

O EFEITO DA VELOCIDADE DE DEFORMAÇÃO NO ENSAIO DE TRAÇÃO EM UM AÇO SAE 4340

VIEIRA, D. M. M. 1; STROHAECKER, T. R. 2

- 1 Graduando de Engenharia Metalúrgica. UFRGS.
- 2 Professor Doutor, Engenheiro Metalúrgico. PPGE3M UFRGS.

ENG - Engenharias

A grande maioria dos materiais, quando em uso no dia a dia, está sujeito a esforços ou cargas. Sendo assim, é necessário conhecer as características dos materiais para projetar o componente de tal maneira que a deformação resultante não seja excessiva, ocasionando a fratura. Neste estudo foram realizados ensaios de tração em um aço SAE 4340 com diferentes velocidades de ensaio, selecionadas com base em referências normativas (ASTM E8/E8M e ISO 6892-1) e também na literatura e, assim, estabelecidas como 0,45 mm/min, 12,5 mm/min, 100 mm/min e 500 mostraram que a velocidade do ensaio de tração exerce influência significativa no comportamento da curva tensãodeformação e, consequentemente, nas propriedades do material.

MATERIAIS E MÉTODOS

Os corpos de prova, em um total de 12, foram usinados a partir de um aço SAE 4340, conforme previsto nas normas. Por fim, após usinagem e fabricação dos corpos de prova, eles foram submetidos ao ensaio de tração em temperatura ambiente (25°C).

RESULTADOS E DISCUSSÃO

As Figuras 1, 2, 3 e 4 apresentam os resultados de acordo com as diferentes velocidades de deformação utilizadas nos ensaios.

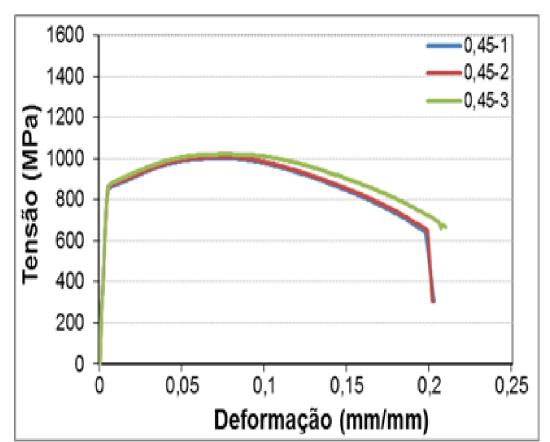


Figura 1. Velocidade de 0,45 mm/min.

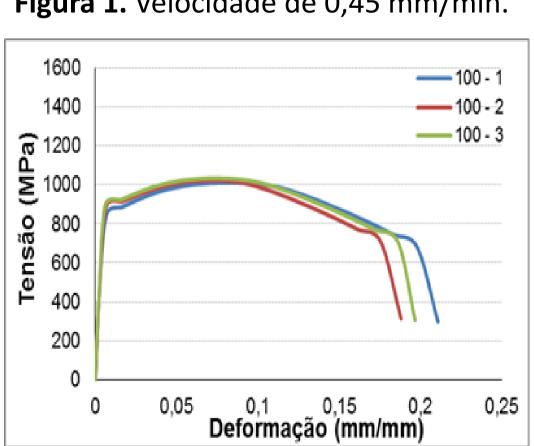


Figura 3. Velocidade de 100 mm/min.

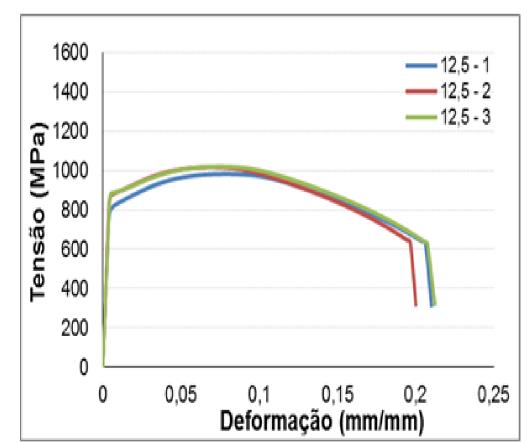


Figura 2. Velocidade de 12,5 mm/min.

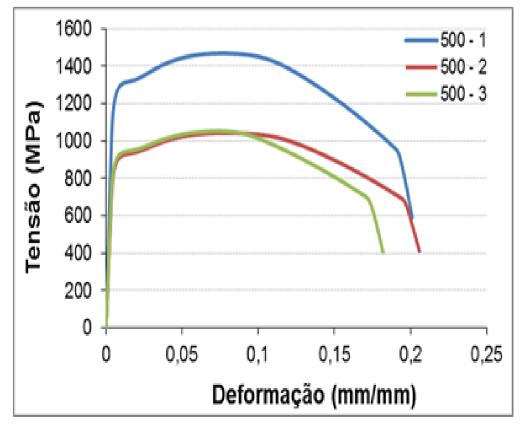


Figura 4. Velocidade de 500 mm/min.

A Tabela 1 apresenta os principais resultados alcançados e as propriedades mecânicas obtidas para cada uma das taxas de deformação empregadas.

Tabela 1. Resultados e propriedades analisadas.

Velocidade (mm/min)	Amostra	LE (MPa)	LRM (MPa)	Coeficiente de Encruamento	Módulo de Tenacidade (N.mm/mm³)
0,45	1	860,8	1001,2	0,0696	175.99
	2	869,3	1006,7	0,0703	178,00
	3	876,8	1020,6	0,0734	192,57
	Média	869,0	1009,5	0,0711	182.19
12,5	1	809,6	982,3	0,0747	179,77
	2	877,9	1016,3	0,0669	176,31
	3	885,2	1019,2	0,0716	186,34
	Média	857,6	1005,8	0,0711	180,87
100	1	885,6	1009,3	0,0729	178,64
	2	914,8	1021,3	0,0751	160,37
	3	923,0	1032,8	0,0729	172,19
	Média	907,8	1021,1	0,0736	170,41
500	1	1240,5	1469,0	0,0733	126,89
	2	880,2	1042,9	0,0755	126,49
	3	886,9	1053,4	0,0713	123,54
	Média	1002,6	1188,4	0,0734	125,64

CONCLUSÕES

De acordo com os resultados alcançados, conclui-se:

de deformação pode alterar taxa significativamente os resultados do ensaio de tração e como consequência também pode modificar as propriedades do material.

REFERÊNCIAS

GARCIA, A; SPIM, J. A.; DOS SANTOS, C. A. Ensaios dos Materiais. 2 ed. Rio de Janeiro. 2012.

KVAČKAJ, T.; KOVÁČOVÁ, A.; KVAČKAJ, M.; Imrich POKORNÝ, I.; KOČIŠKO, R.; DONIČ, T. Influence of strain rate on ultimate tensile stress of coarse-grained and ultrafine-grained copper. Materials Letters. 2010.

LUO, J.; LI, M.; YU, W.; LI, H. The Variation Of Strain Rate Sensitivity Exponent And Strain Hardening Exponent In Isothermal Compression Of Ti-6Al-4V Alloy. Materials And Design. 2010.

BOYCE, B. L.; DILMORE, M.F. The dynamic tensile behavior of tough, ultrahighstrength steels at strain-rates from 0.0002 s-1 to 200 s-1. International Journal of Impact Engineering. 2008.

SOUZA, S. A. Ensaios Mecânicos de Materiais Metálicos – Fundamentos teóricos e práticos. 1982.

DIETER, G., Metalurgia Mecânica, Guanabara Dois, Rio de Janeiro. 1981. ISO 6892-1. Metallic materials - Tensile testing - Part 1: Method of test at room temperature. 2009

MODALIDADE DE BOLSA

Iniciação científica