains stable for different values of the data
dimensionality D. We then fixed D = 50 and measured the condition number during
the learning process to see the evolution of the estimated parameters. The result
can be seen in Figure 3.8, which shows that when more data arrive the condition
number of the covariance matrix approximates to the true value c. This is already
expected due to the convergence of the parameters ak and bk.

3.2.4 Configuring the parameter d

In the previous experiments the correct value of the parameter d is known. In
this section, we present some experiments to analyse how the LP-IGMN is affected
by a wrong choice of the parameter d and we show how to find the correct value
of this parameter. We used the same 3 Gaussian distributions and the LP-IGMN
parameters as in the previous experiment. For different datasets (each of size N =
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Figure 3.6: Influence of the data dimension on the accuracy rate.

1000) in RD, D = 30, ..., 150, drawn from the 3 Gaussian distributions, we trained
the LP-IGMN with d = 2, ..., 20, and we evaluated the performance of the algorithm
using 5-fold cross validation. The boxplot graph1 of Figure 3.9 show the results.
We know that the value d = 10 is the correct value for the generated data. It can
be noticed that for d < 10 the performance is degraded since much information
is discarded and for d > 10 the performance is high, but the variance is also high.
This occurs because we are keeping both the dimensions that carry much information
(of largest eigenvalues) and some dimensions that are noisy or which contain little
information (of smallest eigenvalues). The correct value d = 10 yields the best
result, achieving high performance for most models, keeping a small variation on
the results (models with poor performance) and a mean accuracy rate of 94%.

In a real dataset, we can choose the value of the parameter d using cross valida-
tion. To demonstrate this, we generated a dataset with a fixed data dimensionality
D = 130 and evaluated the performance using 5-fold cross validation for different
values of the parameter d. In Figure 3.10, we can observe that the performance
decreases when we set wrong values of the parameter d, and for the correct value
d = 10 there is a peak, where the algorithm achieves the highest performance. We
will see in the next Section another way to choose the value of the parameter d, in
which d is chosen in order to keep a high value of the explained variance (e.g., 95%
or 99% of the overall variance) and this leads to high performance.

3.2.5 High-dimensional Data Compression and Visualization

In this experiment, we highlight the ability of LP-IGMN in performing compres-
sion of high-dimensional data and its application for visualization of this type of
data. Remember from (3.6) that the reconstruction of a data point in LP-IGMN is

1A boxplot is a statistical tool for graphically depicting groups of numerical data through their
five-number summaries: the minimum value, lower quartile, median, upper quartile, maximum
value and outliers (MASSART et al., 2005).
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Figure 3.7: Influence of the data dimension on the condition number.

given by:

x̃n = µk +
d∑
i=1

(xTnuki − µT
kuki)uki. (3.36)

This represents a compression of the dataset, because for each data point we have re-
placed the D-dimensional vector xn with a d-dimensional vector having components
(xTnuki−µT

nuki). The smaller the value of d, the greater the degree of compression.
To illustrate this process, we used the Extended Yale Face Database B (GEORGHI-
ADES; BELHUMEUR; KRIEGMAN, 2001; LEE; HO; KRIEGMAN, 2005), which
contains frontal face images of 38 individuals. We resized the cropped and normal-
ized images to have size 32x32, therefore they are represented by 1024-dimensional
vectors. The images were taken under varying illumination conditions. We used 64
images from the first person to train the LP-IGMN, which was set with the param-
eters: β = 0.1, δ = 0.35, vmin = 100, spmin = 4. The parameter d is choosen in
order to keep 99% of the overall variance of the data. Recall that the ratio between
the sum of the eigenvalues from 1 up to d and the sum of all the eigenvalues given
us the explained variance σexp of the data, i.e., σexp = 1

Tr(Σ)

∑d
i=1 λi, where λi and

Tr(Σ) are the eigenvalues and the trace of the covariance matrix estimated over the
dataset, respectively. In this experiment, LP-IGMN was trained with the param-
eters described above and with d = 20. Since the mean vectors and eigenvectors
estimated by LP-IGMN are vectors in the original D-dimensional space, we can
represent them as images of the same size as the data points. Figure 3.11 shows
these vectors as images. LP-IGMN found 8 subspaces in the data, whose mean
vectors and the 20 eigenvectors associated to the largest eigenvalues that formed
the first subspace are presented in Figure 3.11. We can observe that the estimated
mean vector represents a frontal pose with different illumination conditions and the
eigenvectors represent the illumination variation.

Another application to LP-IGMN is to high-dimensional data visualization. Here
each data point is projected onto a two-dimensional principal subspace of a neuron
component k, so that a data point xn is plotted at Cartesian coordinates given
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Figure 3.8: Condition number versus the number of observations.

by xTnuk1 and xTnuk2, where uk1 and uk2 are the eigenvectors corresponding to the
largest and second largest eigenvalues. An example of such a plot, for the Iris data
set (BACHE; LICHMAN, 2013), which contains data points in R4 space and 3
classes (Iris setosa, Iris versicolor and Iris virginica), is shown in Figure 3.12.

3.3 Summary

In this chapter we presented the algorithm LP-IGMN that was evaluated in sev-
eral experiments that showed that LP-IGMN is robust to the data dimensionality,
being able to model the density of low-dimensional and high-dimensional data. It
avoids to invert an estimated covariance matrix and to compute eigenvectors as-
sociated to the smallest eigenvalues of an estimated covariance matrix, that are
numerical unstable to estimate and hence it does not have numerical problems dur-
ing the learning process. This numerical problem is the main drawback in the
algorithm IGMN when dealing with high-dimensional data. LP-IGMN showed in
the experiments that is able to find the correct subspaces where the data lies and
can estimate incrementally the eigenvectors that form the subspaces, being efficient
and suitable to perform online learning. Furthermore, LP-IGMN can be used as a
visualization tool of high-dimensional data, since the data can be projected onto a
two-dimensional principal subspace of highest variance.
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Figure 3.9: Impact of the parameter d on the performance of the LP-IGMN with
different input data dimensionality.
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Figure 3.10: Choosing the parameter d using cross validation.
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(a)

(b)

Figure 3.11: (a) the mean vectors estimated by LP-IGMN using the YALEFACES
data from the first class and (b) the estimated eigenvectors of the first hidden neuron.
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Figure 3.12: Projection of the Iris data points onto the two-dimensional principal
subspace found by the (a) first hidden neuron, (b) second hidden neuron and (c)
third hidden neuron of LP-IGMN.



43

4 APPLICATIONS FOR IMAGE RECOGNITION AND
REPRESENTATION

Online learning of image representations is a challenging problem, since the sys-
tem must be able to continuously update and increase its knowledge to perform use-
ful tasks like face and object recognition. The raw input images can be represented
by high-dimensional vectors, concatenating all the image pixels. These vectors can
be used to train a classifier to learn a map f : x −→ y of the input image x ∈ RD

to a class label y. Recent Machine Learning approaches use an intermediate feature
descriptor φ(x,Θ) to extract high-level features of the image before training a clas-
sifier (CARVALHO; ENGEL, 2013). In order to show how the proposed method
LP-IGMN can be used in image classification tasks, we restrict, without loss of gen-
erality, the input data to be the raw image pixels, but it is also possible to embed
our algorithm in a more complex pipeline to learn intermediate and high-level fea-
tures of the image, like the pipelines used by deep learning algorithms (BENGIO,
2009; HINTON; SALAKHUTDINOV, 2006). Usually the dimensionality D of the
input image is large (e.g., D = 1024) and many learning algorithms suffer with the
so called curse of dimensionality (BELLMAN, 1961). For example, the IGMN fails
to handle high-dimensional data, because its covariance matrices become singular
and can not be inverted. This happens because many dimensions are noisy and
the important information is found in a subspace of lower dimensionality. It has
been shown in the previous chapter that the LP-IGMN is robust to the curse of
dimensionality and it can model the density of these data correctly, achieving high
performance in the experiments. In this chapter, we highlight some applications
of the proposed LP-IGMN. In the experiments, the input data have high dimen-
sionality, therefore the standard IGMN algorithm can not be applied and compared.
Throughout all the experiments described in this chapter, the LP-IGMN parameters
β, δ, vmin and spmin are found using grid search in order to achieve the best result
on the test data. We also compare the LP-IGMN to other state-of-the-art models,
and the results show that our method has competitive or better performance than
many algorithms.

This chapter is organized as follows: Section 4.1 presents the experiments of the
LP-IGMN for face recognition. Section 4.2 describes the experiments for handwrit-
ten digits recognition. In Section 4.3 is presented the evaluation of the proposed
method in the task of object recognition. In Section 4.4 is detailed how to apply
LP-IGMN for image denoising. Section 4.5 describes how our method can be used
for image segmentation and Section 4.6 presents a summary.
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4.1 Face Recognition

Face recognition is a challenging and important task. It can be a component in a
security system or in a search tool of social nets, for example. The illumination con-
ditions, occlusions, the different poses and the quantity of individuals (classes) arise
several difficulties to learn a map between the image space and the labels (individu-
als). Furthermore, this map is highly nonlinear and simple optimizations algorithms
can not achieve satisfactory results. Computationally intensive nonlinear optimiza-
tion techniques must be used, and there is the risk of finding a suboptimal local
minimum of the error function. As we have already noted, many natural sources of
data carry many noisy dimensions and because of this the data live in a subspace of
the higher dimensional observed data space. Capturing this property explicitly can
lead to improved density modelling compared with more general methods. The face
images have this property and we can use the LP-IGMN algorithm to capture it.
In this experiment, we use the Extended Yale Face Database B (GEORGHIADES;
BELHUMEUR; KRIEGMAN, 2001; LEE; HO; KRIEGMAN, 2005), which consists
of 38 individuals and each with 64 frontal face images. The images were taken under
different illumination conditions controlled in laboratory. The images are cropped
and resized to have size 32x32, therefore the input data x is a 1024-dimensional vec-
tor. We also rescaled the pixels intensities to [0,1]. This normalization is necessary
to avoid problems with the distance metric used by some algorithms that we use
to compare with our method. A random set of 10 images each for 10 individuals is
shown in Figure 4.1.

Figure 4.1: Random image samples for 10 individuals of the Extended Yale Face
Database B. Each row represents an individual (class).

We follow the experiment setting in YANG; WANG; HUANG (2011), which uses
a random set of 50 face images from each individual for training and the rest for
test. Each training and testing step is repeated 10 times using different random sets
of images and we measure the average accuracy rate and the standard deviation
for the following algorithms: Näıve-Bayes (JOHN; LANGLEY, 1995), K-NN (AHA;
KIBLER; ALBERT, 1991), Decision Trees (J48) (QUINLAN, 1993), Random For-
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est (BREIMAN, 2001), Multilayer Perceptron (MLP) (RUMELHART; HINTON;
WILLIAMS, 1986), Linear SVM (CORTES; VAPNIK, 1995) and the proposed LP-
IGMN. We adjust parameters of the algorithms in order to maximize their perfor-
mance on the test data. We train the K-NN with k = 1 (1 nearest neighbour); the
Random Forest with 50 trees; the MLP with 100 hidden neurons and weight decay
parameter (regularization parameter) λ = 0.0001 and we use 100 iterations of the
Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) (NOCEDAL, 1980)
algorithm to optimize its parameters; we set the regularization parameter C to 100
in the Linear SVM; and in LP-IGMN we set the parameters β = 0.1, δ = 0.35,
vmin = 10, spmin = 3. We evaluate different values of the parameter d in LP-IGMN
in order to find the best configuration. Figure 4.2 shows the accuracy rate on the
test data for various values of this parameter. It can be noted that the value of the
parameter that yields the best performance is d = 5, for which the average accuracy
rate is 97%.
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Figure 4.2: Accuracy rate on the Extended Yale Face B test data for different values
of the parameter d. The value d = 5 yields the highest performance (97%).

Figure 4.3 illustrates the confusion table between the 38 individuals and the
most confused samples (misclassified samples) for the individuals 1, 31 and 37, that
occurs during the evaluation of the algorithm LP-IGMN. We can see that the
confused images (false-positive samples) are very hard to classify because they have
partial occlusions and low illumination.

In Table 4.1, we can see the LP-IGMN performance compared to other state-of-
the-art algorithms. The algorithms Näıve-Bayes, K-NN and Decision Trees have bad
results, since they suffer with the curse of dimensionality. The regularized models:
Random Forest, MLP and Linear SVM achieve much better results. LP-IGMN
outperforms these algorithms and is competitive with the Supervised SRC (YANG;
WANG; HUANG, 2011). This method uses a computational complex algorithm
(Sparse Coding) for supervised learning a set of K = 20 base vectors to represent
each class in a high dimensional sparse space. In contrast, LP-IGMN learns just one
set of bases, represented by its mean vectors in the hidden layer, and it adjusts the
size of this set automatically in order to model the data density. The learned bases
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Figure 4.3: (a) Average confusion table for the LP-IGMN on the Extended Yale Face
B dataset. The entry in the ith row and jth column is the percentage of images
from class i that were identified as class j, and (b) the true-positive samples from
the classes 1, 31 and 37 and the most confused images (false-positive samples) for
each class (row). The true class label is shown on the top of each image.

in LP-IGMN together with the eigenvectors estimated by the hidden neurons form
the subspace where the data live. We can project the data in these subspaces to
have an interesting insight into the classes. In Figure 4.4 is illustrated this process,
where the test data is projected onto the principal subspace found by each neuron.
We can see clearly the nonlinear nature of this dataset. Therefore, LP-IGMN can
effectively learn the nonlinear map from the original high-dimensional space of the
images to the class-specific space.

Table 4.1: Performance comparison of the LP-IGMN with several state-of-the-art
methods on the Extended Yale Face B dataset.

Algorithm Accuracy (%)
Näıve-Bayes 54.3 ± 2.4
K-NN 73.8 ± 1.5
Decision Trees 74.4 ± 2.6
Random Forest 96.1 ± 0.6
MLP 92.3 ± 0.9
Linear SVM 96 ± 0.6
LP-IGMN (ours) 97 ± 0.7
Supervised SRC (YANG; WANG; HUANG, 2011) 98.44

4.2 Handwritten Digits Recognition

The development of algorithms capable of automatically recognize handwritten
digits is of great interest in the machine learning community and the industry.
Efficient methods make possible the design of automate systems that deal with
numbers such as postal code, banking account numbers and numbers on car plates.
For example, post offices can use these methods to sort letters and the banks can use
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Figure 4.4: Projection of Extended Yale Face B test data on the 2 principal compo-
nents of each neuron. Colors corresponds to different individuals (classes).

them to read personal checks. In order to show how the LP-IGMN can be applied
in the task of handwritten digits recognition, we perform experiments on the USPS
digits1 dataset. This dataset contains 7291 training and 2007 test 16x16 gray-scale
images. In Figure 4.5 is shown random samples of each class of the USPS Digits
dataset.

Figure 4.5: Random samples of each class (row) of the USPS Digits data.

We randomly pick 500 training images per class and 200 test images per class.
This procedure is repeated 10 times and we measure the accuracy rate and the
standard deviation. We use the same parameters in LP-IGMN as in the previous
Section. We found that the best value of the parameter d for this dataset is d = 10,
as can be viewed in Figure 4.6. Using this configuration in LP-IGMN, we achieve
the average accuracy rate of 95.57%.

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Figure 4.6: Accuracy rate on the USPS Digits test data for different values of the
parameter d. The best value is d = 10, which yields the accuracy rate of 95.6%.

The average confusion table obtained from the evaluation of the LP-IGMN can
be viewed in Figure 4.7. The diagonal shows the average accuracy rate per class.
Most confusion occurs between the digits 3 and 5, and between the digits 7 and 9.
However, the accuracy rate per class is still high (minimum of 92.7% in the class 3).

An interesting feature in LP-IGMN is that it allows the visualization of what
has been learned by the model. In Figure 4.8 is shown the mean vectors, the first
principal component associated to the largest eigenvalue and the second principal
component associated to the second largest eigenvalue of each hidden unit in LP-
IGMN after training on the USPS Digits data. The mean vectors represent blur
versions of the digits and the principal components seem to capture the shape and
angle variation of the digit. This meaningful representation offered by our algorithm
can help researchers to find important structures and to have an insight of the
concepts extracted from the raw data.

We compare the LP-IGMN with other state-of-the-art approaches, in particu-
lar, with the Linear SVM, MLP and Non-linear discriminative dictionary (NLDD)
(SHRIVASTAVA et al., 2013). We use the following parameters: C = 100 (regu-
larization parameter) in the Linear SVM; 50 hidden neurons, λ = 0.0001 (weight
decay parameter) and 100 iterations of the L-BFGS in the MLP. The results can
be seen in Table 4.2. LP-IGMN outperforms the Linear SVM and the MLP, and it
remains competitive with the result reported in SHRIVASTAVA et al. (2013). The
NLDD algorithm relies in the expensive kernel computation of a nonlinear mapping
from the image space to a higher dimensional feature space. This mapping seems
to yield better discriminative properties, but its computation cost is infeasible for
online learning. On the other hand, LP-IGMN is suitable for online setting and to
deal with large datasets, since its computational complexity is linear in the number
of data points N .
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Figure 4.7: Average confusion table for the LP-IGMN on the USPS Digits dataset.
The diagonal values represent the percentage of correctly classified images for each
class.

Figure 4.8: Top to bottom: the mean vectors; the first principal component (of
largest eigenvalue); the second principal component (of second largest eigenvalue)
of the hidden neurons in LP-IGMN after training on the USPS Digits data.

4.3 Visual Object Recognition

The task of identifying objects in images is of fundamental importance to vision
systems and it has been investigated extensively. For example, intelligent robots
need to identify objects to better understand the environment and to perform useful
tasks like search for a specific object in complex terrains (SCHNEIDER et al., 2009;
SAIDI et al., 2007). Several approaches that were developed to address the problem
of visual object recognition rely in subspace analysis and use state-of-the-art meth-
ods such as PCA (JOLLIFFE, 2005), KPCA (SCHöLKOPF; SMOLA; MüLLER,
1998) and LDA (MCLACHLAN, 2004) in order to find a better image representa-
tion before training a classifier (LEE et al., 2005; LEONARDIS; BISCHOF, 2003).
Following this line, we can apply the LP-IGMN algorithm and find the subspaces
where each object data live. To demonstrate this, we performed several experiments
with the well-known COIL-20 database (NENE; NAYAR; MURASE, 1996). This
database consists of gray-scale images of 20 different objects rotated around one
axis, where the 72 different views for each object are taken at pose intervals of 5
degrees. The objects of this dataset are presented in Figure 4.9. An example of the
72 views of the first object are displayed in Figure 4.10.

For our experiments we resized the original images to 16x16 pixels and therefore
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Table 4.2: Performance comparison of the LP-IGMN with other state-of-the-art
approaches on the USPS Digits test data.

Algorithm Accuracy (%)
Linear SVM 88.5 ± 0.5
MLP 92.3 ± 0.8
LP-IGMN (ours) 95.6 ± 0.3
NLDD (SHRIVASTAVA et al., 2013) 97.5

Figure 4.9: Sample images of the COIL-20 database.

the input data is a 256-dimensional vector. Each input vector is normalized to
have unit length. To evaluate our algorithm, we consider 36 random views of each
object for training and remaining 36 views for testing. Therefore, we use 720 images
for training and for testing. We set the LP-IGMN parameters as in the previous
experiments. The performance of the proposed LP-IGMN with different values of the
parameter d can be seen in Table 4.3. These results represent the average accuracy
rate for 10 random sets of training and testing images. Our best accuracy rate is
99.2%, which is achieved setting the parameter d = 10.

We also considered an online setting where only few samples are presented to
the algorithm before testing. We assume that the presentation of 50 training images
is one epoch, and after each epoch we classify the entire test data (720 images) to
calculate the accuracy rate. The evolution of the LP-IGMN performance can be
seen in Figure 4.11. The performance increases rapidly with the presentation of the
training images. This shows that our method is suitable for online learning of object
categories and can be used in this configuration by vision systems (e.g., by a robot’s
vision system).

We performed another experiment by varying the number of training views per
object. The views are randomly selected and we use the best parameters determined
in the previous analysis. The results can be seen in Table 4.4. We also compare these
results with other state-of-the-art approaches, specifically with PCA, KPCA and
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Figure 4.10: The 72 views of the first object in the COIL-20 database.

LDA. These methods are first used to find a lower dimensional representation of the
input image and then a 1-nearest-neighbour classifier is used. All the methods are
configured to find a 10-dimensional subspace of the COIL-20 images. The results are
shown in Figure 4.12. LP-IGMN outperforms these algorithms under all conditions.

4.4 Image Denoising

The introduction of noise typically occurs during the image acquisition process
and a denoising phase becomes essential to improve the image quality. Several
methods have been developed to address this problem, from simple smoothing fil-
ters (GONZALEZ; WOODS, 2006) to the complex sparse representation (ELAD;
AHARON, 2006). Many recent approaches instead of processing each pixel individ-
ually denoise blocks (or patches) of the image. These methods take into account the
redundant information of small sub-images inside the image of interest to extract
important features such as textures and borders, in order to use combinations of
them to reconstruct a denoised image version. It has been shown that these patch-
based methods are highly efficient for image denoising (DELEDALLE; SALMON;
DALALYAN, 2011). Assuming that the noise ε is white additive Gaussian with
zero mean and standard deviation σ, i.e., ε ∼ N (0, σ2), we can denote the observed
corrupted image as γε = γ + ε, where γ is the unobserved true image vector. The
goal of denoising is to obtain an estimation γ̃ from the observation γε such that γ̃
is close to γ.

Considering the patch-based approach, we can treat the observed noise image
γε as a collection of non-overlapping blocks of size D = w.w, i.e., as a set X =
{x1, ...,xn, ...,xN} ∈ RD×N , where w is an user defined parameter, which is usually
chosen by cross validation. One simple approach to estimate γ̃ is to use PCA over
the set of patches, drop the noise components (i.e., the noise dimensions) and finally
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Table 4.3: Classification accuracies for different values of the parameter d in LP-
IGMN.

Value of the
parameter d Accuracy (%)

2 96.7
5 98.6
10 99.2
20 98.8
50 98.5
70 98.2
100 97.0
150 95.3
200 93.6
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Figure 4.11: Performance evolution in the COIL-20 database.

reproject these data onto the original image space. We use a similar approach to
show how LP-IGMN can be applied to perform denoising in images. First, we extract
M random patches from the corrupted image γε and we use them to unsupervised
training the LP-IGMN. In our experiments, we use M = 50000 random patches.
Next the learned model is used to calculate the data point approximation x̃n of each
non-overlapping patch xn. In other words, our model reconstructs the patches to
create an estimation γ̃ of the free-noise image γ.

Since in LP-IGMN a different data point approximation is given by each hidden
neuron because the input vector can be projected locally onto the principal subspace
found by a hidden unit, we have to consider a global approximation for this data
in the order to reconstruct an image patch. We calculate the global approximation
using equation (3.7).

In Figure 4.13 is displayed a set of random patches corrupted with a noise level
σ = 20 and the reconstruction of these patches obtained by the LP-IGMN.



53

Table 4.4: Classification accuracies for different number of training views per object.

Number of views
used for training Accuracy (%)

2 73.0
4 81.0
8 90.4
18 96.5
36 99.2
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Figure 4.12: Recognition accuracies of LP-IGMN versus PCA, KPCA and LDA on
the COIL-20 database, with a d = 10 dimensional principal subspace. The number
of training images (views) per object were randomly selected from the 72 images of
each object.

In our experiments, we set w = 12 as a compromise between aggregating enough
information and the computational cost. Training with small windows (e.g., w = 2,
w = 4) is fast, but they may not carry enough information about the structures such
as textures, resulting in bad results. Large windows (e.g., w = 10, w = 12) increase
the computational cost, but the results are considerably better in our experiments.
The parameters in LP-IGMN are configured as following: β = 0.1, δ = 0.35, vmin =
5, spmin = 3.

To evaluate our approach, we use the Peak Signal to Noise Ratio (PSNR) as an
accuracy measure, which is defined as:

PSRN(γ̃,γ) = 10 log10

2552

||γ̃ − γ||2
. (4.1)

We also compare our method with PCA. The algorithms are configured to keep the
same number of components. In Figure 4.14 is shown the image Barbara damaged
with noise level σ = 10 (first row) and σ = 20 (second row), and the correspond-
ing denoised images obtained by PCA and LP-IGMN. To evaluate these methods
quantitatively, we measure the performance of them for denoising the gray-scale test
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(a) (b)

Figure 4.13: (a) A set of 100 random patches damaged with noise level σ = 20 and
(b) the reconstructed (denoised) patches obtained by LP-IGMN.

images (of size 512x512) displayed in Figure 4.15.
The results can be seen in Table 4.5. It can be noted that the LP-IGMN achieves

good results and has performance similar or better than PCA. Therefore, our pro-
posed method is suitable for denoising images.

Table 4.5: Performance comparison of the LP-IGMN with PCA for different noise
levels.

PCA LP-IGMN Number of
componentsσ = 10

Barbara (PSNR=28.12) 30.10 30.40 50
Boat (PSNR=28.13) 30.40 30.43 50
Lena (PSNR=28.13) 31.20 31.38 50
Peppers (PSNR=28.13) 33.21 33.26 20

σ = 20
Barbara (PSNR=22.10) 25.35 26.38 30
Boat (PSNR=22.13) 25.79 26.69 20
Lena (PSNR=22.10) 28.10 28.15 20
Peppers (PSNR=22.11) 29.45 30.16 10

σ = 30
Barbara (PSNR=18.58) 23.52 23.52 20
Boat (PSNR=18.61) 24.91 24.91 10
Lena (PSNR=18.57) 26.50 26.50 10
Peppers (PSNR=18.59) 28.20 28.20 10

4.5 Color Image Segmentation

Color image segmentation is an important and useful task that has many appli-
cations. The segmentation allows us to identity regions and objects of interest in
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(a) Noise image (σ = 10) (b) PCA (c) LP-IGMN

(d) Noise image (σ = 20) (e) PCA (f) LP-IGMN

Figure 4.14: First row: (a) a noise image (PSNR=28.12) damaged with noise level
σ = 10 and the corresponding denoised image obtained (b) by PCA (PSNR=30.10)
and (c) by LP-IGMN (PSNR=30.40). Second row: (d) a noise image (PSNR=22.10)
damaged with noise level σ = 20 and the corresponding denoised image obtained
(e) by PCA (PSNR=25.35) and (f) by LP-IGMN (PSNR=26.38).

complex and confused scenes for posterior analysis. If an image only contains homo-
geneous color regions, unsupervised learning in color space can be applied efficiently.
To demonstrate how the LP-IGMN can be applied to the problem of color image
segmentation, we use the Breast Cancer dataset from UCSB (GELASCA et al.,
2008), which contains RGB images stained with hematoxyling and eosin (H&E)
used in breast cancer cell detection. These images are stained since most cells are
essentially transparent, with little or no intrinsic pigment. Certain special stains,
which bind selectively to particular components, are being used to identify biological
structures such as cells. In those images, the challenging problem is cell segmenta-
tion for subsequent classification in benign and malignant cells. In this experiment,
we only consider the problem of cell segmentation. In Figure 4.16 is shown an im-
age of breast tissue, which contains malignant cells. In this image, we can see that
there are three dominant colors (without considering brightness): white, pink and
blue, and they are easy to be distinguished of each other by us. Because of this,
we considered to use the L∗a∗b∗ color space instead of the RGB color space, since
the L∗a∗b∗ color space was designed to approximates to the human perception. The
L∗a∗b∗ space consists of a luminosity layer L∗ and two chromatics layers a∗ and b∗.
The layer a∗ indicates where color falls along the red-green axis, and the layer b∗

indicates where the color falls along blue-yellow axis. Since all the color information
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(a) (b) (c) (d)

Figure 4.15: The test images (a) Barbara, (b) Boat, (c) Lena and (d) Peppers.

are present in the a∗b∗ space, we can measure distances between pixels using its
values for a∗ and b∗.

Figure 4.16: A breast tissue image containing malignant cells.

In order to identify the groups of colors in an image, we train the LP-IGMN
considering the image pixels as input vectors in R2 containing the values of a∗ and
b∗. In this experiment, we used the tissue image presented in Figure 4.16 to segment
the cells. The parameters of LP-IGMN was set as: β = 0.0001, δ = 0.1, vmin = 150,
spmin = 7 and d = 1. LP-IGMN created 3 hidden neurons to represent the 3 groups
of colors as we expected.

The image pixels are classified as belonging to a group k using the maximum a
posteriori rule (MAP). In Figure 4.17 is shown a segmentation mask obtained by
the classification of the image pixels. This mask contains the labels (group index),
represented with different colors (black, white and gray), for each pixel in an image.
This mask can be used to segment the objects from the original RGB image. To
perform this, we applied the mask over the tissue image in order to select only the
pixels labeled as belonging to a group k. The results of this step are illustrated in
Figure 4.18. Each image contains the objects that belong to a group k. Note that
one of the groups in Figure 4.17 has light and dark blue objects. The cell nuclei is
dark blue and therefore we need to separate it from the light blue objects. In order
to perform this, we applied the Otsu’s method (OTSU, 1979) with the blue pixels
brightness values, which are obtained by the L∗ layer in the L∗a∗b∗ space, in order
to find a threshold to separate the dark and light blue pixels. The result of the cell
segmentation is shown in Figure 4.19.
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Figure 4.17: Breast tissue image segmentation mask containing the pixels labels.

(a) (b) (c)

Figure 4.18: Segmentated objects of the breast tissue image. (a) Segmented objects
by the first neuron (first group), (b) segmented objects by the second neuron (second
group) and (c) segmented objects by the third neuron (third group).

4.6 Summary

In this chapter we presented a wide variety of applications for our proposed
LP-IGMN. We conducted several analysis with our algorithm in classification tasks
and visualization of high-dimensional input data, and the results have demonstrated
that LP-IGMN achieves high performance and outperforms several state-of-the-art
methods. An explanation for the good results is that most real data carry useless
information in many variables (or dimensions) and is necessary to find the intrinsic
dimensionality or the subspace where the important information is located in order
to achieve good results. From our experiments, it can also be noted that the con-
figuration of the parameters in LP-IGMN is straightforward. The value of the most
important parameter d, which defines the dimensionality of the principal subspace,
can be found using cross validation, and a large range of values can yield satisfac-
tory results. The other parameters, inherited from IGMN, have remained almost
the same among the experiments, this highlights that they are not critical to achieve
good results. Another important feature emphasized in our experiments is the capa-
bility of our algorithm to offer an interesting insight of what has been learned. The
mean vectors and the eigenvectors in the hidden layer can be visualized as mean-
ingful representations of the concepts extracted from the raw data when the input
patterns are images. Furthermore, high-dimensional data can be projected locally
onto a 2-dimensional space spanned by the first 2 principal components (eigenvec-
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Figure 4.19: Cell segmentation of the breast tissue image.

tors) of a hidden neuron to give us an interesting insight about the data. We have
also shown that the LP-IGMN global projection of the data point, which considers
the contributions of each hidden unit to reconstruct an input pattern, can be used
for image denoising tasks.
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5 CONCLUSIONS

This monograph has presented LP-IGMN, a new artificial neural network able to
model high-dimensional data streams efficiently, which is the main contribution of
this dissertation. To evaluate our proposed model, we conducted several experiments
using simulated and real datasets, and these experiments have demonstrated that:
(i) LP-IGMN can find the specific subspace around which each neuron is located,
representing the intrinsic dimensionality of the data; (ii) its parametrization is ro-
bust with respect to the ill-conditioning or the singularity of empirical covariance
matrices, overcoming the curse of dimensionality problem that happens with IGMN;
(iii) the noise variance which is orthogonal to the principal subspace is modelled by
a single parameter in each hidden unit and this assumption provided very satisfying
results for many types of data; (iv) the concepts learned from raw images are mean-
ingful and can visualized plotting the LP-IGMN mean vectors and the eigenvectors
as images in the original space; and (v) the LP-IGMN performance is competitive,
and usually superior, with other state-of-the-art algorithms.

LP-IGMN was also tested in practical applications such as: (i) face recognition;
(ii) handwritten digits recognition; (iii) object recognition; (iv) image denoising; and
(v) image segmentation, and these experiments have shown that LP-IGMN can be
used successfully in applications that require life-long learning in high-dimensional
spaces. Specifically, the experiments have demonstrated that LP-IGMN has the
following advantages over other standard approaches:

LP-IGMN is suitable for life-long learning. LP-IGMN automatically adjusts
its topology in order to model the data density and can continuously acquire new
knowledge considering the stability of the already learned knowledge. In addition,
it does not have a separate phase for learning and recalling.

LP-IGMN learning algorithm is fast and low memory consuming. LP-
IGMN learns using a single scan over the training data and each data point can
be immediately used and discarded, therefore, there is no need to store the whole
dataset in memory.

The configuration of the parameters in LP-IGMN is straightforward. A
large range of values of the parameter d, which defines the dimensionality of the
principal subspace, yields satisfactory results. The other parameters, inherited from
IGMN, have remained almost the same among the experiments, this highlights that
they are not critical to achieve good results.

LP-IGMN can be used as a visualization tool of high-dimensional data.
The eigenvectors estimated by each hidden unit span a subspace where the data live
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and the important information is located. We can project the whole dataset in these
subspaces to have an interesting insight into the classes and geometrical structures
of the data.

LP-IGMN has suitable computational performance for online learning.
In online learning, the data come in flows, i.e., the data points arrive over the time
and the number of data points N → ∞. Unlike other complex algorithms, LP-
IGMN has computational complexity linear in N and, therefore, it can be applied
efficiently in online settings.

LP-IGMN can learn even in presence of redundant and/or irrelevant
input dimensions. Since LP-IGMN is a regularized model that can model the
noise information and the dimensions with small variance using a single parameter
in each hidden neuron, the learning algorithm is robust to different sources of data,
including those that are very noise such as vision sensors in robots.

There are some directions in which this work can be continued:

• Verifying the benefits of allowing each hidden neuron in LP-IGMN finds a
subspace with different intrinsic dimensionality dk. If possible, let the model
automatically find these values;

• Investigating ways to create and merge components in order to apply LP-
IGMN in non-stationary environments, where there is no local context in the
input data;

• Learning hierarchies of features before classifying. It is possible to extract
more powerful features from the raw data stacking several hidden layers as it
is done in the successful deep learning algorithms (BENGIO, 2009; HINTON;
SALAKHUTDINOV, 2006);

• Verifying the possibility of learning independent components instead of linear
components;

• Extending LP-IGMN to handle temporal high-dimensional sequences.
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