Adiponectin Protects Against Metabolic Syndrome by its **Modulation of Lipid and Glucose Metabolism**

Lucas Eduardo Gatelli¹, Anize Delfino von Frankenberg¹, Carolina de Oliveira², Mônica Sost¹, Pedro Saddi-Rosa², Bárbara Nedel¹, Rafaela Zandavalli¹, Dulcinéia Simionato¹, Amanda Fabbrin¹, Manoella

Santos¹, Luis H Canani¹, André F Reis², Fernando Gerchman¹.

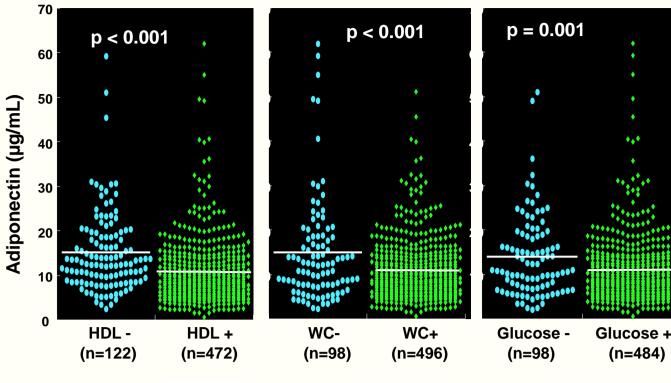
¹ Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; ² Federal University of São Paulo, São Paulo, Brazil

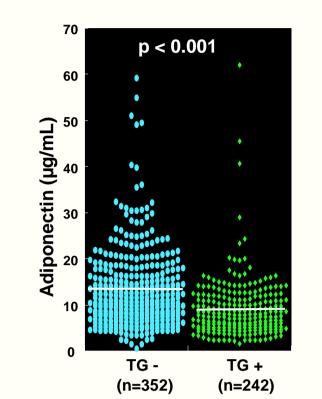
Background	Results	How do a each	
• Adiponectin, an insulin sensitizer hormone uniquely	Table 1: Subjects characteristics according to the presence of metabolic	Figure 4. Ad metabolic s	
expressed in adipose tissue, has an important role in	syndrome	70	
regulating glucose and lipid metabolism by suppressing		p < 0 60 ⁻ •	
hepatic gluconeogenesis and increasing fatty acid	HCPA cohort UNIFESP cohort		
oxidation.	MS - MS + p MS - MS + (n=36) (n=136) p (n=39) (n=383) p	• 1///1/001	

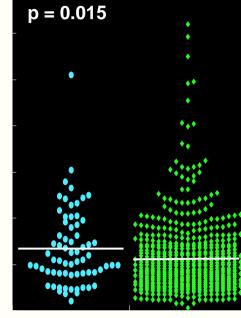
 Although the mechanisms for development of hypoadiponectinemia are not well defined, low levels of plasma adiponectin have been reported in subjects with obesity, insulin resistance, type 2 diabetes and cardiovascular disease.

• As a result hypoadiponectinemia may be related with the development of Metabolic Syndrome (MS).

Objective

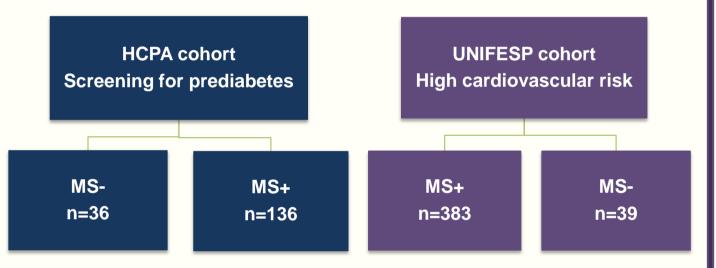

• To examine the relationship of adiponectin with MS in patients from cardiovascular and metabolism units of two tertiary university hospitals.


Subjects and Methods


Table 1: Subjects characteristics according to the presence of metabolic syndrome							
	I	HCPA cohort		UNIFESP cohort			
	MS – (n=36)	MS + (n=136)	р	MS – (n=39)	MS + (n=383)	р	
Female sex (%)	78	70	0.531	25	47	0.010	
Age (years)	48 ± 12	54 ± 11	0.010	59 ± 12	60 ± 10	0.647	
Total cholesterol (mg/dL)	201 ± 41	205 ± 42	0.649	272 ± 48	270 ± 54	0.861	
HbA1c (%)	5.5 ± 0.6	6.4 ± 1.2	<0.001	5.7 ± 0.8	6.9 ± 1.6	<0.00	
NGT/PDM/ DM (%)	89/3/8	12/56/32	<0.001	52/32/16	13/31/56	<0.00^	
HOMA-IR	1.6 (1.1-2.4)	3.3 (1.9-4.7)	0.004	0.5 (0.3-0.6)	1 (0.6-1.6)	<0.00	

adiponectin levels differ by the presence of h component of Metabolic Syndrome?

Adiponectin levels according to the components of syndrome


Hypertension - Hypertension + (n=67) (n=527)

Design

Cross-sectional study

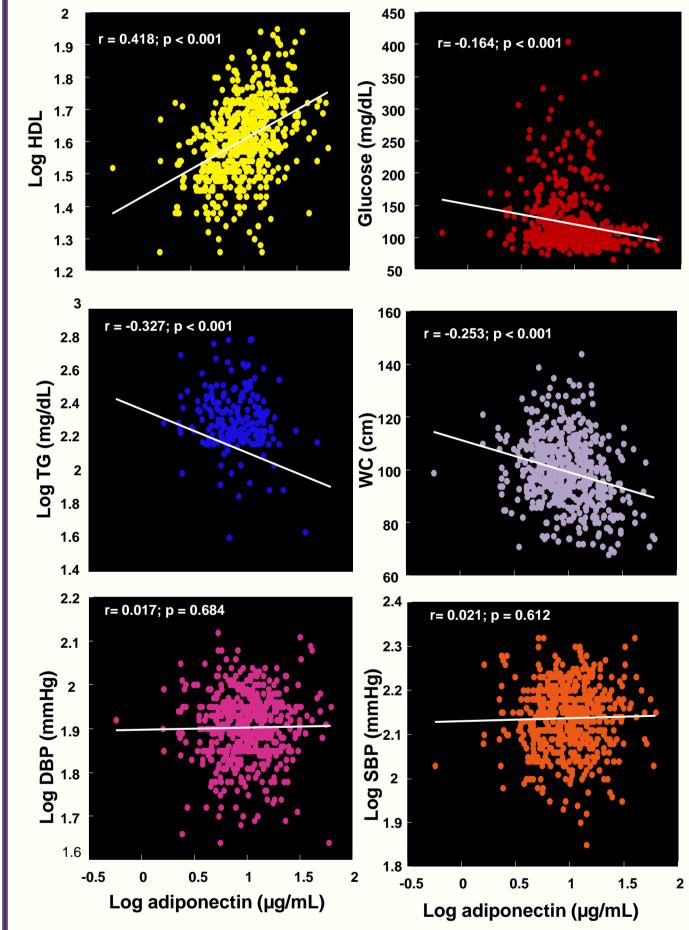
Subjects

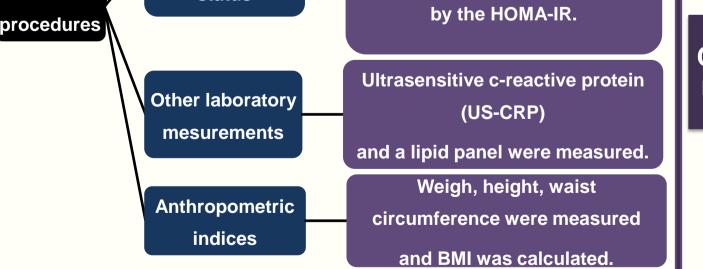
• Patients from the Metabolism Unit of Hospital de Clínicas de Porto Alegre (HCPA) of Federal University of Rio Grande do Sul and from the Metabolism and Cardiovascular Units of Hospital São Paulo from Federal University of São Paulo (UNIFESP).

Methods

MS was defined by at least three of the following: hypertension, low HDL and/or high triglycerides levels, hyperglycemia and high waist circumference and/or BMI (IDF 2009).

	Adiponectin	_	Fasting plasma adiponectin ELISA, Invitrogen®	DBP (
to	Glucose tolerance		OGTT (0, 30, 60, 90, 120 min) and/or Hba1c (ADA criteria)	Data e FPG = glucos
	status	Ir	nsulin resistance was estimated	SBP =


HOMA-		50) 0.400		70 1 05	0.004
BETA	103(63-152) 114 (64-1	59) 0.496	54 ± 17	72 ± 35	<0.001


Metabolic syndrome criteria							
	HCPA cohort			UNIFESP cohort			
	MS – (n=36)	MS + (n=136)	р	MS – (n=39)	MS + (n=383)	р	
BMI (Kg/m²)	28 ± 6	33 ± 6	-	23 ± 3	29 ± 5	-	
Waist circumference (cm)	94 ± 15	106 ± 12	-	84 ± 7	99 ± 12	-	
HDL- cholesterol (mg/dL)	55 ± 13	47 ± 12	-	46 ± 12	38 ± 10	-	
Triglycerides (mg/dL)	100 ± 40	162 ± 91	-	96 ± 26	163 ± 92	-	
FPG (mg/dL)	91 ± 11	114 ± 41	-	100 ± 24	126 ± 47	-	
2h-PG (mg/dL)	111 ± 43	191 ± 81	-	-	-	-	
SBP (mmHg)	125 ± 19	144 ± 22	-	138 ± 24	141 ± 23	-	
DBP (mmHg)	79 ± 11	87 ± 13	-	79 ± 15	80 ± 13	-	
Data expressed as absolute number (%), mean \pm SD or median (P25-75). FPG = fasting plasma glucose; 2h-PG = 2 hour plasma glucose; NGT = normal							

ose tolerance; PDM = prediabetes; DM = diabetes; = systolic blood pressure; DBP = diastolic blood pressure

How do Adiponectin levels correlate to each **Metabolic Syndrome criteria?**

Figure 5. Correlations among adiponectin levels and Metabolic Syndrome criteria

Statistical Analysis

• Data was expressed as absolute number (%), mean ± standard deviation (SD), median (P25-P75). Chi-square test and ANOVA were used as appropriate.

• Variables with a non-normal distribution were log transformed before analyses.

• Pearson's correlation coefficient was used for normally distributed variables.

• Multiple logistic regression analyses were performed to assess the relationship between adiponectin levels and MS while adjusting for confounders.

• A two-sided P value < 0.05 was considered significant.

Comparison of adiponectin levels according to the presence of metabolic syndrome, number of criteria and glucose tolerance

Figure 1. Adiponectin vs. Presence of MS Figure 2. Adiponectin vs. Number of criteria

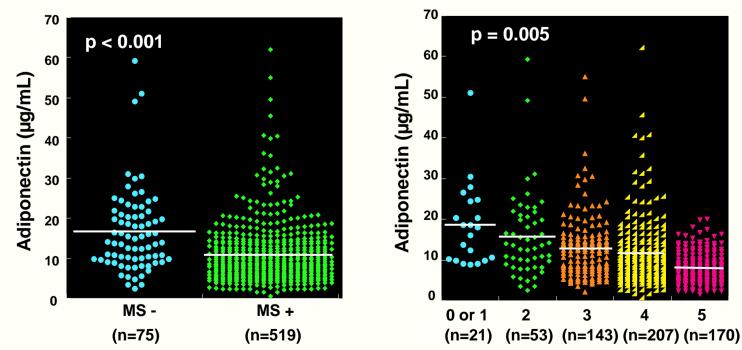
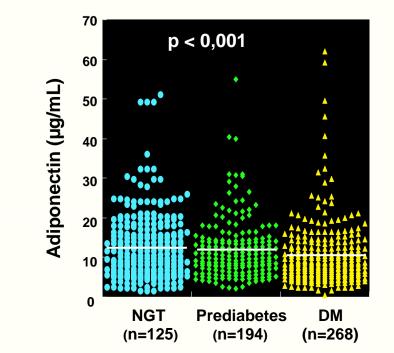



Figure 3. Adiponectin vs. Glucose tolerance status

3

Association between metabolic syndrome and adiponectin levels while adjusting for possible confounders (Poisson Multiple Regression)

Table 2 - HCPA and UNIFESP

Independent Variables		НСРА			UNIFESP	
variables	PR	CI 95%	р	PR	CI 95%	р
Gender	0.96	0.82 – 1.13	0.635	1,12	1,04 – 1,22	0,003
Age	1.01	1.01 – 1.02	< 0.001	1,00	0,99 – 1,01	0,236
1 DP Adiponectin*	0.87	0.79 – 0.97	0.012	0,93	0,89 – 0,98	0,006
US-PCR	1,01	1,00 – 1,02	0,001			
HOMA-IR	1,02	1,00 – 1,03	0,021	1,06	1,02 – 1,09	0,001
ISIMatsuda	0,96	0,93 – 0,99	0,003			
* 1 DP Adiponectin = 7,063 μg/mL						
Conclusions						

Protection against MS associated with increasing adiponectin levels is not affected by sex, age, HOMA-IR and US-PCR, being possibly related to its positive modulation of lipid and glucose metabolism.

Grants and Support: the present study was supported by Rio Grande do Sul Research Foundation (FAPERGS), São Paulo Research Foundation (FAPESP), Brazilian National Research Council (CNPq), Coordination of Higher Education and Graduate Training (CAPES), Hospital de Clínicas de Porto Alegre Research and Events Incentive Funds (FIPE-HCPA).