
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VANIUS ZAPALOWSKI

Evaluation of Code-based Information

to Architectural Module Identi�cation

Thesis presented in partial ful�llment
of the requirements for the degree of
Master of Computer Science

Prof. Daltro José Nunes
Advisor

Prof. Ingrid Nunes
Coadvisor

Porto Alegre, February 2014



CIP � CATALOGING-IN-PUBLICATION

Zapalowski, Vanius

Evaluation of Code-based Information to Architectural
Module Identi�cation / Vanius Zapalowski. � Porto Alegre:
PPGC da UFRGS, 2014.

102 f.: il.

Thesis (Master) � Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação, Porto
Alegre, BR�RS, 2014. Advisor: Daltro José Nunes; Coadvi-
sor: Ingrid Nunes.

1. Software architecture. 2. Architecture reconstruction.
3. Architecture recovery. 4. Software architecture view. 5. Re-
verse engineering. I. Nunes, Daltro José. II. Nunes, Ingrid.
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecário-Chefe do Instituto de Informática: Alexsander Borges Ribeiro



�If I have seen farther than others,

it is because I stood on the shoulders of giants.�

� Sir Isaac Newton



ACKNOWLEDGMENTS

First and foremost, I wish to express my love and gratitude to my parents,
Irani and Walter, my �ancee, Paula, for their love and support. Without my parents
support, I would not get this accomplishment, neither the ones that will succeed.
Also, my �ancée comprehension, encouragement and faith were fundamental to the
accomplishment of this work.

I own much to my advisors Professor Daltro Nunes and Professor Ingrid
Nunes for their patience, guidance and support through the two years of my work. I
am greatly thankful for Daltro's teachings and support during these period. I would
like to express my great gratitude to Professor Ingrid for her active interest (that
is exemplary to any advisor), methodological way of research, and research and life
lessons learnt that I will carry for all my life.

I would like to thank the members of my examining committee, Professors
Uirá Kulesza, Karin Becker and Leandro Wives, for reading my dissertation, giving
me feedback to improve my research.

I also must thank all my friends for their friendship. They contributed much
to de�ne the perspectives I have today and many times helped me to keep the
clarity of my thoughts. I specially thank my friends Gabriel Fernandes for his great
contribution during all this work and Leonardo Borba for his fellowship during many
discussions at Ildo. All the fellows (Jaime, Diego, Jacob, Elen, Sergio, Carlos and
Vinicius) of the laboratory 204 of building 67 that made my days happier.

My thanks to the Informatics Institute that supported me in all the ways
since my undergraduate to the end of my master in a excellent manner.

Finally, I would like to thank all of the people that the name is not in this
text but have helped me in the preparation of this dissertation in any way.



CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS . . . . . . . . . . . . . 8

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Problem Statement and Related Work Limitations . . . . . . . . 16

1.2 Proposed Solution and Contributions Overview . . . . . . . . . . 17

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Concepts and Terminology . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Software Architecture Recovery . . . . . . . . . . . . . . . . . . . . . 24

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Clustering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Pattern-based Approaches . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Dependency-based Approaches . . . . . . . . . . . . . . . . . . . . 33



3.3 Semantic-based Approaches . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 PROCEDURE TO ANALYZE CODE-ORIENTED INFORMATION

FOR ARCHITECTURE RECOVERY . . . . . . . . . . . . . . . . . 37

4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Information Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.4 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Component Dependency . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Metrics and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 ARCHVIZ: A TOOL TO SUPPORT ARCHITECTURE RECOV-

ERY RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Treemap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Modules Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.3 Elements Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Element Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 All Dependencies Results . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.2 Individual Case Studies Results . . . . . . . . . . . . . . . . . . . . . 66

6.1.3 Selecting the Element Dependencies Best Subset . . . . . . . . . . . . 66

6.2 Metrics and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 All Metrics and Labels Use Analysis . . . . . . . . . . . . . . . . . . . 68



6.2.2 Individual Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.3 Selecting the Best Subset of Metrics and Labels . . . . . . . . . . . . 72

6.3 Combining Source Code Features . . . . . . . . . . . . . . . . . . . 74

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 LESSONS LEARNED . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Element Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Metrics and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3.3 Combining Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Overall Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

APPENDIX A � COMPLEMENTARY RESULTS . . . . . . . . . . . . 96

APPENDIX B � RESUMO ESTENDIDO . . . . . . . . . . . . . . . . . 98



LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

AVG Average

BPMN Business Process Model and Notation

CNW Class Name Words

CSV Comma-Separated Values

DAG Direct Acyclic Graph

DIFF Di�erence

DIT Depth of Inheritance Tree

EC Expert Committee

EM Expectation Maximization

IDE Integrated Development Environment

INT Interface Usage

MetricsEclipse Metrics Plugin Continued

MIN Minimum

MLOC Mean Method Size

MMC Mean Methods Complexity

MVC Model-View-Controller

NOA Number of Attributes

NOGS Number of Getters and Setters

NOM Number of Methods

NORMNumber of Overridden Methods

NSA Number of Static Attributes



NSC Number of Children

NSM Number of Static Methods

OLIS OnLine Intelligent Services

RecSys Recommender System

RoR Ruby on Rails

SC Superclass Usage

SD Standard Deviation

TDD Test-driven Development

TLOC Total Lines of Code

WMC Weighted Methods per Class



LIST OF FIGURES

2.1 System structured with the layered architectural pattern. . . . . . 22

2.2 Architectural recovery process. . . . . . . . . . . . . . . . . . . . 26

4.1 Main procedure activities of our evaluation method presented in

BPMN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Dataset preparation. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Learning process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Graph dependency ofWeatherResponse and ForecastResponse ar-

chitectural elements. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Expert Committee layered architecture.(NUNES, I.; NUNES, C.;

CIRILO, E.; KULESZA, U.; LUCENA, C., 2013) . . . . . . . . . 52

5.1 Treemap visualization of software architecture prediction. . . . . . 59

5.2 Example of a typical architecture model. . . . . . . . . . . . . . . 60

5.3 Modules dependencies software architecture graph . . . . . . . . . 61

5.4 Elements dependencies visualization of Expert Committee soft-

ware architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Concrete and predicted architecture of Expert Committee. . . . . 67

6.2 Treemap of Bst1 subset prediction to OLIS. . . . . . . . . . . . . 74

6.3 Treemap of Bst1 subset prediction to Metrics. . . . . . . . . . . . 74

6.4 Combining RecSys features to improve accuracy. . . . . . . . . . . 77



LIST OF TABLES

4.1 Direct dependency matrix highlightingWeatherResponse and Fore-

castResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Inverse dependency matrix highlightingWeatherResponse and Fore-

castResponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Set of selected characteristics. . . . . . . . . . . . . . . . . . . . . 48

4.4 Selected case studies. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Number of elements in each case studies modules. . . . . . . . . . 52

6.1 Accuracy of dependencies subsets . . . . . . . . . . . . . . . . . . 65

6.2 Accuracy of metrics and labels subsets. . . . . . . . . . . . . . . . 69

6.3 Best characteristic subsets by case study. . . . . . . . . . . . . . . 71

6.4 Analysis of characteristic presence in subsets better than the ALL

subset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Combined features dataset schema. . . . . . . . . . . . . . . . . . 75

6.6 Subsets comparison: Bst1; direct, inverse and external; and com-

bined features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1 Average accuracy of ALL and elements dependencies subsets . . . 81



ABSTRACT

Software architecture plays an important role in the software development,

and when explicitly documented, it allows understanding an implemented system

and reasoning about how non-functional requirements are addressed. In spite of that,

many developed systems lack proper architecture documentation, and if it exists,

it may be outdated due to software evolution. The process of recovering the archi-

tecture of a system depends mainly on developers' knowledge requiring a manual

inspection of the source code. Research on architecture recovery provides support

to this process. Most of the existing approaches are based on architectural elements

dependency, architectural patterns or source code semantics, but even though they

help identifying architectural modules, the obtained results must be signi�cantly im-

proved to be considered reliable. We thus aim to support this task by the exploitation

of di�erent code-oriented information and machine learning techniques. Our work

consists of an analysis, involving �ve case studies, of the usefulness of adopting a

set of code-level characteristics (or features, in the machine learning terminology)

to group elements into architectural modules. The characteristics � mainly source

code metrics � that a�ect the identi�cation of what role software elements play

in software architecture are unknown. Then, we evaluate the relationship between

di�erent sets of characteristics and the accuracy achieved by an unsupervised al-

gorithm � the Expectation Maximization � in identifying architectural modules.

Consequently, we are able to understand which of those characteristics reveal infor-

mation about the source code structure. By the use of code-oriented information,

our approach achieves a signi�cant average accuracy, which indicates the impor-

tance of the selected information to recover software architecture. Additionally, we

provide a tool to support research on architecture recovery providing software archi-

tecture measurements and visualizations. It presents comparisons between predicted

architectures and concrete architectures.

Keywords: Software architecture, architecture reconstruction, architecture recov-

ery, software architecture view, reverse engineering.



RESUMO

Avaliação da Relevância de Informações do Código Fonte para

Identi�car Módulos da Arquitetura de Software.

Arquitetura de software desempenha um importante papel no desenvolvi-

mento de software, quando explicitamente documentada, ela melhora o entendi-

mento sobre o sistema implementado e torna possível entender a forma com que

requisitos não funcionais são tratados. Apesar da relevância da arquitetura de soft-

ware, muitos sistemas não possuem uma arquitetura documentada, e nos casos em

que a arquitetura existe, ela pode estar desatualizada por causa da evolução des-

controlada do software. O processo de recuperação de arquitetura de um sistema

depende principalmente do conhecimento que as pessoas envolvidas com o software

tem. Isso acontece porque a recuperação de arquitetura é uma tarefa que demanda

muita investigação manual do código fonte. Pesquisas sobre recuperação de arqui-

tetura objetivam auxiliar esse processo. A maioria dos métodos de recuperação

existentes são baseados em dependência entre elementos da arquitetura, padrões

arquiteturais ou similaridade semântica do código fonte. Embora as abordagem

atuais ajudem na identi�cação de módulos arquiteturais, os resultados devem ser

melhorados de forma signi�cativa para serem considerados con�áveis. Então, nesta

dissertação, objetivamos melhorar o suporte a recuperação de arquitetura explo-

rando diferentes fontes de informação e técnicas de aprendizado de máquina. Nosso

trabalho consiste de uma análise, considerando cinco estudo de casos, da utilidade

de usar um conjunto de características de código (features, no contexto de aprendi-

zado de máquina) para agrupar elementos em módulos da arquitetura. Atualmente

não são conhecidas as características que afetam a identi�cação de papéis na arqui-

tetura de software. Por isso, nós avaliamos a relação entre diferentes conjuntos de

características e a acurácia obtida por um algoritmo não supervisionado na identi�-

cação de módulos da arquitetura. Consequentemente, nós entendemos quais dessas

características revelam informação sobre a organização de papéis do código fonte.

Nossa abordagem usando características de elementos de software atingiu uma acu-

rácia média signi�cativa. Indicando a relevância das informações selecionadas para

recuperar a arquitetura. Além disso, nós desenvolvemos uma ferramenta para au-

xílio ao processo de recuperação de arquitetura de software. Nossa ferramenta tem



como principais funções a avaliação da recuperação de arquitetura e apresentação de

diferentes visualizações arquiteturais. Para isso, apresentamos comparações entre a

arquitetura concreta e a arquitetura sugerida.

Palavras-chave: Arquitetura de Softwar, Reconstrução de Arquitetura, Recupera-

ção de Arquitetura, Visualização de Arquitetura, Engenharia Reversa.



15

1 INTRODUCTION

Over the last decades, software complexity has grown signi�cantly, given the

variety of technologies and the popularization of electronic devices. Thus, handling

the software planning and evolution is a complex task. In order to understand what

a piece of source code does, usually a manual investigation is performed (GARCIA;

IVKOVIC; MEDVIDOVIC, 2013). Consequently, the e�ort demanded to control

the software development is proportional to its size because a manual investiga-

tion of the whole software is needed to comprehend the main software concepts.

Then, in order to achieve a healthy and controlled software life-cycle to large-scale

systems, there are intermediate abstractions between the source code and the real

world (HOCHSTEIN; LINDVALL, 2005). Their aim is to represent the source code

with less technical details.

One useful software abstraction is the software architecture model (SHAW;

CLEMENTS, 2006). It describes the main concepts applied in software through

a high-level model. This model captures the concepts applied during the software

planning and development phases. It presents these concepts in a comprehensive

model increasing the knowledge about software structures. The importance of hav-

ing software architecture is even more evidence when the software evolves. The

lack of documentation makes the developers resort in experts' knowledge, manual

investigations or reverse engineering approaches. Performing an architecture re-

covery based on manual investigations demands e�ort and experts' knowledge is

unreliable. Then, reverse engineering is commonly used to extract at least an initial

architectural model to be re�ned by architects because it reduces the e�ort needed

and is a reliable source of information to recover a software architecture. Moreover,

projects that have their architecture documented in conformance with the behavior

of the source code have improvements in reuse, construction, evolution, analysis,

and management (GARLAN, 2000).

Despite of the importance of having a software architecture updated, a com-

mon scenario in software development is the absence of software documentation,



16

which includes architecture. Furthermore, in the cases that a documentation exists,

it is usually outdated (KAZMAN; CARRIERE, 1999). Aiming to have reliable doc-

umentation about projects, developers use reverse engineering techniques to recover

documentation (semi-) automatically. In the particular case of retrieving software

architecture from the project source code, there are many approaches proposed,

which are related to the architecture recovery research. Such approaches extract

information from source code, architectural patterns, runtime executions and any

other processes that generate information related to software in order to recovery the

concrete architecture (DUCASSE; POLLET, 2009). Architecture recovery research

has considered mainly three types of information to identify software architectures:

(i) architectural patterns; (ii) architectural element dependencies; and (iii) source

code semantics. These three sources of information in fact have relationship with

software architecture, but it is unknown the relevance of each of them to software ar-

chitecture, i.e. which of them have more architectural information. Furthermore, to

obtain a software architecture model automatically, architecture recovery approaches

are commonly supported by machine learning techniques.

Next, in Section 1.1, we specify the problem that we are addressing pointing

out the limitations of related work. In Section 1.2, we present how we handle the

problem. Finally, in Section 1.3, we show the structure of this dissertation.

1.1 Problem Statement and Related Work Limitations

Given the bene�ts of having a software architecture documented and up-

to-date, current architecture recovery methods aim to improve the reliability of

recovering software architecture (semi-) automatically. Analyzing the work related

to software architecture recovery, we identi�ed issues to be improved in this context.

These problems are detailed below.

Current software architecture recovery methods are unreliable to recover the

software architecture without manual investigation of the target system. In spite of

the e�ort applied to improve the recovered architecture reliability, architecture re-

covery methods are still predicting inaccurate software architectures. Garcia, Ivkovic

and Medvidovic (2013) performed a comparative analysis of six di�erent software

architecture recovery methods. They evaluated the selected techniques and con-

cluded that even the top-performing approaches are insu�cient to reliably perform

an architecture recovery. Additionally, Ducasse and Pollet provided an overview

about the software architecture reconstruction techniques (DUCASSE; POLLET,

2009). They analyzed 13 software architecture recovery techniques, detailing their

strengths and weaknesses. They also pointed out the ine�ciency of bottom-up ap-



17

proaches in extracting architectures. Both studies agree that there is much to be

done to improve the software architecture recovery methods in order to reach a

satisfactory level of automation in the current methods.

Lack of information related to software architecture. Software architecture is

related to many aspects of the software. The current software architecture recovery

approaches focus on extracting the three types of information (architectural pat-

terns, architectural element dependencies and source code semantics) commented

in the previous section. However, it is unknown which type of information is more

related to software architecture because each method uses a di�erent type of infor-

mation and with a di�erent form of group element in modules. Moreover, software

architecture has many other aspects to be considered, such as source code metrics.

Furthermore, the combination of di�erent sources of information is also disregarded

in current approaches. In fact, Constantinou, Kakarontzas and Stamelos proposed

an architecture recovery method using source code metrics to re�ne the results of

obtained from a system dependency graph (CONSTANTINOU; KAKARONTZAS;

STAMELOS, 2011). Although, their evaluation was limited, they contributed with

the adoption of new attributes of architectural elements related to software archi-

tecture.

Lack of architectural views to di�erent purposes. There are many ways to

represent software architecture. Depending on the purpose that is being taken into

account, the architectural view used should change to highlight particular software

interests. Ducasse and Pollet (2009) discussed the need of di�erent forms to represent

an architecture. Research on software architecture recovery has its main support

on data analysis. However, software architecture main objective is to improve the

system comprehension providing a model (usually graphical). The comparison of

documented and predicted architectures is complex due to the knowledge demanded

to understand both.

Software architecture recovery still is a challenge subject because all problems

presented remain with unreliable solutions. Architecture recovery approaches have

been proposed to tackle these issues, but there is much to improve in the current

approaches in order to achieve a reliable architecture recovery method mainly in the

information selection, data relevance and architecture visualization.

1.2 Proposed Solution and Contributions Overview

This dissertation covers an evaluation of di�erent types of code-extract infor-

mation in order to improve the reliability of architecture recovery processes revealing

their relationship with software architecture. Our work provides a generic procedure



18

to evaluate di�erent types of code-extract information using machine learning tech-

niques to identify architectural modules. Moreover, we evaluate our experiments

according to consolidated machine learning measures. These measures quantify the

relation between software characteristics analyzed and the results achieved by our

empirical study.

We list our main contributions below.

1. A standardized procedure to evaluate the relationship between source code

information and software architectural modules.

2. Identi�cation of which architectural elements attributes are more signi�cant

to recover architectural modules.

3. Architectural views focused on comparison of predicted and documented soft-

ware architectures improving the understand about software architecture re-

covery.

4. Point out guidelines of architecture recovery scenario analyzing the importance

of types of information, machine learning techniques and evaluations that could

contribute to the reliability of the process.

1.3 Outline

In this Section, we present the structure of this dissertation. It is as follows.

In Chapter 2, we present the current scenario of the two main areas re-

lated to this dissertation, software architecture and machine learning, detailing their

contributions to software engineering and providing foundation to our experiment

decisions.

Chapter 3 presents related work. In order to discuss their strengths and

limitations, we divided the related work by their type of information extracted to

recover the software architecture.

Chapter 4 describes the procedure proposed to evaluate the relevance of

the software architectural elements. We set the selected software information to

evaluate, the data preparation, the adopted learning process and the evaluation

measures.

In Chapter 5, we provide details about the tool developed to support the ex-

periments on software architecture recovery. We present the implemented features

related to the architecture recovery process, explaining the three visualizations de-

veloped and discuss technical details about the tool.



19

Chapter 6 details the results achieved by each set of experiments presenting

quantitative data to compare the selected source of information. This Chapter bases

our arguments to derive our conclusions.

Chapter 7 presents the lessons learned during the experiments. We discuss

each step of the evaluation pointing out their e�ect in the procedure based on the

results achieved.

Finally, in Chapter 8, we present the conclusions derived from the whole eval-

uation process. Additionally, future work related to our conclusions are presented.



20

2 BACKGROUND

Software architecture recovery aims to obtain an architecture documentation

extracting known concepts from source code and often applying machine learning

techniques. Thus, this Chapter provides an overview of software architecture, de-

tailing its concepts, bene�ts and guidelines of architecture recovery in Section 2.1.

Additionally, we present an overview of machine learning and aspects of machine

learning techniques related to the learning process of architecture recovery in Sec-

tion 2.2.

2.1 Software Architecture

Since the 1980's, when software architecture foundations began to be studied,

to nowadays, software architecture gains attention of di�erent computer science

areas. In the academic area, the community has focused on understanding the

concepts and principles of di�erent software architectures. They are interested in

studying how software architecture improves software quality and contributes to

a controlled evolution. On the other hand, the software industry sees software

architecture as a way to improve the quality of its products aggregating value to its

clients and reducing development and maintenance costs.

The purpose of software architecture is to describe the core structures of

systems in a high-level model that clearly presents architectural elements relation-

ships and roles (PERRY; WOLF, 1992; SHAW; CLEMENTS, 2006; CLEMENTS;

SHAW, 2009; BASS; CLEMENTS; KAZMAN, 2012). Researchers have been us-

ing di�erent ways to de�ne a software architecture, because systems can be de�ned

through many perspectives. However, all de�nitions typically adopt terms such as

relation, elements and structures � since these are in fact the main parts of a soft-

ware. Because of this controversy surrounding software architecture de�nition, it

is important to state the de�nition adopted in this work: �The software architec-

ture of a system is the set of structures needed to reason about the system, which



21

comprises software elements, relation among them, and proprieties of both� (BASS;

CLEMENTS; KAZMAN, 2012).

Software architecture groups the main concepts and principles that must

be followed to implement good software practices, which are fundamental to the

long-term health of the software (HOCHSTEIN; LINDVALL, 2005). In order to

improve the software quality maintaining a high-level documentation, there are six

contributions of a software architecture to a project: understanding, reuse, con-

struction, evolution, analysis, and management. They have signi�cant impact in

the software (GARLAN, 2000). These contributions give evidence to the impor-

tance of planning and maintaining an architectural model because software design,

development and evolution depend on all these factors.

With the software architecture properly documented, the concepts that guide

the development are presented in a high-level model, thus enabling developers to

understand such concepts. When good practices are followed, during the software

architecture planning and maintenance, the model has elements categorized together

according to their similar behaviors or functionalities. This de�nes how to group

elements to form an architectural module.

Similarly to what happens in software design, there are recurrent problems,

such as the separation of concerns, that occurs in architectural planning. Then,

inspecting architectures of software from similar domains or with similar purpose, it

is possible to identify recurrent solutions to the recurrent problems. Based on these

recurrent problems and solutions, the term architectural pattern (BUSCHMANN;

HENNEY; SCHMIDT, 2007) was adopted to specify groups of architectural roles

and rules that solve a certain architectural problem. With the intention of spread-

ing the knowledge of architectural patterns, architectural pattern catalogues were

created to document these recurrent problems and solutions. These catalogues docu-

ment many patterns, but many architectural patterns still are undocumented (PERRY;

WOLF, 1992). One of the most commonly applied architectural patterns is the lay-

ered architecture, illustrated in Figure 2.1. In this pattern, the architectural modules

are separated by their roles in the software: (i) the Data module handles how to

persist the system data; (ii) the Business module performs the logical operations;

and (iii) Presentation module is responsible for the interaction with the users. The

communication rules of this pattern restrict the communication between modules to

the layer immediately below itself, for instance the Business module depends only

on Data module.

Indeed, architectural patterns are recurrent solutions, roles and rules that

must be respected to organize software structures in a way that they obey good prac-

tices and leads to high-quality software. Additionally, they have solutions needed in



22

Figure 2.1: System structured with the layered architectural pattern.

common project situations. However, even similar projects have particularities that

diverge from a speci�c architectural pattern. These divergences force an adaptation

in the pattern to solve these particularities. Then, these changes generate di�erent

architectures and consequently new candidate patterns.

Summarizing, the main objective of a software architecture is document fun-

damental project decisions in order to be easily and clearly accessed through the

software development and evolution. Nowadays, projects have a high complexity.

For this reason, it is a common situation when software architecture model is not

generated. Even in the cases that it is documented, the model usually is outdated.

2.1.1 Concepts and Terminology

During the thirty years of studies about software architecture, there is no

standardized way to refer to important concepts of this subject. Then, to avoid

misunderstanding of the objectives addressed by this work, we introduce, in this

section, the terms used in the remainder of this dissertation. We adopted as reference

to establish our nomenclature the study of Ducasse and Pollet (2009).

Architectural Element

The de�nition of architectural element usually vary according to the studies

objectives. In fact, it could be any part of the software, such as packages,

�les (ANQUETIL; LETHBRIDGE, 1999) and methods (CORAZZA et al.,



23

2011). In our work, we consider that each class of our case studies is an

element of their architectures.

Architectural Module

An architectural module is a group of architectural elements that can be seen

as the same according to some criteria. We consider elements that have the

same role in the system, as part of modules. For instance, two elements that

handle business logic are grouped in the Business module.

Conceptual Architecture

Conceptual architecture represents how the people involved with the software

believe the architecture is implemented. It is a model that could diverge from

the implemented source code. The documentation form is irrelevant: in a

formal document with elements and relations explicit; in a piece of paper; or

even just in the architect's mind. So, this concept de�nes that an architec-

ture exists even not formally. Alternative terms for conceptual architecture

are: as-idealized (HARRIS; REUBENSTEIN; YEH, 1995), intended (CAR-

RIERE; KAZMAN, 1998), as-designed (KAZMAN; CARRIERE, 1999), or

logical (MEDVIDOVIC; JAKOBAC, 2006) architecture.

Concrete Architecture

The term concrete is related to the real architecture. Concrete architecture

means that it re�ects what is really coded in the software, i.e. the documented

architecture is the concrete architecture when the document agrees with the

real modules organization and the communication is correctly represented. In

literature, this concept can also be referred to as as-implemented (KAZMAN;

CARRIERE, 1999), as-built (HARRIS; REUBENSTEIN; YEH, 1995), real-

ized (CARRIERE; KAZMAN, 1998), or physical (MEDVIDOVIC; JAKOBAC,

2006) architecture.

Architectural View

As software is complex, there are many perspectives to represent di�erent

architectural concepts, such as communication or data�ow structure. So, it

is possible to view a software from di�erent concerns. Then, an architectural

view is a way to organize elements and relations that focus on presenting a

group of concerns (STANDARD-1471, 2000). In our study, the architectural

concern is the modules view. This view consider software parts that handle

di�erent tasks and group the elements according to their tasks in a proper

module.

Architectural Pattern

Architectural patterns play the same role as design patterns play in the context



24

of design. The concept is the same, the only di�erence is the model level of

abstraction. Patterns, for this de�nition, are abstract solutions for recurrent

problems in an architectural scope, e.g. Model-View-Controller (MVC) pattern

commonly used in the web-context. Architectural patterns are also known as

architectural styles.

2.1.2 Software Architecture Recovery

Every software has an architecture, it is not necessarily documented or

known, but the architecture is there (BASS; CLEMENTS; KAZMAN, 2012). The

elements and their relationship can always be represented through a software archi-

tectural view. In some cases the architecture is trivial, as a system with just one

element, but it still is an architecture. Then, software architecture is an intrinsic

part of the software systems.

Usually, when a software project starts, an architecture is planned to be

followed during the development. As a consequence of the product evolution, new

features are demanded and, bugs need to be �xed. However, the architecture docu-

mentation is frequently not updated to re�ect the source code state. Although the

process of evolution must be planned and controlled, the time to market and reduc-

tion of costs are priority properties in large scale software. The software evolution is

inevitable. As a consequence, the gap between architecture documentation and the

implemented source code increases because the documentation is rarely updated.

This problem creates a divergence between documentation and source code. Con-

sequently, this divergence makes the architecture documentation unreliable to the

development team reason about future decisions.

Changes in software are a natural consequence of evolution, but there must

be a controlled process of change. Sometimes, due to time constraints and budget,

projects do not have a documentation, which forces software engineers to recon-

struct the architecture. In the cases that a documentation exists, we must maintain

models up-to-date and make changes that respect architectural concepts and deci-

sions (PARNAS, 1994). However, these practices are hard tasks to perform, mainly

because of the lack of knowledge about the software.

In order to tackle the lack and divergence of software documentation, tech-

niques have been researched to reduce time and e�ort dedicated to recover the soft-

ware architecture (DUCASSE; POLLET, 2009). They are based on the extraction

of information from source code, documentation, runtime executions and any other

process that generates information related to software to recover the architecture

which is implemented.



25

When a development process is uncontrolled, a phenomenon like architecture

erosion is commonly found. An erosion (SILVA; BALASUBRAMANIAM, 2012) in

software occurs when a change in architecture is made, and, as a side e�ect, this

change violates a conceptual architectural principle. The introduction of a violation

in architecture compromises the maintainability, because the information given by

the model is not guided by the architectural principles, what turn the model hard

to be followed.

Maintaining a synchronism between architecture and source code manually

is a hard task that consumes time and requires a professional with knowledge about

the software. Both requirements are precious resources that can not be wasted.

Reinforcing this idea, Kazman (KAZMAN; O'BRIEN; VERHOEF, 2001) reported

that this task is impossible to undertake only manually.

Aiming to tackle those kind of problems, reverse engineering techniques, such

as architecture recovery, have been studied to improve the quality, to provide a high-

level of abstraction model, and to reduce the cost (semi-) automating the task of

updating software architecture documentation.

Besides the importance of having a software architecture, many projects

do not have a documented architecture. Furthermore, if the software architecture

exists, its documentation becomes often outdated due to evolution process (KN-

ODEL et al., 2006; CLEMENTS; SHAW, 2009; PASSOS et al., 2010). This fact is

con�rmed by Kazman and Carriere, who states that �many systems have no docu-

mented architecture at all� (KAZMAN; CARRIERE, 1999). When an architectural

documentation does not exist, the source code and the knowledge of the people

involved are the documentation available. Then, the most reliable approach is to

extract architectural information from the source code. So, starting with low-level

information and iteratively re�ning the model to a high-level model is the purpose

of architectural recovery techniques, also known as bottom-up techniques. Based on

the information provided by the source code, an analysis of similarities is performed

in order to group elements forming cluster. As a result of the clustering, a high-level

model is built to be checked by architects. These main steps of the architecture

recovery process are illustrated in Figure 2.2.

Recovering the architecture from a large-scale software manually is prac-

tically impossible. The complexity of the software requires knowledge about all

modules and a deep analysis of the relationship between each other. Therefore,

recovery processes automate part of this work, inferring information through the

extraction of similarities from source code. These techniques turn the architecture

recovery feasible when added to architect assistance.



26

Figure 2.2: Architectural recovery process.

2.2 Machine Learning

Most of the software architecture recovery are based on machine learning

techniques to explore similarities among architectural elements. The machine learn-

ing techniques thus have great in�uence in architecture recovery methods, because

the learning techniques are responsible for assigning to which architectural modules

each element belong. Then, we present next, in Section 2.2.1, an overview of ma-

chine learning. In Section 2.2.2, the feature selection process is explained. Finally,

in Section 2.2.3, we present the clustering techniques commonly used in architecture

recovery methods to the identi�cation of modules.

2.2.1 Overview

The study and construction of systems that learn based on data (MITCHELL,

1999) de�ne the principles of machine learning. Machine learning uses statistical

concepts to discover relationships among data. Many problems can be solved based

on recognition of data similarities, such as email spam �ltering, image recognition,

and recommender systems. Seen by a machine learning perspective, architecture

recovery is the task of learning which elements belongs to the same architectural

module based on software architecture element features (data). This means recog-

nizing similarities in input data in order to group elements into modules. Basically,

machine learning techniques are classi�ed as supervised or unsupervised. The tech-

niques of both categories explore the similarities concerning di�erent characteristics

of data. These categories di�erentiate in the type of training dataset needed to

perform the learning process. Supervised techniques base its learning process in a

classi�ed training dataset, i.e. a training dataset with at least some instances cor-

rectly predicted. On the other hand, unsupervised techniques unknown previous

results basing its predictions on an unclassi�ed training dataset.



27

2.2.2 Feature Selection

As machine learning applies statistical concepts to search for similarities in

data, the data provided to the learning process is a key factor to discover relevant

relationship among data instances. In fact, if we apply a dataset with irrelevant

information to the target feature, the relationship extracted by a learning algorithm

will be poor. Consequently, the prediction accuracy will be also poor. One example

of information quality issue occurs in the text classi�cation task. In this task, a

list of texts is given and the classi�cation objective is to group the texts related to

the same subject together. So, a dataset is built where each word in the texts is a

feature and the words frequency of each text is data for each text. In this dataset,

many features are irrelevant, when a word appears only in one text; or correlated,

when a word appears together with another one in all occurrences of them.

The dataset number of features a�ects directly the prediction of the learning

processes. If there are few features to be analyzed, the learning process will not ex-

tract enough relationship among data (under�tting) (AALST et al., 2010). On the

other, if there are too much features generating a excessively complex model (over�t-

ting), the learning process will describe random error or noise instead of a relation-

ship. Other aspect that a�ects the prediction is the information of each instance.

Considering a huge number of instances with irrelevant information, the prediction

quality will be also poor. Then, the solution is to search for features that are related

to the target variable in order to provide enough data to the learning process.

The feature selection process (DASH et al., 2002) aims to improve the data

quality. This process focuses on reducing the number of features selected eliminating

redundant features generating a simpler dataset. A simple model has three main

bene�ts to the learning process (GUYON; ELISSEEFF, 2003): (i) the time needed

to train a model is reduced because with less complexity the amount of data to

process is reduced; (ii) the model interpretability is improved because there are

less data to be analyzed by the learning process; and (iii) as the feature selection

points out the relevant features, it produces a more generalizable model because

the selected features produce less noise and error. Moreover, the feature selection

reveals which features are in fact related to the target feature.

There are mainly two steps to perform feature selection. In the �rst, the

set of features under analysis changes using an exhaustive or heuristic approach.

Choosing the exhaustive approach is possible to obtain the best subset of all possi-

ble as result of the exploitation of all possible subsets. However, this search method

demands a higher processing time than the others. The heuristics, such as Variable

Neighbourhood Search (MLADENOVIC; HANSEN, 1997) and Best First (KORF,



28

1993) algorithms, do not guarantee the global best subset, but they usually improve

the accuracy signi�cantly with less computational e�ort. Then, the second step

consists of evaluating the selected subsets. This step can be done using a speci�c

learning algorithm, called Wrapper (KOHAVI; JOHN, 1997) approach, or a sta-

tistical measure of similarity, called Filter (DASH et al., 2002) approach. Using a

speci�c learning algorithm, the feature selection achieves better results because it

evaluates the subsets of the search method using the learning algorithm that will

be used to solve a speci�c problem. Moreover, Wrapper approaches provide results

based on the selected algorithm to perform the evaluation, e.g. the results provided

using a speci�c algorithm in Wrapper approaches are not generalizable to other

learning algorithms. The limitation of the Wrapper approach is that a classi�ed

training set must be available to evaluate the predictions. On the other hand, the

�lter approach does not need the classi�ed dataset. Nevertheless, �lters analyze the

statistical relation among data and disregard the relationship with learning process,

because it is unknown.

2.2.3 Clustering Techniques

As previously introduced, machine learning algorithms are divided in two

categories: supervised and unsupervised. Unsupervised learning aims to discover

similar instances in datasets in which the target feature, i.e. the feature that must

be predicted has unknown values in all instances of the dataset. These kind of

technique focused on �nding common structures among the available data instances

in order to group them. The lack of previous information associating the source

code characteristics and the target feature complicates the process of discovering

information solely with the provided characteristics. Due to this reason, unsuper-

vised techniques explore the similarities in the available data, and group them to

derive patterns. Similarly, supervised techniques have a target feature whose val-

ues must be predicted. However, supervised techniques use a dataset with known

target features values, also known as classi�ed training dataset. These techniques

use classi�ed training datasets to recognize patterns of the relation between target

features and other features. The model built by supervised techniques usually tend

to have preciser predictions than unsupervised. This occurs by the learn from the

available classi�ed instances. Both categories of machine learning techniques have

their accuracy achieved dependent on the selected features and available data. In-

tuitively, the learning process prediction quality is proportional to the amount of

data available to analyze. However, this assumption is false because instances qual-

ity also in�uence the learning process (HAWKINS, 2004). Additionally, how many



29

and which are the features under analysis, which is associated with over�tting and

under�tting problems, as we already discussed in previous section.

The clustering techniques are di�erent in terms of the data needed. For

instance, in the class of unsupervised algorithms, three algorithms are able to

handle mostly all common unsupervised problems. They are K-means (MAC-

QUEEN, 1967), Hierarchical clustering(WARD, 1963) and Expectation Maximiza-

tion (DEMPSTER; LAIRD; RUBIN, 1977). Each algorithm has peculiarities about

how they cluster the dataset instances. Hierarchical clustering initially assumes that

each element is a cluster and the main idea of this algorithm is how to merge two

clusters. If two clusters are similar enough, they are merged reducing the number

of clusters by one. This algorithm needs a stop criteria that can be a similarity

threshold or a number of clusters. K-means bases the way of grouping instances in

the K previously provided and the elements average distance in the data space. It is

usually applied to problems that the number of clusters are known and distribution

of elements into clusters is homogeneous. The Expectation Maximization algorithm

presents an approach to iterative computation of maximum-likelihood to estimate

unknown data. Its name came from the algorithm two steps: an expectation step,

in which the expected values of each instance is calculated to the complete data;

and maximization step, in which parameters that maximize the expected likelihood

from the expected step are determined.

Recovering an architecture from an application is an unsupervised learning

problem, because there is no reliable architecture documented to be used as concrete

architecture to guide the learning process. In addition, using a dataset from a

software whose architecture is known to recover another software architecture whose

architecture is unknown may predict a wrong architecture due to the di�erences that

each software have, e.g. a software that adopts MVC architectural pattern used to

recover another software whose architecture is in conformance with four-layered

architectural pattern �nd for MVC elements in a four-layered architecture. We thus

need to extract the architecture without a classi�ed training dataset. However, we

must select a model that �ts to the architecture recovery problem appropriately. Our

problem has two main aspects. First, the number of the architectural modules of the

system is unknown, i.e. the number of clusters to be identi�ed is unknown. Second,

each of the architectural modules (clusters) may have di�erent sizes, as architectural

elements are distributed unequally into modules, such as the case studies presented

in Table 4.5, where each column represent a module. Given these aspects, the

algorithm that best �ts to this problem is the Expectation Maximization. This

algorithm is a way of estimating the parameters of mixture models used in statistics

to capture properties of sub-populations within an overall population. Additionally,



30

it is one of the most popular algorithms to discover unknown parameters based

on likelihood methods. Also, discovering sub-populations matches our objective of

recovering an architecture. In order to predict the number of modules, a cross-

validation with the EM algorithm is performed. The cross-validation is a technique

that iteratively divides the dataset instances in K di�erent dataset: one dataset is

used as training dataset and the K−1 are used as validation datasets. One iteration
of cross-validation uses the training dataset to perform data analysis. Then, it

validates the analysis obtained with training dataset on the validation datasets to

check the analysis against di�erent instances. The cross-validation performed in

EM initializes considering the existence of one cluster and iteratively increments

the number of clusters according to the similarity (loglikelihood) of the validation

datasets. Based on the number of modules obtained in the cross-validation, the

elements prediction is performed with the entire dataset.

2.3 Final Remarks

This Chapter presented an overview of software architecture, detailing the

architecture recovery process, and machine learning. Software architecture is an

essential documentation to the healthy software life-cycle, increasing the develop-

ment team software comprehension. Besides the importance of software architecture,

projects lack proper architecture documentation. Software architecture recovery

aims to improve the automation to have and to maintain an architecture up-to-date.

To achieve this objective, recovery processes employ machine learning techniques to

extract the architectural concepts automatically. Research on architecture recovery

has successfully improved the architectural documentation scenario. However, there

are still much to be explored in terms of architectural information extraction and

techniques to understand architectural elements similarities.



31

3 RELATED WORK

Research on architecture recovery has been developed in order to handle the

lack of architectural documentation. In this chapter, we present the three main

research areas of architecture recovery, dividing the studies by the kind source of

information. We also discuss their results and limitations based on their provided

results. First, in Section 3.1, we detail the studies that rely on high-level patterns to

recover a software architecture. Next, in Section 3.2, dependency-based approaches

are presented. Finally, in Section 3.3, we discuss approaches focused on domain

comprehension, called semantic-based.

3.1 Pattern-based Approaches

Intuitively, search for architectural patterns in software is a good start to

recover software architecture, because patterns are commonly used to plan software.

Based on this idea, pattern-based architecture recovery methods aim to �nd ar-

chitectural elements in source code that respect the rules of a prede�ned pattern.

We consider pattern-based the architecture recovery methods that do not demand

a documented conceptual architecture. Architecture recovery approaches that need

architectural patterns set by architects or perform an architecture conformance check

against a documented architecture, such as Re�exion Models (MURPHY; NOTKIN;

SULLIVAN, 1995), will be disregarded since they �t to the architecture discovery

(top-down approach) research area.

Tzerpos and Holt proposed theAlgorithm for Comprehension-Driven C lustering

(ACDC) (TZERPOS; HOLT, 2000) based implementation level patterns observed on

the manual inspection of systems source code. They noticed seven aggregation pat-

terns used to compose implementation elements into architectural modules. Their

seven patterns aggregate architectural elements into the same module considering:

(i) elements of a same �le; (ii) elements of the same folder; (iii) splitting task in

more than one architectural element, e.g. the implementation (.c �les) and de�ni-



32

tion (.h �les) of C language; (iv) independent elements; (v) elements frequently used

considering the whole system; (vi) elements that depend on many other elements;

and (vii) dependency subgraph with a dominator element. ACDC iteratively applies

these patterns in a system source code to compose architectural elements forming

architectural modules. Recently, a comparative analysis of architecture recovery

approaches (GARCIA; IVKOVIC; MEDVIDOVIC, 2013) reported that ACDC is

one of the top architecture recovery methods. However, as stated by the authors,

the list of patterns proposed was incomplete. There are more code level patterns

to be discovered to increment the algorithm in order to improve it. Furthermore,

the patterns proposed were extracted based on the manual architecture recovery of

the systems used to evaluate their approach. This compromises the generalization

of the results to other software that were not developed using the same structures

of the ACDC case studies.

Exploring another kind of pattern to recover software architectures, Con-

stantinou et al. (CONSTANTINOU; KAKARONTZAS; STAMELOS, 2011) ana-

lyzed a suite of design metrics to identify rules among architectural modules. They

focused only on four-layered-structured architectures (User Interface, Controllers,

Business Logic and Infrastructure layers) of open-source projects. Their process of

architecture recovery consists of extracting a suite of source code metrics and a de-

pendency directed acyclic graph (DAG) from the source code to identify the layers

that comprise the software architecture according to the hierarchical communication

among architectural elements. More speci�cally, the DAG de�nes an initial archi-

tecture grouping the architectural elements that depends on the same other group of

elements. As the DAG derives too many layers, the authors developed a re�nement

process to merge DAG layers based on the correlation of clusters' design metrics

proposed by Chidamber and Kemerer (CHIDAMBER; KEMERER, 1994). The

re�nement iteratively calculates the correlation of the design metrics to merge the

layers until only the four pre-de�ned layers remain. These identi�ed layers and met-

rics de�ne rules of metrics thresholds for each architectural layer, using the JRip, a

machine learning algorithm to extract classi�cation rules. They concluded that the

metrics evaluated in fact have impact to identify the architectural layers. However,

the assumption that the system architecture follows the four-layered architecture

strongly limits their study because open-source projects use a variety of architec-

tural patterns (STOL; AVGERIOU; BABAR, 2010).Consequently, their approach

does not recover an architecture, but only classi�es elements into one of the four

layers of the pattern that is assumed to be followed.

In both approaches, the usage of patterns to recover software architecture

depends on the generality of the patterns chosen to recover architectures, i.e. it



33

achieves more e�ectiveness in extract software architecture if the patterns adopted

by a method have general aspects of software architecture, such as dependency rules.

On the other hand, if a method uses patterns that restrict architecture recovery,

such as stating a �xed number of modules, it limits the architecture recovery to the

projects that in fact follow a type of architecture. All pattern-based approaches will

have issues of pattern generalization because software organization varies accordingly

domain and purpose. Also, address all software variations considering only a set of

pattern is impossible given the software complexity of software.

3.2 Dependency-based Approaches

The software architecture organization focus on communication rules which

are the core part of software architecture. Aiming to have a software structure,

dependency-based approaches investigate similarities between elements to create

modules based on metrics derived from coupling and cohesion. Next, we describe

the work based on dependency approaches to architecture recovery.

With the aim of extracting dependency similarities among architectural el-

ements, Mancoridis et al. developed a tool called Bunch (MANCORIDIS et al.,

1998, 1999). This tool provides an objective function to the software decomposi-

tion problem. It uses a modularization quality metric, also created by the authors,

applying clustering techniques to organize architectural elements in modules. The

proposed modularization metric is based on an architectural module analysis of the

intra-connectivity (when an element of a module depends on an element from the

same module) and the inter-connectivity (when an element of a module depend on

an element of another module) of the system modules. Then, to decide to which

module each element belongs, Bunch iteratively applies a genetic algorithm to all ar-

chitectural elements calculating the intra-connectivity and inter-connectivity of the

architectural modules in each iteration. Based on the mutations made by the genetic

algorithm, it evaluates the prediction using the quality metrics and maintains the

solution with the best result. As occurs in Constantinou et al. study, this method to

group elements in module produces too many modules. Then, to reduce the number

of modules, a hierarchical clustering algorithm is applied in order to merge similar

modules based on their degree of similar intra-connectivity dependencies. In gen-

eral, Mancoridis et al. method provides inaccurate results. This occurs because they

analyzed only the communication of software architecture lacking information about

architectural elements roles. In addition, their recovered architecture is composed

of layers, such as the initial architecture of Constatinou et al. study, and there are



34

many other architectural patterns that do not rely on this type of organization, such

as MVC.

Xiao and Tzerpos investigated the extraction of dynamic dependencies at

software runtime (XIAO; TZERPOS, 2005). In their study, they analyzed the ar-

chitecture recovery improvements applying di�erent clustering algorithms to static

and dynamic dependencies. In addition, they ran experiments with di�erent types

of element dependency degree �lters to reduce the search scope of the dependency

graphs. They concluded that the dynamic dependencies provide a better model

using di�erent weights according to runtime dependencies between elements. How-

ever, this extraction of runtime dependencies relies on the exercised zones of the

source code, i.e. if parts of systems have little activation during runtime execution,

the data collected with respect to their element dependencies is proportional to the

activation of these code parts. This limits their approach to only the exercised parts

of source code.

In both studies, a high-level structure of the architectural organization is pro-

vided as result of the architecture recover methods. However, this kind of approach

lacks information about the roles that architectural elements play in the software.

Consequently, the architecture comprehension gain is limited due to the necessity

of manual investigation of elements to understand what each module in fact does.

Additionally, problems related to architecture drift and erosion (MEDVIDOVIC;

TAYLOR, 2010) are related to violation of communication rules, which results in

an inaccurate grouping of elements that drift or erode the architecture. It occurs

because the classi�cation of elements is only based on the element dependencies.

3.3 Semantic-based Approaches

Usually, the planning phase of software involves de�ning a glossary of terms

to be used in the development to name software elements, such as methods and

classes. Using ideas from information retrieval, semantic-based approaches map

the problem of retrieve information from documents to the architecture recovery.

This kind of approaches extracts textual content from architectural elements and

evaluates their similarities in terms of words to group them into modules.

A pioneer work on semantic-based architecture recovery was performed by

Anquetil and Lethbridge (ANQUETIL; LETHBRIDGE, 1999). They proposed an

approach to extract subsystems of an industrial case study using only textual in-

formation. Their hypothesis rely on the fact that architectural elements names

follow a pattern, e.g. the su�x of names of elements that handle data is data. They

investigated how the architectural elements names can be partitioned to provide



35

meaningful information about their functionalities. They performed an evaluation

analyzing four parts of architectural elements: (i) �le names, (ii) �le comments, (iii)

procedure names, and (iv) variables names. The authors performed experiments

with a set of proposed algorithms to fragment the textual content of architectural

elements in order to cluster the architectural elements with the same words. To clus-

ter architectural elements with the similar keywords, they used a simple algorithm

that group elements based on the occurrence of words, i.e. given two architectural

elements named UserData and AdminData, they are grouped by the word Data .

They concluded that the �le comments outweigh all the other source of information

analyzed mainly because of the larger amount of information provided by comments

compared to the others sources of information.

The system vocabulary was also analyzed by Kuhn et al. who proposed

the Semantic Cluster (KUHN; DUCASSE; GÍRBA, 2007). They measured element

similarities with Latent Semantic Indexing, an information retrieval technique to

identify patterns, to build a matrix of elements correlation. They used this matrix

as input to a hierarchical clustering algorithm in order to group elements. As their

main goal, they improved software comprehension because their approach enrich

the knowledge retrieved extracting linguistic information and suggesting labels to

the modules recovered. This idea is similar to Anquetil and Lethbridge, but using

sophisticated word retrieval algorithms and clustering algorithms for documentation

indexing.

Recently, Corazza et al. (CORAZZA; DI MARTINO; SCANNIELLO, 2010;

CORAZZA et al., 2011) proposed a method to recover software architecture based

on semantic information, called Zone-Based Recovery (ZBR). As the two others

semantic-based approaches, ZBR considers an architectural element as a document

with words. For ZBR word indexing algorithm, each architectural element has six

document zones: class names, attribute names, function names, parameter names,

comments, and function bodies. Given these zones, the word indexing assigns dif-

ferent weights according to the zone a word resides. These zone weights are set

using the Expectation Maximization algorithm that analyzes all document zones

and attribute a determined weight to each of the six zones. Then, to group the

architectural elements, ZBR uses a hierarchical clustering algorithm with the cosine

similarity measure.

These semantic-based studies provided signi�cant results in terms of sup-

porting the human understanding of the system domain. However, the correction

is associated with an adequate use of �le name patterns, which occurs in the case

studies evaluated in all studies. In addition, the architectural model recovered by

these approaches lacks information about architecture rules, e.g. how architectural



36

modules communicate. Furthermore, the behavior of architectural elements is disre-

garded, e.g. the name given to an architectural element does not necessarily re�ect

what it actually does.

3.4 Final Remarks

In this Chapter, we introduced the main researches developed to architec-

ture recovery detailing the information used as input of each of them and analyzed

their strengths and weaknesses. Most of the studies focus on an objective, such as

comprehension or extraction of high-level structure, and their source of information

are directly related to their objective. Analyzing the studies, architecture recovery

still is a �eld of study that needs improvement, as discussed here and also in the

of comparative analysis presented elsewhere (GARCIA; IVKOVIC; MEDVIDOVIC,

2013; MAQBOOL; BABRI, 2007). In fact, recent approach exploited information,

such as semantic, to improve the accuracy and quality results of the recovered ar-

chitectures.



37

4 PROCEDURE TO ANALYZE CODE-ORIENTED

INFORMATION FOR ARCHITECTURE RECOV-

ERY

In the previous chapter, we discussed many approaches whose aim is to re-

cover software architecture. Each approach assumes that a particular information is

useful to identify architecture models and uses it to extract an architecture. How-

ever, there is no in-depth study that evaluates and compares the usefulness of di�er-

ent kinds of information that can be collected from the source code. In particular,

code metrics have been exploited in solely one approach. We therefore, as introduced

in the introduction, performed an study that makes this evaluation and comparison.

We describe the procedure adopted to perform experiments, detailing all aspects

that involve their execution. In Section 4.1, we specify the steps of our procedure

namely; information selection, dataset preparation, learning process and result anal-

ysis. Next, in Section 4.2, we present two types of features, which were analyzed in

our experiments. As our evaluation is empirical, we present the case studies used

in the experiments in Section 4.3. Finally, in Section 4.4, we discuss the threats to

validity of our study.

4.1 Procedure

In this Section, we detail each step of the procedure to evaluate the relevance

of di�erent information extracted from the source code to identify the architectural

modules. Broadly, we �rst select the types of information that we consider candi-

dates for this purpose. Second, we choose case studies whose architectures we can

manually retrieve and classify their elements according to the architectural module

each element belongs to. Third, we apply an unsupervised machine learning tech-

nique to verify the results achieved for predicting the case studies modules. Finally,

we measure the obtained results. This sequence of main steps of our approach is



38

presented in the Figure 4.1. Furthermore, in the next sections, we detail all these

steps of procedure emphasizing the importance of each to the whole process.

Figure 4.1: Main procedure activities of our evaluation method presented in BPMN.

4.1.1 Information Selection

The �rst step of our study consists of selecting what kind of information will

be extracted that may predict architectural information of a system. This selection

is based on the available literature, for instance existing design metrics and architec-

tural element dependencies, or intuition, as our experiments evaluates whether this

intuition is meaningful. In particular, we adopted as a source: the suite of design

metrics proposed by Chidamber and Kemerer (CHIDAMBER; KEMERER, 1994);

other metrics, such as the number of getters and setters of a source code element;

and architectural element dependencies explored largely in the architecture recovery

literature (MANCORIDIS et al., 1999; XIAO; TZERPOS, 2005). We will introduce

how we handle all the selected source of information in detail in the Section 4.2.

4.1.2 Dataset Preparation

To evaluate the model prediction of an unsupervised machine learning tech-

nique, we need a classi�ed dataset, what means the concrete architecture of a system

documented. Therefore, case studies must be selected and prepared. We selected

�ve case studies, presented in Section 4.3. This preparation involves two derived

substeps: a manual architecture recovery and data extraction. These substeps are

detailed as follows and the organization of these activities is illustrated in Figure 4.2.

4.1.2.1 Manual Architecture Recovery

To evaluate the correctness of the architectural module identi�cation, the

concrete architecture must be explicitly documented, i.e. an architecture must be

manually recovered and in conformance with the actual behavior of the system.

Although the unsupervised algorithm used in our experiments only needs an unclas-



39

Figure 4.2: Dataset preparation.

si�ed training dataset, the architectural modules (target feature) must be known to

evaluate learning e�ectiveness to the identi�cation of modules. So, we performed

a manual inspection of the source code of each case study in order to recover its

architecture. In addition, we used the documentation available of each case study

and contacted the developers involved in the development of the case studies, when

possible, to validate the architecture derived from the manual recovery.

4.1.2.2 Data Extraction

Additionally to know the target characteristic, the unclassi�ed training dataset

content must be extracted from the system to the learning process recognize simi-

larities in these data. In order to provide data to the machine learning technique,

we used: the Eclipse IDE 1; its associated Eclipse Metrics Plugin Continued,2 also

known as Metrics2; and the Classycle Plugin3. These tools allow to export the

data extracted, therefore facilitating its manipulation. Although Metrics2 extracts

almost all the selected features related to design metrics, some of them had to be

implemented as an extension of this tool. In particular, we implemented �ve charac-

teristics, namely class name words, superclass usage, interface usage, mean method

size, and number of getters and setters.

4.1.3 Learning Process

In this step, we performed a feature selection in the classi�ed dataset when

the relevance of each feature is unknown, in order avoid over�tting and under�tting.

1http://www.eclipse.org
2http://sourceforge.net/projects/metrics2
3http://classycleplugin.graf-tec.ch

http://www.eclipse.org
http://sourceforge.net/projects/metrics2
http://classycleplugin.graf-tec.ch


40

The feature selection used to evaluate the relevance of features is the Wrapper ap-

proach as long as we know the target feature, recovered manually in the last activity

of dataset preparation, and have a speci�ed algorithm to perform the architecture

recovery. If the relevance of features is known, we run the unsupervised machine

learning technique with the provided dataset directly without feature selection, as

the learning process activity illustrated in Figure 4.3. We selected the Expectation

Maximization algorithm to execute the learning process, because it matches the sce-

nario of the architecture recovery process. In particular, we perform our experiments

using the Expectation Maximization implementation of the Weka tool (HALL et al.,

2009).

Figure 4.3: Learning process.

4.1.4 Results Analysis

To provide a quantitative comparison of the information sources, we used

the general purpose metrics to evaluate multi-class prediction of machine learn-

ing algorithms de�ned by Sokolova and Lapalme (SOKOLOVA; LAPALME, 2009).

Based on the quality achieved by the EM algorithm, we calculate the metrics to

each information source and also during the feature selection. Using these metrics,

we standardise the results in order to compare them. The metrics de�nitions are

given next following the notation: K is the set of proposed architectural modules,

i is a module such that i ∈ K, |K| represents the cardinality of K, tpi are the true

positives of i, tni are the true negatives of i, fpi are the false positives of i, and fni

are the false negatives of i.

De�nition 1 (Average Accuracy) The average accuracy measures the correct-

ness of each identi�ed module and distinctness from the others modules. It evaluates

the correct predictions, true positives (tp) and true negatives (tn), of the modules

prediction. In fact, the average accuracy is a way to measure the per-module e�ec-



41

tiveness of the classi�er. Then, the formula to calculate the average accuracy is as

follows.

Average Accuracy =

K∑
i=1

tpi+tni

tpi+tni+fpi+fni

|K|

De�nition 2 (Average Precision) Focusing on evaluating per-module precision,

the average precision measures only the agreement between the prediction and the

concrete architecture for each module. It considers only the cases where the pre-

diction and the correct classi�cation agree. The formula to calculate the average

precision is as follows.

Average Precision =

K∑
i

tpi
tpi+fpi

|K|

De�nition 3 (Average Recall) Calculating the average recall, we obtain how the

prediction method correctly predicts the modules. Trust in the number of modules

predicted improve signi�cantly the results quality. To calculate the average recall, we

consider the true positives and false negative of each module as the formula above

describes.

Average Recall =

K∑
i=1

tpi
tpi+fni

|K|

De�nition 4 (Average fMeasure) The average fMeasure combine the average pre-

cision and average recall to provide one metrics that comply the overall correctness

and the modules prediction quality. It provides a relationship between positive pre-

dictions and those given by a classi�er based on a per-module average. The formula

to calculate the average fMeasure is as follows.

Average fMeasure =
2 ∗ average precision ∗ average recall

(average precision+ average recall)

4.2 Features

Software systems have many characteristics that can be measured during

their planning, development and maintenance phases. Therefore, there are a variety

of data to be collected about software characteristics. We selected characteristics

of architectural elements that may characterise a group of elements to be analyzed.

We extracted three types of element dependencies: Direct, Indirect and External.

These dependencies are detailed in Section 4.2.1. Next, in Section 4.2.2, we describe

the source code metrics, detailing their purpose and relationship with concrete soft-

ware architecture modules, and the elements names similarity. Both of them relate



42

element roles in the systems, because metrics present behavior similarities and de-

pendencies show the communication rules.

4.2.1 Component Dependency

Communication rules are core parts of software architectures because soft-

ware development good practices are based on coupling and cohesion of elements (ALLEN;

KHOSHGOFTAAR, 1999). So, understanding how elements interact is an impor-

tant issue to have a comprehension of software architecture. The dependencies

between software elements are usually represented as a direct graph (GANSNER;

NORTH, 2000). In this graph, elements are nodes and the use relationship is rep-

resented by the edges between two elements, where the edge source is are close to

the element that uses the other one. Figure 4.4 presents an example of a graph

dependency of the WeatherResponse and ForecastResponse elements of OLIS case

study. In this �gure, the WeatherResponse uses �ve other internal elements, the

ForecastResponse uses six internal elements and both use one external element.

Figure 4.4: Graph dependency of WeatherResponse and ForecastResponse architec-
tural elements.

This section details the three types of architectural element dependencies

used as source of information of the learning process. In addition, this section

presents the way the dependency graphs are used in the learning process. Sec-

tion 4.2.1.1 presents the direct dependency between architectural elements. Next,



43

the inverse dependency is detailed in Section 4.2.1.2. Finally, in Section 4.2.1.3, we

discuss the external dependencies.

4.2.1.1 Direct

The direct dependency occurs when an element directly depends on another

element. This type of dependency shows the hierarchy between project elements,

because this type of dependency considers only the project internal dependencies. In

Figure 4.4, an example of direct dependency occurs between WeatherResponse and

Weather, where theWeatherResponse element needs theWeather to perform its task.

In order to use the direct dependency relationship with machine learning algorithms,

we represented the graph as a matrix, where columns are used architectural elements

and rows are all architectural elements. The matrix cells are �lled with a binary

representation, where 0 means that the row element is not dependent on the column

element and 1 that exists a dependency between them, where the row element uses

the column element. The direct dependencies presented in Figure 4.4 are represented

as a matrix in Table 4.1.

Commonly, the elements dependencies have a relationship with the role that

architectural elements play in an architecture. Principles of modularization and

decoupling are applied to structure modules in a way the dependency between mod-

ules are reduced. Moreover, by applying reuse practices, such as importing �les or

inheritance, projects source code that have similar dependencies tend to perform

the same role in a software. We can see this relationship of architectural role and

direct element dependencies in Table 4.1, WeatherResponse and ForecastResponse

are elements from the same architectural module, Agent module, which depend on

Head, DayForecast and Location elements.

4.2.1.2 Inverse

The inverse dependency focuses on the used elements. It is exactly the op-

posite of the direct dependency. This dependency reveals by which elements a par-

ticular element is used. In fact, the matrix representation is exactly the transposed

matrix of the direct dependency, where the used elements correspond to the rows

and the elements that use them correspond to the columns. The inverse dependency

of Figure 4.4 is represented as matrix in Table 4.2.

Similarly to the direct dependency, the inverse dependency matrix carries

information about patterns of communication that may derive communication rules

to de�ne a group of elements of a same module. In Table 4.2, the highlighted cells



44

show this kind of pattern. The elements Head, Location and DayForecast belong to

the same architectural module, Model.



4
5

Table 4.1: Direct dependency matrix highlighting WeatherResponse and ForecastResponse

Element Weather
Forecast Weather Current

Head Location
Day Forecast Forecast OLISWeather

. . .
Response Response Conditions Forecast Plan RequestPlan Ontology

Weather
1 0 0 1 1 1 1 0 0 0

. . .
Response . . .
Forecast

0 0 0 0 1 1 1 1 1 1
. . .

Response . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



46

Table 4.2: Inverse dependency matrix highlighting WeatherResponse and Forecas-
tResponse.

Element WeatherResponse ForecastResponse . . .

Weather 1 0 . . .
ForecastResponse 0 0 . . .
WeatherResponse 0 0 . . .
CurrentConditions 1 0 . . .
Head 1 1 . . .
Location 1 1 . . .
DayForecast 1 1 . . .
ForecastPlan 1 0 . . .
ForecastRequestPlan 1 0 . . .
OLISWeatherOntology 1 0 . . .
. . . . . . . . . . . .

4.2.1.3 External

The direct and invert dependencies disregard communication with external

module, such as Application Programming Interface (API) or libraries. However,

these external communications also help in the task of discovering communication

patterns, because it is common to have external modules that handle recurrent activ-

ities, such as the database communication implemented by the Hibernate framework.

In fact, the representation of external dependencies is equal to direct depen-

dencies with a di�erence that external elements never will use one of the project

elements, what means that it will not be present in the rows in a matrix represen-

tation.

4.2.2 Metrics and Labels

Metrics and Labels are architectural element characteristics, i.e. a character-

istic is any attribute that can be extracted from the source code elements. Metrics

are countable characteristics, such as the number of methods of an architectural

elements. Labels are semantic characteristics, such as the �ve most frequent words

in class names of a software. In addition, these characteristics may contribute to

the identi�cation of the architectural modules and their elements. Some of these

characteristics are metrics, but their use is di�erent from the use to evaluate the

architecture quality, where extracted values have an associated semantics that in-

dicate �good� and �bad� values. Instead, when recovering an architecture, metrics



47

describe elements properties and possibly help in identifying a correlation among

metric values.

With the aim of selecting a set of source code characteristics that impact in

the architecture recovery process, we adopted those that are signi�cant to source

code or to architectural elements from the existing literature. Based on the litera-

ture, we selected �fteen characteristics, from which twelve are numerical and three

are binary, such as the metric suite proposed by Chidamber and Kemerer (CHI-

DAMBER; KEMERER, 1994), �le names of the Antequil's study (ANQUETIL;

LETHBRIDGE, 1999) (which in Java means the class name), and the metrics asso-

ciated with a rationale of their relationship with the role of architectural elements

(the present study allows con�rming this intuition). Table 4.3 shows the selected

characteristics with their types and from where they come. Additionally, we describe

each of the selected characteristics and a rationale that justi�es why they may be

useful to recover architectures next.

Class Name Words (CNW) are the words present in a class name, which in

our case correspond to the words present in an architectural element. This

information provides an understanding of the application domain, because

its syntax makes the code legible. Additionally, similarities in the elements

names indicates to which architectural module a class belongs, such as the

su�x of its name, which relates the responsibility of a particular class (e.g.

the su�x BusinessService). Evaluating all class name words contained in an

application would bring too much variability and singularity, so we consider in

this characteristic up to the �ve most frequent words in the whole application.

In fact, this frequency selection generates �ve features to this characteristic

(CNW1-5).

Superclass Usage (SC) is the list of all superclasses, from the direct superclass

above to the Object class, that an architectural element has. As class name

words, this characteristic retrieves information related to the application do-

main. In addition, it also provides structural knowledge, as classes performing

similar tasks inherit methods from the same superclasses. To extract similar-

ities among superclasses of the elements, a group of elements must share a

domain or a behavior. As above, we consider a characteristic each one of the

�ve most frequent superclasses of the system generating �ve features (SC1-5).

Interface Usage (INT) is the list of interfaces that an architectural element im-

plements. Similarly to superclass usage, this characteristic relates common

tasks of architectural elements. It also considers up to the �ve most frequent

interfaces used in the application creating �ve features (INT1-5). Note that



48

Table 4.3: Set of selected characteristics.

Name Type Source

Depth of Inheritance Tree Numerical
Chimdaber and Kramer

(CHIDAMBER; KEMERER, 1994)

Class Name Words Binary
Antequil

(ANQUETIL; LETHBRIDGE, 1999)

Superclass Usage Binary

Interfaces Usage Binary

Number of Attributes Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Number of Children Numerical
Chimdaber and Kramer

(CHIDAMBER; KEMERER, 1994)

Number of Getters and Setters Numerical

Number of Methods Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Number of Overridden Methods Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Number of Static Attributes Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Number of Static Methods Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Total Lines of Code Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Class Methods Mean Size Numerical
Henderson-Sellers

(HENDERSON-SELLERS, 1995)

Weighted Method per Class Numerical
Chimdaber and Kramer

(CHIDAMBER; KEMERER, 1994)

Mean Methods Complexity Numerical
Chimdaber and Kramer

(CHIDAMBER; KEMERER, 1994)



49

class name words, superclass usage, and interface usage characteristics depend

on developers using appropriate names.

Depth of Inheritance Tree (DIT) is the distance from the top-most class, i.e.

the class from which all other classes derive, which is the Object class in

Java. The DIT values start in zero to the top-most class and, for each level of

class inheritance, the DIT value increases by one unit. For instance, if a class

Telephone directly extends Object, the DIT value of Telephone is one. And

if a class Mobile extends Telephone, Mobile has the DIT value of two. This

characteristic extracts therefore the level of specialization of a element.

Number of Children (NSC) is the total of direct subclasses of a class. This

characteristic extracts information related to the structural organization of

the system quantifying the number of classes that directly depend on another

under measurement. Consequently, elements with high number of children

have a more generic role in the system than those with low number of children.

Number of Overridden Methods (NORM) is the class number of rede�ned

methods when the class evaluated is a child class. This metric measures how

much a child class di�erentiates itself from its parent class. It provides struc-

tural information of how speci�c a element behaves.

Number of Attributes (NOA) is the number of attributes of a class. In software

applications, data (or domain) classes tend to have more attributes than other

classes. Consequently, this characteristic indicates the architecture role of an

element, as it occurs in data classes.

Number of Static Attributes (NSA) is the sum of static attributes of a class.

It provides information related to the role that elements play in the architec-

ture as static attributes commonly characterises classes that state de�nitions.

Number of Methods (NOM) is the number of methods of a class. Counting

the number of methods gives insights about the quantity of processing a class

handles. For example, elements in a business module of a layered architecture

has higher number of methods than elements of other modules.

Number of Static Methods (NSM) counts the number of statics methods of a

class. Static methods occur in classes that state de�nition, similarly to the

number of static attributes. It is usually related to business rules that are

enclosed to the domain.

Weighted Methods per Class (WMC) is the sum of the McCabe Cyclomatic

Complexity (MCCABE, 1976) of all methods of a class. The cyclomatic com-



50

plexity counts the number of paths linearly independent in the source code

decision tree. This characteristic measures the amount of processing handled

by an element in order to group them by their quantity of processing.

Mean Methods Complexity (MMC) is the average of the McCabe Cyclomatic

Complexity of architectural element methods, i.e. establishing a relation be-

tween weighted methods per class and number of methods. This characteristic

di�erentiates elements handling a lot of complexity in fewer methods, such as

Utils elements, from elements with many methods handling large complexity,

usually Model or Data elements.

Number of Getters and Setters (NOGS) is the sum of getters and setters of a

class, more speci�cally, the sum of methods whose name starts with get or set.

Data classes have more readable and writeable attributes than other classes,

and therefore more getters and setters. Consequently, a high number of getters

and setters also indicates the architecture role of an element.

Mean Method Size (MLOC) is the average lines of code of the class methods ex-

cluding blank and comment lines. Similar mean method size leads to elements

that share a common behavior, e.g. high mean method size indicates that a

class has much logic inside it, consequently it may be a business elements.

Total Lines of Code (TLOC) is the sum of lines of code of the class excluding

blank and comment lines. As architectural elements that handle processing

may have complex algorithms, they have more lines of code than others. In

addition, data elements have fewer lines of code, because their methods are

mostly getters and setters.

4.3 Case Studies

This section details information about each case study selected for our ex-

periments providing aspects of the case studies that in�uences in the architecture

recovery process. We selected �ve case studies that are presented next.

Eclipse Metrics Plugin Continued (Metrics) is an Eclipse IDE plugin, which

extracts a suite of metrics related to object-oriented good practices from

projects developed using Eclipse. It automatically extracts and exports the

design metrics implemented.

Expert Committee (EC) is an agent-based conference management system for

the web domain developed to support the paper submission and reviewing

processes from conferences and workshops.



51

Table 4.4: Selected case studies.

Case Study #Files #Packages #Lines #Modules Pattern

Metrics 150 16 15674 4 Extended MVC
EC 195 38 11796 5 Layered
OLIS 212 30 11437 5 Layered
RecSys 334 64 22871 6 Heterogeneous
Port 399 51 41654 12 Heterogeneous

OnLine Intelligent Services (OLIS) is a reactive multi-agent system that pro-

vides several personal services to users, such as calendar and events announce-

ment. The user de�nes services needed in a web-based interface.

Recommender System (RecSys) is a desktop-based recommender system that

aims to recommend items based on their properties and preferences de�ned by

the user.

Port 4 is an industrial case study that provides a web-based interface to manage

the ship's cargo control in a port. It is integrated to a set of systems that

perform the whole management of a port.

We selected these case studies because they have di�erent properties. First,

they have di�erent sizes: small (less than 20K lines of code), medium (less than

40K lines of code) and large (more than 40K lines of code). Case studies sizes

are relevant to our experiment because the learning algorithm derives statistical

information of the data available. As the applications are di�erent in terms of

domain and purpose, they adopt di�erent architecture patterns, such as MVC and

the layered architecture. Third, they have di�erent numbers of modules. Finally, we

could recover their architecture manually in a relatively easy way in order to prepare

our classi�ed training dataset, as we managed to contact four of the �ve case study

developers � except Metrics, all case studies had their manual recovered architecture

validated by the development team. Table 4.4 presents detailed information of each

case study (number of �les, number of packages, number of lines of code and number

of architectural modules).

To apply an unsupervised algorithm, more speci�cally the EM, to our case

studies, we extracted the concrete architecture of each case study. EC, OLIS, Port

and RecSys had their architecture extracted by using their available documentation

and also analyzing their source code. For all applications but Metrics, we validated

the architecture proposed based on our manual investigation with the development

team involved with each case study. As Metrics is an open-source project and has

4Name omitted for con�dentiality.



52

Figure 4.5: Expert Committee layered architecture.(NUNES, I.; NUNES, C.; CIR-
ILO, E.; KULESZA, U.; LUCENA, C., 2013)

Table 4.5: Number of elements in each case studies modules.

Case Study M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Metrics 63 43 39 5
EC 54 49 40 26 26
OLIS 65 50 40 37 19
RecSys 97 91 56 55 32 3
Port 113 94 49 49 23 23 12 12 10 8 5 1

its development opened to the community, we recovered its architecture based on

manual inspection and available documentation. Based on the recovered architec-

tures, we classi�ed the architectural elements into di�erent modules. For instance,

the EC follows a layered pattern with two extra modules, as depicted in Figure 4.5.

Its layers are: Data, which is the module responsible for persisting the domain enti-

ties of the system; Business, which is the module that processes information; User

Interface (UI), which is the module that focuses on the presentation of the processed

information to the end-user; Agent, which is the module that provides autonomous

behavior; and Model, which is the module that focuses on the representation of

domain entities involved in the system.



53

One aspect that can only be analyzed after the concrete architectures recov-

ered is the distribution of elements in the architectural modules of the applications.

By analyzing their architectures, we observed signi�cant di�erences in architectural

aspects, as shown in Table 4.5. The elements distribution in the architectural mod-

ules of OLIS is mainly concentrated in the business module. The same occurs with

the EC distribution, but it has a lower concentration of elements in the business

module compared to OLIS. Following the same behavior, the module with more

elements in Metrics is also the business module. In addition, Metrics has another

interesting point in the distribution of elements, which is the low number of data ele-

ments. It occurs because the Metrics persistence entities are mainly the source code

of the projects. Our other two case studies, RecSys and Port, have more complex

architectures than the others. Each one has more modules with speci�c behavior

and their element distribution is concentrated in four modules in RecSys and in six

modules in Port.

4.4 Threats to Validity

Empirical studies essentially have threats to validity because the empirical

investigation basis its conclusions on observation or experience. Then, to assure

that an experience in fact re�ects the cause consequence derived, facts that reduce

or eliminate the in�uence of the threats in the study must be performed. This

section presents the threats to validity and the actions applied to eliminate those

threats of our study dividing them by: threats in the observed variables, presented

in Section 4.4.1; and in the generalization of the study, presented in Section 4.4.2.

4.4.1 Construct Validity

Studies basis its decisions believing on assumptions in order to achieve their

hypothesis. So, if the study base has threads to validity, all the scienti�c method

applied is compromised. So, in our study, our construction variables are the char-

acteristics selected to extract architectural similarities, selected by us, even though

we had the help of their own developers, and the case studies concrete architec-

ture,recovered manually by us. Next, we detail both construction threats to validity

and present actions applied to the procedure to minimize their e�ects.

Features relevance to software architecture. The features selected to our study

are also the base to our conclusions and may not re�ect the architectural behav-

ior of the case studies elements. However, the features evaluated are commonly

used in the literature to reach conclusions about software quality and system



54

modularization. In addition, applying a feature selection process using an

exhaustive approach, when needed, highlight the features relevance, by select-

ing and presenting their contribution to the characterization of architectural

modules.

Correctness of the concrete architecture recovered. The case studies concrete

architecture is a main point of our work. The manual architecture recovery

process was performed by the people involved with the software and the ex-

perience in the software architecture scenario in�uence the manual recovery

result. To increase the con�dence of this process, the manual recovery of each

case study selected performed by the people that were directly involved in the

development of each case study. The Port case study, our industrial case, it is

recovered by the software architect that is responsible by the case study. More-

over, a re-checking of the manual architecture recovery in order to validate the

correction of the concrete architecture provided by the people involved with

the case studies development. Recently, Garcia et al. provided an analysis of

how the manual architecture recovery should be performed (GARCIA et al.,

2013). Almost all step related in their study were performed in our manual

architecture recovery process.

4.4.2 External Validity

One problem of the empirical validation is the generalization of the results

based on the data provided, or even the data provided could be insu�cient to derive

conclusions about a problem. In our work, we selected �ve case studies to perform

our experiments. We consider the level of di�erence in their architectures aiming

to evaluate di�erent types of architectures, as we presented in Section 4.3. Further-

more, applying a method to a restricted domain of applications a�ect the results

generalizability. To decrease this threat impact, the selected case studies are from

di�erent domains. This avoid a domain-driven result. Moreover, our case studies

are from di�erent sizes and built by di�erent development teams. Furthermore, we

used an industrial case.

4.5 Final Remarks

In this Chapter, we provided a detailed description of our experiment set-

tings, detailing each relevant point of the procedure. This description provide the

de�nitions of the overall procedure steps, the features under analysis, the case stud-

ies used as empirical data and the threats to validity of our study. After specifying



55

how we conducted our experiments, we present the results achieved applying our

procedure to the selected case studies.



56

5 ARCHVIZ: A TOOL TO SUPPORT ARCHI-

TECTURE RECOVERY RESEARCH

In order to evaluate the accuracy achieved by architecture recovery ap-

proaches, the recovered architecture must be matched against a concrete archi-

tecture, which must be available. To compare these two architectures, evaluation

metrics, such as those presented in Section 4.1.4, are applied. As a consequence,

evaluating and comparing of architecture recovery methods is not trivial, because

studies use divergent measurements to evaluate its performance. With the aim of

providing support to architecture recovery research and standardize the evaluation

of architecture recovery methods, we developed the ArchViz tool, which is presented

in this chapter.

Additionally to the data support that scienti�c studies must provide, graphi-

cal representation of a recovered architecture brings simple visualization of the data.

Comparison views of software architecture are needed in order to facilitate the com-

prehension of software architecture recovery approaches. Representing software ar-

chitectures in di�erent levels of abstraction improves the understand (DUCASSE;

POLLET, 2009). Consequently, using di�erent abstraction levels to compare be-

tween concrete and conceptual architectures also improve the comprehension of the

architecture recovery process. Then, ArchViz tool uses the entered data to evaluate

the architecture recovery to generate visualizations to compare the concrete archi-

tecture against the predicted architecture in three di�erent levels of abstraction.

This Chapter thus introduces ArchViz, a tool developed to support research

on architecture recovery. In Section 5.1, we detail the ArchViz features, showing

how it supports the comparison of two architecture views, such as conceptual vs.

concrete and concrete vs. extracted. Furthermore, in Section 5.2, we describe the

three visualizations provided by the tool. Then, in Section 5.3, we present technical

details of the ArchViz implementation.



57

5.1 Features

ArchViz provides functionalities to support the architecture recovery process

evaluation and visualization. It provides a methodological form of evaluation of

the architecture recovery processes. Aiming to support data handling, ArchViz has

features to import, export and manage systems. Additionally, to evaluate the data,

the tool also calculates and shows metrics detailed in Section 4.1.4. Furthermore,

three architectural visualizations are automatically generated. Next, we detail each

of these introduced features.

1. Import Case Study. Importing case study allows to add a case study to

ArchViz. It uses two comma-separated values (CSV) containing all the archi-

tectural information needed to build the two architecture views. Two �les must

be provides, the �rst containing information about the architectural elements,

and the second specifying the communication between these elements. The

�rst �le must have the elements name, package, concrete module and predicted

module. The second �le has lines with pairs of columns with name and pack-

age architectural elements. The �rst pair of the second �le is the element that

uses the followed elements in a line. Importing case studies is fundamental to

the tool be used. Because manually handling the data input of large projects

demands much time.

2. Case Study Architecture Management. In ArchViz, it is also possible to

manage the architectural elements, changing their modules, names and predic-

tions. Furthermore, information related to the di�erent levels of abstraction

is available. There is information related to modules, such as number of mod-

ules and modules sizes, and elements, such as element dependencies, level of

abstraction.

3. Export Case Study. An exporting of the architectural information based on

the communication between architectural elements was implemented. Projects

in ArchViz can be exported as a communication matrix where the architectural

elements are the rows and the direct and inverse dependencies are the columns.

4. Prediction Metrics. To support a standardized evaluation of the recovery

process, we implemented four metrics Average Accuracy, Average Precision,

Average Recall and Average fMeasure. This metrics are automatically cal-

culated to each case study added to ArchViz providing the quality of the

recovered architecture.

5. Visualizations. We implemented three visualizations that improve the un-

derstanding of the concrete architecture and help match the predicted archi-



58

tecture against the concrete architecture. We detail each of the implemented

visualizations next.

5.2 Visualizations

Large-scale software is an abstraction that is complex to represent in a un-

derstandable way. Then, a software architecture visualization helps people involved

with software to understand the main concepts applied in their applications using

a high-level representation. Most of the software architecture recovery approaches

focus on presenting metrics to evaluate their results and they do not provide graphi-

cal visualizations of their results. Actually, humans handle models and abstractions

in a easier way than just analysis purely data (KEIM et al., 2008). So, we identify

three visualizations that can improve the comparison and understanding of recovered

architectures and implemented them in ArchViz.

The remainder of this section presents the three visualizations of the ArchViz

tool, discussing their objectives. First, in Section 5.2.1, a two-dimensional graph that

aims to increase the understanding of the predicted architecture evaluation metrics is

presented. Next, in Section 5.2.2, we detail a module dependency visualization com-

parison that highlights the modules sizes and dependency among modules. Then,

in Section 5.2.3, the traditional element dependency graph is explained.

5.2.1 Treemap

Treemap is a two dimensional hierarchy graph created by Shneiderman (SHNEI-

DERMAN, 1992) to analyze the use of hard disks, where, similarly to software ar-

chitecture, the disk folders hierarchy represents categories and �les are leaf elements

that belong to a folder. A common problem to visualize the data is to represent

the relevance of more than two attributes in one graph. In the hard disk usage, for

example, the �les have a parent folder and size, what means that to visualize both

attributes using a Cartesian coordinate system we need to plot one graph for the

�le usage and one graph for the folder usage. Shneiderman proposed a tree organi-

zation structure where each element is represented as a rectangle and attributes can

be de�ned as colors, sizes or hierarchy position of the rectangles. Then, the hard

disk usage can be represented in one graph where the folders are bigger rectangles

with �le elements inside, and the size represents the amount of disk usage.

As in hard disk usage, the software architecture has a hierarchical structure �

architectural elements belong to modules. So, we mapped the software architecture

using the treemap representation to understand the predicted results of the concrete



59

and conceptual architectures representing the concrete and the recovered architec-

ture in a single graph to visualize the prediction results. Figure 5.1 is a sample of

the treemap visualization, where the outer rectangles are the concrete architectural

modules, the inner rectangles are the architectural elements with their name, and

the architectural elements colors are assigned according to the predicted module to

which they belong. The concrete module names, in the upper right of Figure 5.1, are

from the manual architecture recovery. In the case when the architecture predicted

matches 100% against the concrete architecture, all outer rectangles are colored by

only one color and each outer rectangles have a di�erent color from the others. Fig-

ure 5.1 illustrates a scenario in which the recovered architecture di�ers from the

concrete architecture. As can be seen in this �gure, the ideal case currently do not

occur, the outer rectangles major color de�nes its predicted architectural module,

i.e. in Figure 5.1, the lower right corner correspond to the Data module and the

upper right corner corresponds to the UI module.

Figure 5.1: Treemap visualization of software architecture prediction.

Analysing Figure 5.1, it clearly shows some of the modules predicted and the

assignment distribution of predicted architectural elements to the concrete mod-

ules. Furthermore, the evaluation metrics are also presented in this representation,

since the concentration of color in the concrete module means that the accuracy of

module is high, and if a module color is scattered in the graph its accuracy is low.



60

Additionally, the treemap visualization comprises concrete and recovered architec-

ture allowing a visual comparison of the architectural measures extracted from a

architecture recovery process.

5.2.2 Modules Graph

The module dependency visualization is a coarse-grained view that aims to

understand a big picture of the system. It is the most common architecture view

used, where the architectural modules are represented as nodes and the communica-

tion among them as edges. Having this representation improves the understanding

because it handles the main system concepts, presenting in a summarized picture

the architectural modules and how they communicate to each other, as presented in

Figure 5.2, which shows an example of layered pattern.

Figure 5.2: Example of a typical architecture model.

This traditional model present in a high-level the main architectural mod-

ules and communication between them. However, it lacks software details needed

to compare this model against a recovered architecture. Furthermore, it undertakes

architectural information that can be represented in a visualization, such as the in-

tense of the dependency among two modules. Analysing the representation of OLIS

architecture in Figure 5.2, it impossible to identify the intensive of the dependencies

among modules. Usually,the module sizes represents just the existence of architec-

tural modules and they are not related to the importances of the modules in the

system. So, we implemented the module visualization with modi�cations from the

usual visualization. The same architecture presented in Figure 5.2 is represented in

ArchViz as shown in Figure 5.3. In ArchViz, the modules are de�ned by their size

and color. Their colors characterizes each module role and their size is proportional

to the number of architectural elements it has. Also, the modules have labels with

the architectural role and number of elements that they have. The edges represent

the communication among modules in way that when an edge is red means that the

red module is using the opposite module. Additionally, the thickness of the edge



61

Figure 5.3: Modules dependencies software architecture graph

is proportional to the level of dependency the relationship has, e.g. the relationship

among modules Agent and Model is greater than the Agent and Business in the

OLIS architecture.

5.2.3 Elements Graph

Architectural element dependencies is the �ner-grained architectural model

that can be represented. It presents the dependencies among architectural elements

classifying them into architectural modules. In the element visualization imple-

mented in our tool, the graph represents architectural elements as nodes and they

have the color of the their modules. The edges are colored by the module that uses

another module, similarly to modules visualization. This representation disregards

the intra-module dependencies to reduce the number edges in the visualization. As

an example, we present the Expert Committee concrete architecture representation

using the elements visualization in Figure 5.4, where the �ve modules, the inter-

modules dependencies and the 195 elements of the system are represented.

5.3 Implementation

We built the ArchViz as a web-based application, so it is plataform-independent

because the only requirement to use it is an Internet browser. To develop our tool,

we followed the Model-View-Controller architectural pattern commonly used for the

development web applications.

To develop our tool, we chose Ruby as programming language because of the

support of the Ruby on Rails1 (RoR) web application framework and our experience

1http://rubyonrails.org

http://rubyonrails.org


62

Figure 5.4: Elements dependencies visualization of Expert Committee software ar-
chitecture.

in this language. Additionally, to develop our models, we followed a test-drive

development (TDD), which provides automatic suite of tests. Furthermore, during

the development, we controlled our code version with Git2.

Our tool is available online as a Beta version in the address http://archviz.

herokuapp.com to be used as support to architecture recovery process. This Beta

version has limited resources in the Heroku 3 deployment server. Moreover, as

ArchViz still is a Beta version, it is not indexed in the search engines yet.

5.4 Final Remarks

In this Chapter, we presented our tool to support the architecture recov-

ery process, ArchViz, explaining its functionalities, detailing the visualizations de-

veloped and providing technical information about how it was developed. Addi-

tionally, we deployed ArchViz Beta version available online. Furthermore, ArchViz

contributes to the improvement of the architecture recovery process comprehension

since it provides evaluation measures and architectural visualizations automatically.

2http://git-scm.com
3http://www.heroku.com

http://archviz.herokuapp.com
http://archviz.herokuapp.com
http://git-scm.com
http://www.heroku.com


63

In the next chapters, we use ArchViz visualizations and metrics to present results

and to derive conclusions from our experiments.



64

6 EXPERIMENTS

In this chapter, we present the experiments performed following the settings

detailed previously. Thus, the results achieved by the subsets of features selected

are provided considering all the case studies. Additionally, we evaluated a way to

combine the two selected features in one dataset. Based on the analysis of the

results, we present the subset of features that achieves the best accuracy using

the Expectation Maximization to recover the software architecture. We focus on

presenting the results based on the average accuracy, since this metric provides a

summarized evaluation of the correctness and distinctness of each module predicted.

Moreover, Appendix A has the evaluation of precision, average precision, average

recall and average fMeasure of all the signi�cant subsets evaluated in this chapter.

Our experiments are divided according to the features selected to be evalu-

ated. In Section 6.1, we detail the use of architectural element dependencies. Next,

we analyze the relevant subsets of the several experiments performed using metrics

and labels in Section 6.2. Focusing on improving the accuracy achieved, in Sec-

tion 6.3, we combine element dependencies, metrics and labels features in a unique

dataset.

6.1 Element Dependency

Many architectural patterns base their concepts in the elements communica-

tion rules, such as layered modules and MVC pattern. Our experiments using ele-

ment dependencies aim to derive patterns of system communication rules to group

them in modules. It is unknown if the Expectation Maximization algorithm is able

to extract dependency patterns. Moreover, an investigation about the contribution

of each type of dependencies must be performed in order to extract the types of

dependency that contribute more to the identi�cation of architectural modules.

Thus, to present the experiment results related to element dependencies, we

divided our analysis following a three part structure. First, we analyze, in Sec-



65

tion 6.1.1, the results obtained with the subset that contains the three types of

element dependencies. Then, in Section 6.1.2, we investigate the subsets that per-

form best to each case study. Concluding, in Section 6.1.3, we present the subsets

that achieved the best accuracies given all case studies in order to discover which

types of dependencies have the most in�uence to recover the architecture correctly.

6.1.1 All Dependencies Results

Our experiments related to element dependencies are presented in Table 6.1

showing the average accuracy achieved by all investigated subsets. Additionally,

Table 6.1 presents the average accuracy (AVG), the standard deviation (SD) and

minimum accuracy (MIN ) of all case studies. Each row of Table 6.1 corresponds

to one subset of selected features of element dependencies, where the features se-

lected are explicitly shown in the subset column. The �rst row containing a subset

has all type of dependencies selected (Direct, Inverse and External). The remain-

der rows are all the six other combinations of selection of element dependencies

features. Then, considering that all types of element dependencies are relevant to

the architecture recovery process, we investigate the subset with all dependencies.

The architecture recovery using dependencies among all elements, the subset Direct,

Inverse and External of Table 6.1, provided an average accuracy range of 52.7% �

75.7% considering all case studies. Moreover, it achieved an average accuracy of

66.9% taking in count all the case studies. In the last row of Table 6.1 (Average by

Case Study), the average accuracy of each case study is presented.

Table 6.1: Accuracy of dependencies subsets

Subset Metrics OLIS Port EC RecSys AVG SD MIN

Direct, Inverse
0.527 0.757 0.676 0.630 0.754 0.669 0.096 0.527

and External
External 0.487 0.537 0.690 0.733 0.779 0.645 0.127 0.487
Inverse 0.477 0.487 0.748 0.623 0.481 0.563 0.120 0.477
Direct 0.473 0.573 0.666 0.626 0.754 0.618 0.105 0.473
Inverse and

0.310 0.579 0.633 0.685 0.290 0.500 0.186 0.290
External
Direct and

0.475 0.492 0.283 0.510 0.786 0.509 0.180 0.283
Inverse
Direct and

0.377 0.712 0.283 0.435 0.635 0.489 0.179 0.283
External

Average by
0.447 0.591 0.568 0.606 0.640

Case Study



66

6.1.2 Individual Case Studies Results

Each case study selected has particularities, such as domain and architectural

style. In order to capture the in�uence of these speci�cities of each case study to the

architecture recovery process, we investigated the best subsets of each of them using

the element dependencies features. We also investigate the subsets that achieve

the best accuracy to each case study to verify whether there is a group of selected

features that is present in all of them. In Table 6.1, the best accuracies to each

case study are highlighted in boldface. These accuracies vary from 52.7% to 78.6%.

Analyzing the individual best accuracies, Metrics has the lowest and it is the unique

that achieves an accuracy lower than 70% even with its best subset. Additionally,

the best subsets, except the one with all features, cause skewness in the accuracies,

i.e. a best subset privileges one case study characteristics causing a poor accuracy

in another. For instance, selecting the Direct and Inverse subset, RecSys achieves

78.6% and on the other hand Port achieves 28.3%. This skewness in the average

accuracies is a consequence of case studies particularities.

There are four di�erent best subsets to the �ve case studies � Metrics and

OLIS achieve their best accuracy with the subset containing all element dependen-

cies. Actually, all the best subsets share the Inverse dependency features. However,

the subset with only the Inverse dependency feature selected performs best only to

Port, what means that the other four case studies have complementary information

in the Direct and External dependencies.

Furthermore, the average accuracy per case study, presented in the last row

of Table 6.1, show a poor extraction of architectural information from the Metrics,

44.7%, and similar extraction from the other four, in a range from 56.8% to 64%.

This is correlated to the Metrics number of architectural elements. Essentially, the

four other case studies are at least 30% greater than Metrics, since metrics has 150

architectural elements and the next greater case study has 195 elements.

6.1.3 Selecting the Element Dependencies Best Subset

An exhaustive search method allows us to �nd the best subset of all possible.

In the element dependencies case, we performed a feature selection using all possible

subsets of the three types of element dependencies, Table 6.1 presents all the seven

possible subsets of dependencies features, to verify the relevance of each type of

dependency and obtain the best subset.

Curiously, all subsets with two features selected perform near 50% of average

accuracy. They achieved the worst average accuracies, even compared to the subset

with only one feature selected. This occurs by the singularity of the case studies. As



67

(a) Concrete architecture. (b) Predicted architecture using all
element dependencies.

Figure 6.1: Concrete and predicted architecture of Expert Committee.

presented in the Section 6.1.2, we found four best subsets to �ve case studies with

only Inverse dependency shared by three of the case studies.

Surprisingly, the subset containing all features performs best considering the

average accuracy all case studies. Evaluating all the three measures in Table 6.1,

the best subset has an average accuracy greater than all others subsets (66.9%), the

lowest standard deviation (9.6%) and the higher minimum accuracy (52.7%). The

Direct, Inverse and External subset achieves an average accuracy of 66.9% without

any human interaction, only based on the dependencies information extracted from

the projects. This fact reinforces that all dependency types have singular information

about the architecture of their systems and must be considered in an architecture

recovery process. To illustrate the results achieved by the subset of dependencies

with the three features, we detail the Expert Committee case study presenting the

predicted architecture using the module dependencies visualization in Figure 6.1.

The architecture recovered using dependencies retrieved the �ve modules of Expert

Committe, as can be seen in Figure 6.1(b). Moreover, the gross dependencies of each

view are similar, in Figures 6.1(a) and 6.1(b), indicating that the recover process

extracted the element dependencies similarities.

6.2 Metrics and Labels

In this Chapter, we present our experiment results related to the use of

metrics and labels features. As we adopted an exhaustive approach to compare

the di�erent subsets of metrics and labels � almost 147 thousand subsets � we

focus on a representative group of the experiment results, from which we will draw

conclusions.



68

The presentation of results of metrics and labels are divided three main parts.

We �rst analyze, in Section 6.2.1, the results obtained with the subset that contains

all selected metrics and labels features. Then, in Section 6.2.2, we present the subsets

that achieved the best accuracies for each case study. Finally, in Section 6.2.3, we

investigate the subsets that achieved the best accuracies across all case studies, so

that we can identify the metrics and labels that most contribute to recover the

architecture.

6.2.1 All Metrics and Labels Use Analysis

We present, in Table 6.2, the accuracy achieved by di�erent metrics and

labels subsets for each application. We also show the average accuracy (AVG),

standard deviation (SD) and the minimum accuracy (MIN ). Rows are split into

three parts: (i) accuracy of the set with all selected metrics and labels (ALL); (ii)

accuracy of the subsets with the best accuracy for each application � these subsets

are named with the �rst letter of the application name; and (iii) the top 23 best

subsets considering the average of all applications. These data strongly indicate

that the analyzed source code metrics and labels are able to reveal information of

how the software architecture is structured. The trivial case uses all the source

code characteristics selected (without a feature selection process), and with this set

is possible to group elements into architectural modules with an accuracy ranging

from 59.3% to 89% without any human intervention. Furthermore, considering all

case studies, we obtained an average accuracy of the 70.8%, as presented in the

subset ALL of Table 6.2.

Given the exhaustive method of search applied during the experiments phase,

we rank all the generated subsets according to their accuracy to better understand

the relationship between di�erent sets of metrics and labels, and the accuracy they

achieve. The ALL subset is ranked in the 2536th position considering all subsets,

according to the average accuracy of all analyzed case studies. The position of

this subset in the ranking corroborates the relevance of all selected features, as the

accuracy achieved with the ALL subset is better than 98% of all possible subsets

generated using metrics and labels. Note, however, that the ALL subset has high

variance in the accuracy achieved for each application, as shown by its standard

deviation (13.6%) presented in Table 6.2.

6.2.2 Individual Case Studies

In order to investigate whether exists a relationship between the set of source

code metrics and labels selected and the architectural pattern adopted by each case



69

Table 6.2: Accuracy of metrics and labels subsets.

Subset Metrics OLIS Port EC RecSys AVG SD MIN

ALL 0.593 0.890 0.623 0.818 0.615 0.708 0.136 0.593

M 0.770 0.826 0.766 0.818 0.526 0.741 0.123 0.526
O 0.505 0.930 0.784 0.732 0.808 0.752 0.156 0.505
P 0.360 0.854 0.891 0.856 0.745 0.741 0.220 0.360
E 0.342 0.839 0.803 0.879 0.649 0.702 0.219 0.342
R 0.336 0.892 0.638 0.500 0.832 0.639 0.231 0.336

Bst1 0.730 0.896 0.791 0.826 0.765 0.801 0.063 0.730
Bst2 0.717 0.909 0.695 0.821 0.695 0.767 0.095 0.695
Bst3 0.733 0.906 0.795 0.834 0.668 0.787 0.092 0.668
Bst4 0.731 0.890 0.739 0.869 0.667 0.779 0.096 0.667
Bst5 0.720 0.900 0.664 0.821 0.793 0.779 0.091 0.664
Bst6 0.707 0.911 0.807 0.830 0.662 0.783 0.099 0.662
Bst7 0.720 0.901 0.801 0.828 0.661 0.782 0.094 0.661
Bst8 0.660 0.900 0.686 0.858 0.725 0.766 0.107 0.660
Bst9 0.653 0.894 0.805 0.832 0.745 0.786 0.091 0.653
Bst10 0.653 0.906 0.759 0.824 0.772 0.783 0.093 0.653
Bst11 0.700 0.898 0.652 0.841 0.663 0.751 0.111 0.652
Bst12 0.653 0.905 0.806 0.831 0.649 0.769 0.114 0.649
Bst13 0.642 0.894 0.721 0.846 0.667 0.754 0.111 0.642
Bst14 0.633 0.890 0.678 0.861 0.665 0.745 0.120 0.633
Bst15 0.633 0.890 0.779 0.869 0.789 0.792 0.101 0.633
Bst16 0.673 0.917 0.630 0.838 0.798 0.771 0.118 0.630
Bst17 0.629 0.894 0.844 0.823 0.629 0.764 0.126 0.629
Bst18 0.624 0.890 0.844 0.823 0.742 0.785 0.104 0.624
Bst19 0.607 0.903 0.874 0.824 0.651 0.772 0.134 0.607
Bst20 0.607 0.901 0.812 0.834 0.666 0.764 0.123 0.607
Bst21 0.607 0.909 0.679 0.831 0.767 0.758 0.120 0.607
Bst22 0.607 0.890 0.781 0.846 0.649 0.754 0.123 0.607
Bst23 0.607 0.900 0.723 0.840 0.776 0.769 0.112 0.607



70

study, we identi�ed which subsets of features lead to the best accuracy in predicting

each application architecture. As each application has architectural singularities and

domain speci�cities, we verify the in�uence of the di�erent features in the prediction

of the recovered information.

In Table 6.2, we observe a subset of features for each application that achieves

high accuracy, which ranges from 77% to 93%. However, the best subset for one

application leads to a poor result for another. For example, the best subset for Port

achieves an accuracy of 89.1%, while the accuracy achieved by this subset forMetrics

is 36%, as shown in the subset P of Table 6.2. This variance can also be observed

in the standard deviation of each of these subsets. Also, the lowest accuracies are

always associated with the Metrics case study. This is the smallest case study of

our experiment, and therefore the limited data available makes it more di�cult to

extract precise information from the selected features.

After identifying the best subsets for each application, we analyze the features

contained in each subset. The features of each of these best subsets are depicted in

Table 6.3. Our results indicate that the architectural pattern adopted has insigni�-

cant in�uence in the accuracy, and accuracy di�erence is due to the frameworks used

(so that classes and interfaces are extended and implemented), the patterns used in

class names, and patterns to create attributes and methods. From our twenty nine

features, six (highlighted in boldface in Table 6.3) are shared by all best subsets:

mean method complexity (MMC), total lines of code (TLOC), top two class name

words (CNW1, CNW2), top two interfaces usage (INT1, INT2). However, if we

ignore Metrics for the reasons said above, the number of attributes (NOA), number

of static methods (NSM) as well as all class name words and implemented interfaces,

are all shared. This means that the nomenclature pattern used in class names are

more meaningful to all other applications than to Metrics � as the latter has fewer

classes, the vocabulary adopted is smaller. The same occurs with the implemented

interfaces.



7
1

Table 6.3: Best characteristic subsets by case study.

Subset MMC DIT WMC NSC NORM NOANSANOM NSM NOGS TLOC MLOC CNW1 CNW2 CNW3 CNW4 CNW5 SC1 SC2 SC3 SC4 SC5 INT1 INT2 INT3 INT4 INT5 size

E x x x x x x x x x x x x x x x x x x x 19

M x x x x x x x x x 9

O x x x x x x x x x x x x x x x x x x x 19

P x x x x x x x x x x x x x x x x x x x x x x x x x 25

R x x x x x x x x x x x x x x x x x x 18



72

6.2.3 Selecting the Best Subset of Metrics and Labels

Our goal with this experiment is evaluate whether source code metrics and

labels can be used in the architecture recovery process, and if so, identify if a particu-

lar subset of them that should be used in this process. As shown above, our selected

metrics and labels can be used to recover software architectures with high accuracy,

and in order to verify the existence of this particular subset, we investigated all the

subsets with a better average accuracy than the average accuracy obtained by the

ALL.

From the 2535 subsets of features better than the ALL subset, most of them

are skewed, i.e. the accuracy achieved across all case studies has high variance, as it

is also the case of the best subsets for each case study, which were presented in the

previous section. We thus excluded these skewed results because we are interested

in subsets that achieve an overall good result (not only for one case study). To

exclude these skewed subsets, we take into account only the subsets that improve

the accuracy for all applications in comparison with the accuracies achieved by the

ALL subset. As result, we identi�ed 23 subsets with a diversity of source code

metrics and labels present in each of them, as depicted in Table 6.4.

Analysing these subsets, which have a better minimum accuracy than the

ALL subset (Table 6.4), 12 features occur in more than 70% of the subsets: number

of overridden methods (NORM), average method size (MLOC), all class name words

(CNW1-5) and all interface usage (INT1-5). Even though the accuracy achieved by

all the 23 subsets for all applications are improved with respect to the ALL subset,

almost all of them are also associated with high standard deviation, which indicates

that the accuracy achieved for some of the case studies is much worse than for others.

The exception is the Bst1 subset, which has the highest average accuracy, around

80%, and also the lowest standard deviation, 6.3%.

In order to visualize how good Bst1 subset predicts the architecture, we

present in Figures 6.2 and 6.3 the treemap prediction visualization of the OLIS (best

accuracy) and Metrics (worst accuracy) case studies, respectively. The remainder

case studies has a graph similar to that of the OLIS.



7
3

Table 6.4: Analysis of characteristic presence in subsets better than the ALL subset.

Subset MMC DIT WMC NSC NORM NOANSANOM NSM NOGS TLOC MLOC CNW1 CNW2 CNW3 CNW4 CNW5 SC1 SC2 SC3 SC4 SC5 INT1 INT2 INT3 INT4 INT5 Size

Bst1 x x x x x x x x x x x x x x x x x 17

Bst2 x x x x x x x x x x x x x x x 15

Bst3 x x x x x x x x x x x x x x x x 16

Bst4 x x x x x x x x x x x x x x x x 16

Bst5 x x x x x x x x x x x x x x x x 16

Bst6 x x x x x x x x x x x x x x x x x 17

Bst7 x x x x x x x x x x x x x x x 15

Bst8 x x x x x x x x x x x x x x x x x x x x x 21

Bst9 x x x x x x x x x x x x x x x x x x x x x 21

Bst10 x x x x x x x x x x x x x x x 15

Bst11 x x x x x x x x x x x x x x x x x 17

Bst12 x x x x x x x x x x x x x x x 15

Bst13 x x x x x x x x x x x x x x x x x x x x x x 22

Bst14 x x x x x x x x x x x x x x x x x x x x x x x 23

Bst15 x x x x x x x x x x x x x x x x x x 18

Bst16 x x x x x x x x x x x x x x x 15

Bst17 x x x x x x x x x x x x x x x x x x x x x x x 23

Bst18 x x x x x x x x x x x x x x x x x x x x x x x 23

Bst19 x x x x x x x x x x x x x x x x x x x x x x 22

Bst20 x x x x x x x x x x x x x x x x x x 18

Bst21 x x x x x x x x x x x x x x x x x 17

Bst22 x x x x x x x x x x x x x x x x x 17

Bst23 x x x x x x x x x x x x x x x x x x x x 20

Count 15 10 11 10 17 14 15 13 12 8 9 17 19 19 19 19 16 13 13 13 13 12 23 23 23 23 20

Freq 0.65 0.43 0.48 0.43 0.74 0.61 0.65 0.57 0.52 0.35 0.39 0.74 0.83 0.83 0.83 0.83 0.70 0.57 0.57 0.57 0.57 0.52 1.00 1.00 1.00 1.00 0.87



74

Figure 6.2: Treemap of Bst1 subset prediction to OLIS.

Figure 6.3: Treemap of Bst1 subset prediction to Metrics.

6.3 Combining Source Code Features

Our purpose with the experiments performed in Sections 6.1 and 6.2 was

to investigate the information relevant to the architectural elements communication

and behavior respectively. The objective of this section is to verify if merging the

features improves the architecture recovery accuracy.

Our approach to combine the features is to add the architectural modules

predicted by element dependencies to the metrics and labels features dataset. We

produced a matrix with the element dependency modules as features, which means

that when the dependencies features subset predicts �ve modules, the appended

dataset will have all the metrics and labels features with �ve more features at the last

columns of the dataset. The combined dataset follows the features schema depicted



75

in Table 6.5, where metrics and labels features are placed �rst in the dataset, and

the modules predicted using the element dependencies, represent as MOD in the

table, are added at the end of the dataset. A MOD feature represents the presence

or not of an architectural element in the module predicted by element dependencies.

Its value is binary, zero when absent and one when present. We choose to add

dependencies prediction to metrics and labels instead of the opposite, because the

element dependencies generate too many features, almost 400 features in the smallest

case, what practically makes the metrics and labels features insigni�cant to the

learning process.

Table 6.5: Combined features dataset schema.

Elements MMC DIT . . . INT4 INT5 MOD1 MOD2 . . .

element1 2 3 . . . 1 1 1 0 . . .
element2 10 7 . . . 0 0 0 1 . . .
element3 5 4 . . . 0 0 1 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Analysing the results of both sources of information, the accuracy achieved

with metrics and labels overcomes that achieved with element dependencies. Only

RecSys achieved a similar accuracy considering the both best subsets of each type

of features. In Table 6.6, we present comparative data regarding all previously pre-

sented best subsets (Bst1; Direct, Inverse and External) and the subset with the

features combination. Moreover, the average of all case studies accuracies consid-

ering each subset clearly show that metrics and labels perform best than element

dependencies and than combining both features. Combining both features improves

the results compared to element dependencies and decreases results of the metrics

and labels considering the average of all case studies accuracies. Also, element de-

pendencies always have the worst results comparing the three subsets presented in

Table 6.6.

Although it is not an expressive gain, Recsys achieves an improvement com-

bining both features in one dataset. Analysing the six Recsys modules, we observe

that Recsys concrete architecture has two bigger modules, Business and Domain

presented in Figure 6.4(a). The learning process using element dependencies allows

to identify Business, Domain, Model and View modules, but it merges Core and

Data modules to Busines module, as illustrated in Figure 6.4(b). On the other

hand, metric and labels features allows to identify Domain, Business, View, Data

and Model. Using metrics and labels, the learning process merges part of all modules

and Core module with Domain module, as presented in Figure 6.4(c). Combining



76

Table 6.6: Subsets comparison: Bst1; direct, inverse and external; and combined
features.

Case
Bst1

Direct, Inverse Combined

Study and External Features

OLIS 0.896 0.757 0.879
Expert 0.826 0.630 0.793
RecSys 0.765 0.754 0.790
Port 0.791 0.676 0.617
Metrics 0.730 0.527 0.530

Average 0.801 0.669 0.722

both, Figure 6.4(d), we achieved a better accuracy since, in Recsys case, each type

of features focus on identi�es one di�erent part of the system.

6.4 Final Remarks

We conducted a series of experiments in order to evaluate the relevance of the

features selected to identifying architectural modules. This Chapter was dedicated

to provide relevant data analysis. Furthermore, we revealed the results achieved by

each type of feature selected and combined them in order to compare all of them.

In addition, the presented data provides evidences for the discussion presented in

the next chapter.



77

(a) Concrete architecture.

(b) Predicted architecture using Di-
rect, Inverse and External element
dependencies.

(c) Predicted architecture using
Bst1 subset.

(d) Predicted architecture using the
combined features subset.

Figure 6.4: Combining RecSys features to improve accuracy.



78

7 LESSONS LEARNED

In the previous chapter, we focused on presenting the collected data and

pointed out observations we extracted from it. Then, in this chapter, we provide a

deeper analysis of the results of this study and discuss the lessons learned during

the study based on the experiments performed.

We detail the lessons learned in each step of the procedure speci�ed in Chap-

ter 4. In Section 7.1, we discuss the relation of the case studies with the results

achieved. Next, we analyze the e�ects of the learning process adopted to our study

considering the architecture recovery problem in Section 7.2. The analysis of the fea-

tures selected in our study is provided in Section 7.3. Finally, an overall discussion

about the experiments and procedure adopted is presented in Section 7.4.

7.1 Case Studies

The case studies used in a empirical study a�ect signi�cantly the evaluation

of the features relevance to software architecture. Moreover, based on the results

achieved by the experiments, we derive conclusions to guide the construction of

architecture recovery methods and to understand the relationship between the case

studies and software architecture.

As we presented in Tables 6.1 and 6.4, di�erent subsets of features in�u-

ence di�erently in the result due to the individual characteristics of each case

study as Constantinou, Kakarontzas and Stamelos suggested (CONSTANTINOU;

KAKARONTZAS; STAMELOS, 2011) in their future work. By comparing the

case studies, we observed that case studies have a di�erent number of modules,

their modules have di�erent quantity of elements and unequal distribution of ar-

chitectural elements. This variability increases the di�culty of extracting proper

architectural information without previous information, such as patterns or a doc-

umented conceptual architectural. Despite of these di�erences, our evaluation pro-

cedure achieved signi�cant results for OLIS, RecSys, EC, and Port case studies, as



79

illustrated with the predicted treemap presented in Figure 6.2. Moreover, based on

the accuracy of the architecture recovered prediction of the Bst1 subset using the

Expectation Maximization algorithm, four of �ve modules of the OLIS case studies

are clearly identi�ed improving the understanding about the system without any

previous knowledge. OLIS is similar to the other except Metrics that had a limited

accuracy due to its limited size. Another important fact is the distribution of ele-

ments in the software modules. RecSys has �ve modules with few elements that are

hard to be predicted using machine learning.

Furthermore, the manual architecture recovery of the case studies gave us

insights, which were con�rmed by the results achieved, about the relation of met-

rics, labels and element dependencies with software architecture. Also, the manual

investigation provided insights about three new features related to architectural el-

ements: (i) superclass usage; (ii) interface usage; and (iii) number of getters and

setters of architectural elements. Until now, these features were disregarded by the

architecture recovery methods and actually they have relation with software archi-

tecture � two of them are present in subset of features that achieved the best results

in our experiments. Our study provided an analysis of features of the selected case

studies, but manual investigations of more projects must be performed in order to

identify more possible features.

7.2 Learning Process

The learning process �ts well to our purpose, as it was expected, since the

feature selection evaluated the data relevance and the unsupervised learning process

adopted recovered cluster with unequal sizes. However, there are some points to be

detailed to provide a clear analysis of how the feature selection and the Expectation

Maximization handle the relation between the features selected and the software

architecture.

Performing a feature selection over the selected features served to discover

the best subsets of features. Furthermore, this process revealed the relation between

the features selected and the software architecture. Measuring the accuracy of each

subset evaluating all the case studies, we quantify the relevance of each subset

of features to the architecture recovery. Additionally, the application of features

selection improved the achieved results reducing the number of features used to

metrics and labels, and state the importance of all types of dependencies to element

dependencies features.

Another point that must be discussed is the in�uence of the case studies in the

learning process. As discussed early, the case studies have many di�erences, such as



80

number of lines of code, adopted architectural patterns and number of architectural

modules. These di�erences a�ect the quantity of information that an application

provides to the learning process, mainly the number of architectural elements. As

we use an unsupervised technique guided by similarities among data, the Expecta-

tion Maximization prediction depends on how many architectural elements exist to

recognize similarities during the learning process and obtain a better prediction of

architectural modules. In Table 4.4, we present data related to the case study sizes,

showing that Metrics is the smallest case study analyzed. Consequently, it has the

worst accuracy compared to the others projects, and also the minimum accuracy

with the Bst1 subset and the subset with all element dependencies, as presented in

Table 6.6. Furthermore, investigating the accuracies of the two largest case studies,

Port and RecSys, we observe that their variation range is smaller than the Metrics

case study. This indicates that the quantity of the architectural elements in�uence

the learning process, i.e. the application of machine learning techniques to recover

architectures is recommended mainly to medium-large applications in terms of the

number of architectural elements.

Another fact related to the learning process is the recovery of modules from

the case studies. Di�erently from the others learning algorithms, the Expectation

Maximization algorithm handle clusters with di�erent sizes since its based on statis-

tics to derive modules. Then, recovering the larger modules is easier because they

have more data related to them, consequently more data to recognize similarities in

the case when this similarities exist. An example of this recognition of larger mod-

ules is presented in Figure 6.4, where the concrete architecture, Figure 6.4(a), has

four large modules and two smal modules. The Bst1 and the dependencies features,

Figures 6.4(c) and 6.4(b), recovered the four main modules. On the other hand,

the smalles module, Core, is not recovered since the algorithm needs more similar

elements to identify that a group of elements have enough similarity to create a new

module.

7.3 Features

Our study evaluated the results of two types of features in order to reveal the

relevance of them to identify the software architecture module. As the results show,

both types of features extracted signi�cant information to projects architecture,

both achieved at least 52.3% of average accuracy considering all case studies. The

architectural element dependencies are commonly used in the literature to recover

the architecture. However, the metrics and labels features evaluated overcame the

element dependencies.



81

Analysing the results presented in Table 6.6, the results achieved by features

of metrics and labels perform better than element dependencies in all case studies.

In fact, the di�erence between the average accuracies of both types of features usage,

13.2%, reinforce superior performance of metrics and labels compared to the element

dependencies.

Next, we provide a deeper discussion about the results related architectural

element dependency features, in Section 7.3.1, metrics and labels, in Section 7.3.2. In

addition, an analysis of the combination of both features is provided in Section 7.3.3.

7.3.1 Element Dependencies

Despite of the element dependencies have a worst performance than metrics

and labels, its results also have signi�cance to the architecture recovery process.

An average accuracy of 66.9% means that it contributes to retrieve software archi-

tecture information, as showed in the RecSys. Comparing the use of all element

dependencies and the ALL subset, presented in Table 7.1, we observe that, in the

larger case studies, element dependencies perform better than the usage of all met-

rics and labels. It suggests that the element dependencies features demand more

data to establish similarities.

Table 7.1: Average accuracy of ALL and elements dependencies subsets

Case Number of
ALL

All
DIFF

Study Elements Dependencies

Port 399 0.623 0.676 0.053
RecSys 334 0.615 0.754 0.139
OLIS 212 0.890 0.757 -0.133
EC 195 0.818 0.630 -0.188
Metrics 150 0.593 0.527 -0.066

AVG 0.708 0.669 -0.039
STD 0.136 0.096 -0.040

Furthermore, comparing the use of all features from both types of information

selected, we see the improvement achieved by the feature selection. Then, aiming

to improve the results of element dependencies, more elements dependency features

may be evaluated. The three of dependency features investigated in our study are

the main features related to communication of architectural elements, as they cover

the three types of possible element dependencies. However, more dependency prop-

erties should be explored in order to found similarities among software architectural

elements.



82

7.3.2 Metrics and Labels

First, we reiterate that the results presented in Section 6.2 indicate a strong

relationship between the metrics and labels analyzed and the identi�cation of ar-

chitectural modules. Even when the subset is composed of all metrics and labels,

the high accuracies achieved, demonstrate that all analyzed metrics and labels have

contribution to group elements into modules. Even though the best subset of fea-

tures contain only part of the metrics and labels evaluated, the presence of each

feature in at least 8 of the best 23 subsets analyzed, presented in the count row

of Table 6.4, indicates that each individual feature contributes to achieve a better

accuracy in some of these 23 subsets, thus providing architectural information.

In order to understand why the overall best subset had unselected metrics or

labels, we investigated the occurrence of each feature in the subsets with better re-

sults than the trivial subset. Analysing the frequency of features in the best subsets,

presented in the last row of Table 6.4, we observed that the most important feature

related to the software architecture is INT1�INT4 (i.e. the top 4 most implemented

interfaces should be considered), given their presence in all best subsets. In addi-

tion, no other analyzed feature is present in all best subsets. Despite that, the other

features also provide architectural information. Analysing the subsets Bst1�Bst7 in

Table 6.4, an interesting selection pattern occurs: superclass usage and class name

words mutually exclude each other. This indicates that these features are correlated

to each other, providing similar statistical information related to the architecture.

Additionally, in most of the subsets, class name words contributes more than super-

class usage. Moreover, a similar pattern occurs in the Bst1�Bst10 subsets with the

depth of inheritance and number of overridden methods features. These selection

patterns justify the unselected features in the overall best subset.

A simple analysis may lead, considering the best subsets for individual case

studies, to the wrong conclusion that the overall best subset consists of the follow-

ing features: mean method complexity, total lines of code, top most two class name

words, and top most two interface usages. This subset is the intersection of all

individual best subsets presented in Table 6.3. However, performing an exhaustive

investigation, we concluded di�erently � the set with these features has worst ac-

curacy than the top 23 subsets. The di�cult in derive information from the source

code metrics and labels is connected to the complexity of relationship between the

metrics and labels analyzed and the architectural modules.

Bst1 subset achieves the best overall accuracy. Its high accuracy is indepen-

dent from the unselected features, which indicates that this set of metrics and labels

has the maximum shared architectural information considering all case studies and



83

the minimum correlation among them, as can be seen in Table 6.4. Consequently,

mean method complexity, depth of inheritance, number of children, number of at-

tributes, number of methods, number of getters and setters, average methods size,

top most �ve class name words and top most �ve interface usages are considered the

most relevant features of all analyzed metrics and labels related to software archi-

tecture. Furthermore, this subset has the highest average accuracy and the lowest

standard deviation what reinforce the relevance of this subset. Additionally, each

features in the Bst1 subset contributes with an speci�c property, possibly with the

rationale described in Section 4.2.

7.3.3 Combining Features

The combination of features intuitively seems to be an improvement to the

data quality because the each main concept of software architecture are present

one of the two types of features analyzed. However, combine the communication

information provided and the behavior information provided by metrics and label

did not improve the results, at least using the combination used in our study as

presented in Table 6.6. In fact, combining features is not trivial, for instance the

element dependencies have a variable number of features and usually many features

compared to the �xed model of the metrics and labels features. Mainly, it may be

the reason for why the software architecture recovery methods use only one type

of information retrieved from the source code to recover the software architecture.

Actually, the only combination of features performed by the architecture recovery

approaches is use of architectural patterns to guide the recovering process. It occurs

mainly due to the complexity to merge di�erent features, which still is a challenge.

7.4 Overall Analysis

As introduced in Section 2.1, a software architecture states the rules of what

elements do and how they interact. Our study focused on how to group architectural

elements based on their characteristics, as the result of applying a machine learning

algorithm is a set of identi�ed modules and to which module each element belongs.

This identi�cation of each module is performed without the speci�cation of a prede-

�ned number of modules, as it is the case of existing approaches (KUHN; DUCASSE;

GÍRBA, 2007; CONSTANTINOU; KAKARONTZAS; STAMELOS, 2011). We eval-

uated information related to roles and communication in order to cover both ar-

chitectural concepts. Using only metrics and labels, there is lack of information

retrieved related to communication of architectural elements. On the other hand,

considering only element dependencies, architectural roles information are disre-



84

garded. Our attempt to combine both failure since the accuracy achieved using

both types of characteristics is worse than just metrics and labels. However, metrics

and labels achieved a signi�cant accuracy alone.

Our experiments presented the best subset of each type of features selected

concluding that metrics and labels are the most appropriate type of features to be

applied considering the procedure adopted and the selected case studies. Addition-

ally, our study is one of the �rst studies that compare the relevance of source code

metrics to recover software architectural modules. Moreover, our study revealed the

strong relationship between software architecture and metrics and labels.

Recently, Garcia, Ivkovic and Medvidovic performed a study considering

a new evaluation metric to architecture recovery (GARCIA; IVKOVIC; MEDVI-

DOVIC, 2013). They proposed the Cluster-to-Cluster (c2c) comparison providing a

ranges of level of similarity comparing nine architecture recovery algorithms. They

stated three levels of matching: (i) moderate matching, from 40% to 60%; (ii) strong

matching, from 60% to 80%; and (iii) a very strong matching from 80% to 100%.

Their metric is basically a precision of each module predicted. Our similar mea-

sure of evaluation is the average precision of each case study. The average precision

presented in the Appendix A de�nes our case studies average precision as at least

moderate in all case studies considering Bst1, all element dependencies and com-

bined features subsets. Furthermore, the Bst1 subset has the average precision of

50.1% to Metrics, 53.5% to Port, 55% to RecSys, 67% to Expert Committee and

78.8% to OLIS � Bst1 subset thus moderately matches three and strongly matches

two of the case studies selected.

7.5 Final Remarks

In this chapter, we analyzed the experiments results deriving the main lessons

learned to identify architectural modules using machine learning. We presented a

detailed discussion about each part of our procedure highlighting the conclusions

of each step and their relation with the results obtained. Firstly, an analysis of

the relationship between the case studies characteristics and the accuracy achieved

by the subsets analyzed. Additionally, the manual investigation importance is dis-

cussed since the architecture recovery approaches still must be improved in terms

of extraction of information. Then, the impact of the learning process in our results

and guidelines recommendations to the use of the Expectation Maximization was

discussed. We also analyzed the selected features relevance to software architecture

aiming to present the reasons of why metrics and labels achieve a high accuracy. We



85

conclude giving an overview of the improvements obtained, highlighting the points

related to the whole procedure adopted.



86

8 CONCLUSION

The software complexity increases due to the growing computer science evo-

lution techniques to build a software, such as programming languages and hardware

variety. Consequently, the e�ort demanded to maintain the software documentation

in conformance with the concrete architecture is also increasing. Software architec-

ture comes to avoid the technological speci�cities in the documentation capturing

the concepts applied to build a software in a high-level model. Despite of the bene�ts

of having a documented software architecture, the architectural models commonly

do not exist or diverge from the concrete architecture. This occurs because the task

of maintaining a software architecture model up-to-date is complex. Then, aiming

to tackle this lack of architectural documentation, software architecture recovery

research focuses on automating the extraction of software architectures based on

source code information automatically. In order to improve the software architec-

ture recovery scenario, machine learning techniques have being applied in sources of

software data to automate the process of recovering software architecture.

In our study, we presented an evaluation of the software architecture recov-

ery sources of information applying an unsupervised machine learning technique.

We speci�ed a procedure to evaluate the relevance of each source of architectural

information. We performed this evaluation considering �ve case studies, two di�er-

ent types of architectural elements characteristics and �ve statistical metrics. As a

results of our approach, we achieved a high accuracy, 80.1%, considering the best

subset of features obtained through the feature selection process performed. An

advantage of our approach is that the accuracy achieved was obtained performing

a process that can be totally automated. Additionally, due to the lack of support

to measure and understand the architecture recovery results, we developed ArchViz

� a web-based tool to provide automatic evaluation of the architecture recovery

results. Furthermore, it provides three di�erent visualizations of the concrete and

predicted architecture to support understand of the architecture recovery process.



87

8.1 Contributions

Given the results presented in this dissertation, we list below our main con-

tributions.

Architecture Recovery Using Machine Learning Guidelines. We speci�ed,

in Chapter 4, the generic steps to develop a method to recover software archi-

tecture automatically based on machine learning techniques. We set our steps

parameters � software information selection, dataset preparation, learning

process and results analysis � to evaluate the relevance of the features ana-

lyzed based on the performance of our experiments. Given the results achieved,

we provided empirical evidences of the e�ectiveness of our guidelines to build

a method to recover software architecture using the parameters set and the

features analyzed.

Architectural Elements Characteristics Comparison. There are many archi-

tecture recovery methods, but most of them use only one type of software

information. In addition, they do not provide an evaluation of the architec-

tural elements information that could be considered following their approaches.

Aiming discover which type of source code information is more relevant to iden-

tify software architecture modules, we performed a comparative evaluation of

the two main concepts related to software architecture (communication and

role). Additionally, we combined both types of characteristics in a dataset

aiming to provide an improved dataset with both information related to soft-

ware architecture. However, our experiments presented the best performance

using just a subset of the evaluated source code metrics and labels.

Metrics and Labels to Identify Architectural Modules. Most of the current

software architecture recovery methods disregarded source code metrics and

labels. Thus, we performed a deep evaluation and analysis about the impor-

tance of source code metrics and labels to identify architectural modules. We

concluded by our experiments that there is a strong relationship between them.

The selected features (metrics and labels) achieved better results in all case

studies, compared to the commonly used element dependencies features.

Architecture Recovery Tool Support 1. Due to the lack of standardization and

visualizations of architecture recovery methods. We provided a tool to support

the architecture recovery research, ArchViz. Our tool provides a standardized

evaluation of the architecture recovery processes given the concrete architec-

ture and the predicted architecture. It automatically calculates the statistical
1http://archviz.herokuapp.com

http://archviz.herokuapp.com


88

metrics from the information retrieval context used to evaluate the prediction

quality of unsupervised approaches. Additionally, ArchViz provides visualiza-

tions of concrete and predicted architectures. It facilitates the comparison

between sources of information and learning processes providing quantitative

measures. It improves the recovery process understand with architectural rep-

resentation of conceptual and concrete architectural models.

8.2 Future Work

Our work is an initial step towards an automatic approach to manage soft-

ware architecture based on source code comprising the architecture evolution and

an architecture recovery complete approach. In order to apply the lessons learned

with respect to architecture recovery and use the contributions presented in this

dissertation to in fact recover software architecture, future work is related to this

study listed below.

An Architecture Recovery Method. Our procedure of evaluation achieved rel-

evant results to architecture recovery. Based on the procedure parameters

presented in Chapter 4, an architecture recovery method can be developed

� an integrated method that handles the extraction of features, the learning

process and the predicted architecture evaluation. This architecture recovery

method would be an extension of ArchViz, it already performs the evaluation

of the predicted architecture, with all the procedure implemented.

Investigation of Architectural Element Characteristics. As presented by Gar-

cia, Ivkovic and Medvidovic (GARCIA; IVKOVIC; MEDVIDOVIC, 2013),

there are much to be improved in the architecture recovery process and a

key improvement factor is the software information selection. Architectural

elements have many characteristics disregarded by the software architecture

recovery studies, such as the code metrics presented in this dissertation. We

aimed to improve the set of characteristics with our study, but many others

must be evaluated to achieve a more robust and reliable architecture recovery

method.

Speci�c Purpose Expectation Maximization Algorithm. An analysis of the

Expectation Maximization algorithm in�uence in the results must be per-

formed in order to have a better understanding of the learning process and

proposed speci�c purpose changes in the algorithm. In particular, a modi-

�cation in EM algorithm to accept weight in the used features may help to

combine di�erent types of features and also improve the results achieved.



89

Evaluation of Architectural Modules Roles Capturing the idea that similar

systems have similar class pro�les (OLIVEIRA et al., 2013). In our work, we

provided an analysis of source code metrics, labels and dependencies relevance

considering the Expectation Maximization. Thus, a deeper analysis about

recurrent software architecture modules, such as Data modules, may lead to

class pro�les related to a speci�c modules. It could improve the understanding

about the relationship between the selected features and architectural modules.

In summary, we evaluated di�erent sources of information relevance to soft-

ware architecture recovery. In fact, the research on architecture recovery still is a

challenge since the architecture recovery methods still are depend on the human

assistance. Establishing the relationship between sources of information (metrics,

labels and dependencies) and software architecture, our work provide evidences to

future architecture recovery methods to increase their reliability.



90

REFERENCES

AALST, W. et al. Process mining: a two-step approach to balance between under-

�tting and over�tting. Journal of Software & Systems Modeling, [S.l.], v.9,

n.1, p.87�111, 2010.

ALLEN, E.; KHOSHGOFTAAR, T. Measuring coupling and cohesion: an

information-theory approach. In: INTERNATIONAL SOFTWARE METRICS

SYMPOSIUM, Boca Raton, FL, USA. Proceedings. . . [S.l.: s.n.], 1999. p.119�

127.

ANQUETIL, N.; LETHBRIDGE, T. C. Recovering software architecture from the

names of source �les. Journal of Software Maintenance: Research and Prac-

tice, [S.l.], v.11, n.3, p.201�221, May 1999.

BASS, L.; CLEMENTS, P.; KAZMAN, R. In: Software Architecture in Prac-

tice. [S.l.]: Pearson Education, 2012. p.3�24. (SEI Series in Software Engineering).

BUSCHMANN, F.; HENNEY, K.; SCHMIDT, D. In: Pattern Oriented Software

Architecture: on patterns and pattern languages. [S.l.]: John Wiley & Sons, 2007.

p.25�64. (Wiley Series in Software Design Patterns).

CARRIERE, S. J.; KAZMAN, R. The Perils of reconstructing architectures. In:

INTERNATIONALWORKSHOP ON SOFTWARE ARCHITECTURE, New York,

NY, USA. Proceedings. . . ACM, 1998. p.13�16. (ISAW '98).

CHIDAMBER, S. R.; KEMERER, C. F. A Metrics Suite for Object Oriented Design.

Journal of Transactions on Software Engineering, Piscataway, NJ, USA, v.20,

n.6, p.476�493, June 1994.

CLEMENTS, P.; SHAW, M. "The Golden Age of Software Architecture" Revisited.

Journal of IEEE Software, [S.l.], v.26, n.4, p.70�72, 2009.

CONSTANTINOU, E.; KAKARONTZAS, G.; STAMELOS, I. Towards Open

Source Software System Architecture Recovery Using Design Metrics. In: PANHEL-



91

LENIC CONFERENCE ON INFORMATICS. Proceedings. . . [S.l.: s.n.], 2011.

p.166�170.

CORAZZA, A.; DI MARTINO, S.; SCANNIELLO, G. A Probabilistic Based Ap-

proach towards Software System Clustering. In: FOURTEENTH EUROPEAN

CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING.

Proceedings. . . [S.l.: s.n.], 2010. p.88�96.

CORAZZA, A. et al. Investigating the use of lexical information for software system

clustering. In: EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE

AND REENGINEERING. Proceedings. . . [S.l.: s.n.], 2011. p.35�44.

DASH, M. et al. Feature Selection for Clustering � A Filter Solution. In: INTER-

NATIONAL CONFERENCE ON DATA MINING. Proceedings. . . [S.l.: s.n.],

2002. p.115�122.

DEMPSTER, A.; LAIRD, N.; RUBIN, D. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, [S.l.],

v.39, n.1, p.1�38, 1977.

DUCASSE, S.; POLLET, D. Software Architecture Reconstruction: a process-

oriented taxonomy. Journal of Transactions on Software Engineering, [S.l.],

v.35, n.4, p.573�591, 2009.

GANSNER, E. R.; NORTH, S. C. An Open Graph Visualization System and Its

Applications to Software Engineering. Journal of Software � Practice & Ex-

perience - Special issue on discrete algorithm engineering, New York, NY,

USA, v.30, n.11, p.1203�1233, Sept. 2000.

GARCIA, J. et al. Obtaining Ground-truth Software Architectures. In: INTER-

NATIONAL CONFERENCE ON SOFTWARE ENGINEERING, Piscataway, NJ,

USA. Proceedings. . . IEEE Press, 2013. p.901�910. (ICSE '13).

GARCIA, J.; IVKOVIC, I.; MEDVIDOVIC, N. A Comparative Analysis of Soft-

ware Architecture Recovery Techniques. In: INTERNATIONAL CONFERENCE

ON AUTOMATED SOFTWARE ENGINEERING. Proceedings. . . IEEE, 2013.

p.486�496.

GARLAN, D. Software architecture: a roadmap. In: CONFERENCE ON THE FU-

TURE OF SOFTWARE ENGINEERING, New York, NY, USA. Proceedings. . .

ACM, 2000. p.91�101. (ICSE '00).

GUYON, I.; ELISSEEFF, A. An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research, [S.l.], v.3, p.1157�1182, Mar. 2003.



92

HALL, M. et al. The WEKA data mining software: an update. SIGKDD Explo-

rations Newsletter, [S.l.], v.11, n.1, p.10�18, Nov. 2009.

HARRIS, D. R.; REUBENSTEIN, H. B.; YEH, A. S. Reverse engineering to the ar-

chitectural level. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-

NEERING, New York, NY, USA. Proceedings. . . ACM, 1995. p.186�195. (ICSE

'95).

HAWKINS, D. The Problem of Over�tting. Journal of Chemical Information

and Computer Sciences, [S.l.], v.44, n.1, p.1�12, 2004.

HENDERSON-SELLERS, B. Object-oriented metrics: measures of complexity.

1.ed. [S.l.]: Prentice-Hall, 1995.

HOCHSTEIN, L.; LINDVALL, M. Combating architectural degeneration: a survey.

Journal of Information and Software Technology, [S.l.], v.47, n.10, p.643�656,

July 2005.

KAZMAN, R.; CARRIERE, S. J. Playing Detective: reconstructing software archi-

tecture from available evidence. Journal of Automated Software Engineering,

Hingham, MA, USA, v.6, n.2, p.107�138, Apr. 1999.

KAZMAN, R.; O'BRIEN, L.; VERHOEF, C. Architecture reconstruction

guidelines. [S.l.]: Carnegie Mellon University, 2001.

KEIM, D. et al. Visual Analytics: scope and challenges. In: SIMOFF, S.; BöHLEN,

M.; MAZEIKA, A. (Ed.). Visual Data Mining. [S.l.]: Springer Berlin Heidelberg,

2008. p.76�90. (Lecture Notes in Computer Science, v.4404).

KNODEL, J. et al. Static evaluation of software architectures. In: EUROPEAN

CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING.

Proceedings. . . [S.l.: s.n.], 2006. p.10 pp.�294.

KOHAVI, R.; JOHN, G. H. Wrappers for feature subset selection. Journal of Ar-

ti�cial Intelligence, [S.l.], v.97, n.1, p.273�324, 1997.

KORF, R. E. Linear-space Best-�rst Search. Journal of Arti�cial Intelligence,

[S.l.], v.62, n.1, p.41 � 78, 1993.

KUHN, A.; DUCASSE, S.; GÍRBA, T. Semantic clustering: identifying topics in

source code. Journal of Information and Software Technology, [S.l.], v.49,

n.3, p.230�243, Mar. 2007.



93

MACQUEEN, J. B. Some Methods for Classi�cation and Analysis of MultiVari-

ate Observations. In: BERKELEY SYMPOSIUM ON MATHEMATICAL STATIS-

TICS AND PROBABILITY. Proceedings. . . University of California Press, 1967.

v.1, p.281�297.

MANCORIDIS, S. et al. Using automatic clustering to produce high-level system

organizations of source code. In: INTERNATIONALWORKSHOP ON PROGRAM

COMPREHENSION. Proceedings. . . [S.l.: s.n.], 1998. p.45�52.

MANCORIDIS, S. et al. Bunch: a clustering tool for the recovery and maintenance

of software system structures. In: INTERNATIONAL CONFERENCE ON SOFT-

WARE MAINTENANCE. Proceedings. . . [S.l.: s.n.], 1999. p.50�59.

MAQBOOL, O.; BABRI, H. Hierarchical Clustering for Software Architecture Re-

covery. Journal of Transactions Software Engineering, Piscataway, NJ, USA,

v.33, n.11, p.759�780, Nov. 2007.

MCCABE, T. A Complexity Measure. Journal of Transactions on Software

Engineering, [S.l.], v.SE-2, n.4, p.308�320, 1976.

MEDVIDOVIC, N.; JAKOBAC, V. Using software evolution to focus architectural

recovery. Journal of Automated Software Engineering, [S.l.], 2006.

MEDVIDOVIC, N.; TAYLOR, R. N. Software Architecture: foundations, theory,

and practice. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-

NEERING, New York, NY, USA. Proceedings. . . ACM, 2010. p.471�472. (ICSE

'10).

MITCHELL, T. M. Machine learning and data mining. Journal of ACM Com-

munications, [S.l.], v.42, n.11, p.30�36, Nov. 1999.

MLADENOVIC, N.; HANSEN, P. Variable neighborhood search. Journal of Com-

puters & Operations Research, [S.l.], v.24, n.11, p.1097 � 1100, 1997.

MURPHY, G. C.; NOTKIN, D.; SULLIVAN, K. Software re�exion models: bridging

the gap between source and high-level models. In: SIGSOFT SYMPOSIUM ON

FOUNDATIONS OF SOFTWARE ENGINEERING. Proceedings. . . [S.l.: s.n.],

1995. v.20, n.4, p.18�28.

NUNES, I.; NUNES, C.; CIRILO, E.; KULESZA, U.; LUCENA, C. Expert Com-

mittee Architecture. Available at: http://www.inf.ufrgs.br/~ingridnunes/

maspl/index.php?base=casestudies&page=ecArch. last accessed in March 25th,

2014.

http://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=ec Arch
http://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=ec Arch


94

OLIVEIRA, P. et al. Metrics-based Detection of Similar Software. In: INTERNA-

TIONAL CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE

ENGINEERING. Proceedings. . . [S.l.: s.n.], 2013. p.447�450.

PARNAS, D. L. Software aging. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING, Los Alamitos, CA, USA. Proceedings. . . IEEE

Computer Society Press, 1994. p.279�287. (ICSE '94).

PASSOS, L. et al. Static Architecture-Conformance Checking: an illustrative

overview. Journal of IEEE Software, [S.l.], v.27, n.5, p.82�89, 2010.

PERRY, D. E.; WOLF, A. L. Foundations for the study of software architecture.

SIGSOFT Software Engineering Notes Newsletter, New York, NY, USA,

v.17, n.4, p.40�52, Oct. 1992.

SHAW, M.; CLEMENTS, P. The Golden Age of Software Architecture. Journal of

IEEE Software, Los Alamitos, CA, USA, v.23, n.2, p.31�39, Mar. 2006.

SHNEIDERMAN, B. Tree Visualization with Tree-maps: 2-d space-�lling approach.

Journal of Transactions Graphics, New York, NY, USA, v.11, n.1, p.92�99,

Jan. 1992.

SILVA, L. de; BALASUBRAMANIAM, D. Controlling software architecture ero-

sion: a survey. Journal of Systems and Software, [S.l.], v.85, n.1, p.132�151,

Jan. 2012.

SOKOLOVA, M.; LAPALME, G. A systematic analysis of performance measures

for classi�cation tasks. Journal of Information Processing & Management,

[S.l.], v.45, n.4, p.427�437, July 2009.

STANDARD-1471. Recommended practice for architectural description of

software-intensive systems. [S.l.]: IEEE, 2000. i�23p.

STOL, K.; AVGERIOU, P.; BABAR, M. A. Identifying architectural patterns

used in open source software: approaches and challenges. In: INTERNATIONAL

CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGI-

NEERING. Proceedings. . . [S.l.: s.n.], 2010. p.91�100. (EASE'10).

TZERPOS, V.; HOLT, R. ACDC: an algorithm for comprehension-driven cluster-

ing. In: WORKING CONFERENCE ON REVERSE ENGINEERING. Proceed-

ings. . . [S.l.: s.n.], 2000. p.258�267.

WARD, J. Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, [S.l.], v.58, p.236�244, 1963.



95

XIAO, C.; TZERPOS, V. Software Clustering Based on Dynamic Dependencies. In:

EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-

NEERING. Proceedings. . . [S.l.: s.n.], 2005. p.124�133.



96

APPENDIX A � COMPLEMENTARY RESULTS

This Appendix presents complementary results achieved by the three relevant

subsets identi�ed in Chapter 6. Then, we detail precision, recall and fMeasure of

Bst1, all element dependencies and combined features subsets. Actually, the results

presented in this Appendix follows the same conclusion derived based on the average

accuracy discussed in Chapter 6.

We present, in Table 8.1, the metrics related to Bst1 subset. As occurs

in the average accuracy, OLIS achieved the best results � precision, recall and

fMeasure. However, Metrics achieved the only the worst precision. It occurs by

the low number of modules in Metrics. Its recall is a�ected since it has only four

modules to be predicted. On the other hand, the RecSys high number of modules

a�ects their recall because some of its modules are not identi�ed due to their low

number of elements. One important thing to highlight is the average precision of

60.9%, which is better than six of the nine algorithms evaluated in the comparative

analysis of Garcia, Ivkovic and Medvidovic (GARCIA; IVKOVIC; MEDVIDOVIC,

2013).

Table 8.1: Average precision, recall and fMeasure of the Bst1 usage

Case Study Precision Recall fMeasure

OLIS 0.788 0.761 0.775
EC 0.670 0.701 0.685
Port 0.535 0.545 0.540
Metrics 0.501 0.467 0.483
RecSys 0.550 0.372 0.444

AVG 0.609 0.569 0.585
SD 0.119 0.161 0.140

Table 8.2 detail the measures of the subset containing all element depen-

dencies features. These results are signi�cantly worse than Bst1 with an average

precision of 45.1%, 15% less than Bst1. Similarly to Bst1 results, the number of



97

modules a�ects the recall and fMeasure, because the case study with less modules

performs better with these metrics. However, the precision still representing the

same scenario from accuracy, when OLIS performs best and Metrics performs worst

from all case studies evaluated.

Table 8.2: Average precision, recall and fMeasure of the subset with all dependencies
usage

Case Study Precision Recall fMeasure

Metrics 0.448 0.578 0.505
OLIS 0.507 0.490 0.498
RecSys 0.482 0.463 0.472
Port 0.458 0.381 0.416
EC 0.415 0.332 0.369

AVG 0.451 0.392 0.419
SD 0.034 0.066 0.052

Finally, in Table 8.3, we show the results achieved by the combined features

subset. Actually, the results achieved are worse than Bst1 subset, but they are

better than select all element dependencies. In fact, this subset is highly in�uenced

by the Bst1, however with less precision. These data corroborate with the idea that

appending element dependencies prediction to the Bst1 subset does not improve the

results.

Table 8.3: Average precision, recall and fMeasure of the subset with combined fea-
tures

Case Study Precision Recall fMeasure

OLIS 0.664 0.864 0.751
EC 0.599 0.529 0.562
Port 0.541 0.426 0.476
RecSys 0.453 0.458 0.455
Metrics 0.464 0.360 0.406

AVG 0.544 0.527 0.530
SD 0.090 0.198 0.136

Again, Bst1 subset overcome the use of element dependencies and combined

features subsets. Actually, the evaluation of precision, recall and fMeasure also show

the relevance of source code metrics to identify architectural modules.



98

APPENDIX B � RESUMO ESTENDIDO

Avaliação de Informação de Código para Identi�cação de Mó-

dulos Arquiteturais

Arquitetura de software desempenha um importante papel no desenvolvi-

mento de software, quando explicitamente documentada, ela melhora o entendi-

mento sobre o sistema implementado e torna possível entender a forma com que

requisitos não funcionais são tratados. Apesar da relevância da arquitetura de soft-

ware, muitos sistemas não possuem uma arquitetura documentada, e nos casos em

que a arquitetura existe, ela pode estar desatualizada por causa da evolução de-

scontrolada do software. O processo de recuperação de arquitetura de um sistema

depende principalmente do conhecimento que as pessoas envolvidas com o software

tem. Isso acontece porque a recuperação de arquitetura é uma tarefa que demanda

muita investigação manual do código fonte.

A pesquisa de recuperação de arquitetura objetiva auxiliar esse processo. A

maioria dos métodos de recuperação existentes são baseados em dependência en-

tre elementos da arquitetura, padrões arquiteturais ou similaridade semântica do

código fonte. Embora as abordagem atuais ajudem na identi�cação de módulos ar-

quiteturais, os resultados devem ser melhorados de forma signi�cativa para serem

considerados con�áveis. Sendo assim, listamos abaixo os principais problemas rela-

tivos a recuperação de arquitetura iden�cados na litetura atual.

1. Falta de con�abilidade nos métodos atuais de recuperação de arquitetura. Ape-

sar do esforço aplicado pelos atuais estudos, existe ainda uma falta de con�-

abilidade nos resultados obtidos através deles. Assim, muito ainda pode ser

feito para reduzir o esforço demandado pelas abordagens atuais.

2. Falta de informação relacionada a arquitetura de software. Arquitetura de

software documenta os principais conceitos aplicados durante o desenvolvi-

mento do software, contudo não são conhecidas quais informações são de fato



99

relacionadas com a arquitetura de software. Usualmente, os trabalhos de recu-

peração de arquitetura avaliam padrões arquiteturais, regras de dependência

entre elementos e semântica de código para predizer uma arquitetura.

3. Falta de visualizações dedicadas a recuperação de arquitetura. Existem várias

formas de visualizar um software, pois um software envolve diversos tipos de

interesses, tais como qualidade e funcionalidades, que são representados de for-

mas diferentes no modelo arquitetural. Durante a recuperação de arquitetura,

as avaliações são geralmente baseadas em dados para representação de uma

arquitetura somente. Ou seja, sem a existência de uma visualização visando

comparar uma arquitetura recuperada com uma arquitetura concreta.

Nesta dissertação, objetivamos melhorar o suporte a recuperação de ar-

quitetura explorando diferentes fontes de informação e técnicas de aprendizado de

máquina. Nosso trabalho consiste de uma análise, considerando cinco estudo de

casos, da utilidade de usar um conjunto de características de código (features, no

contexto de aprendizado de máquina) para agrupar elementos em módulos da ar-

quitetura. Atualmente não são conhecidas as características que afetam a identi�-

cação de papéis na arquitetura de software. Por isso, nós avaliamos a relação entre

diferentes conjuntos de características e a acurácia obtida por um algoritmo não

supervisionado na identi�cação de módulos da arquitetura. Consequentemente, nós

entendemos quais dessas características revelam informação sobre a organização de

papéis do código fonte. Nossa abordagem usando características de elementos de

software atingiu uma acurácia média signi�cativa. Indicando a relevância das infor-

mações selecionadas para recuperar a arquitetura. Além disso, nós desenvolvemos

uma ferramenta para auxílio ao processo de recuperação de arquitetura de soft-

ware. Nossa ferramenta tem como principais funções a avaliação da recuperação

de arquitetura e apresentação de diferentes visualizações arquiteturais. Para isso,

apresentamos comparações entre a arquitetura concreta e a arquitetura sugerida.

Seguindo a nossa abordagem, enumeramos nossas principais contribuições abaixo.

1. Um procediemento padronizado para avaliar a relação entre as informações

extraídas do código fonte e módulos da arquitetura de software.

2. A indenti�cação de quais atributos dos elementos da arquitetura tem mais

relevância para recuperação de arquitetura.

3. Diferentes visualizações da arquitetura de software visando a comparação entre

arquitetura concreta e arquitetura predita.



100

4. De�nição de diretrizes para construção de métodos para recuperação de ar-

quietetura de software. Dentro dessas diretrizes, analisamos a importância de

cada parte do processo de recuperação de arquitetura.

Para construção da nossa avaliação de�nimos um processo de características

de elementos de arquitetura. O processo é dividido em quatro etapas: seleção de

informação de software; preparação de dados; processo de aprendizado; e análise

dos resultados. Cada um desses quatro passos tem grande importância no processo

de recuperação de arquitetura: (i) a seleção de informação foca em entender quais

características podem ser importante para o contexto de arquitetura de software; (ii)

preparação dos dados visa de fato extrair as características do software de uma que

seja computável; (iii) o processo de aprendizado é fundamental para a identi�cação

dos módulos arquieturais, pois através dele que são descobertas as similaridades en-

tre elementos da arquitetura; (iv) a análise de resultados faz a medição da relevância

de cada característica do software para que se tenha uma quanti�cação do impacto

de cada tipo de característica no processo de recuperação. Nosso processo avalia

as dependências entre elementos arquiteturais e um conjunto de métricas (acurácia,

precisão, recuperação e fMeasure) de projeto para recuperação de arquitetura.

As dependências entre elementos da arquitetura são comumente usadas nos

métodos atuais de recuperação visto que elas de�nem as regras de comunicação

entre módulos da arquitetura, por exemplo, uma arquitetura em camadas onde uma

camada (módulo) só pode se comunicar com a camada diretamente abaixo dela.

Contudo, analisar somenete as dependências não nos trás informações sobre o que

os elementos da arquitetura efetivamente fazem. Caso um elemento viole as regras

de comunicação da arquitetura (por exemplo, um elemento da camada de nível mais

baixo de uma arquitetura em camada se comunica com um elemento da camada

de nível mais alto), ele, segundo as regras de comunicação, não será classi�cado de

acordo com seu papel de fato na arquitetura.

No processo de avaliação de cada tipo de característica, nós selecionamos

cinco estudos de caso, de�nimos uma abordagem de seleção de variáveis (Wrapper

exaustivo) e de�nimos um algoritimo de aprendizado (Expectation Maximization).

Nós realizamos experimentos analisando o impacto das dependências entre elemen-

tos; métricas de projeto e nomes; e uma abordagem de união de ambas informações.

Para as dependências entre elementos, nós levamos em conta dependências

diretas, inversas e diretas (representadas na Figura 4.4, onde os elementos Weath-

erResponse e ForecastResponse usam elementos internos do projeto e usam um el-

emento externo ao projeto). Os resultados obtidos através dos experimentos com

dependências entre elements, apresentados na na Tabela 6.1, atingiram uma mé-



101

dia de acurácia de 66.9% usando todos os tipos de dependências. Isso mostra a

relevância do uso de todos os tipos de dependências na recuperação.

Nos experimentos usando métricas e nomes de elementos de software foram

gerados todos subconjuntos possíveis de características dos 15 tipos de informações

entre métrics e nomes selectionados. Isso gerou um grande número de subconjuntos

a serem avaliados � 147 mil para cada estudo de caso. Nosso foco então é apresentar

os conjuntos mais relevantes para entender a relevância dessas características para a

arquitetura de software. Primeiro analisamos o resultado do conjunto com todas as

características (sem seleção de variáveis). Esse conjunto atigiu uma acurácia média

de 70.8%, presentado no conjunto ALL na Tabela 6.2. Contudo, esse conjunto é

assimétrico, privilegia um estudo de caso com sua seleção de características, assim

como muitos outros conjuntos analisados. Procurando analisar conjuntos relevantes,

selecionamos todos os conjuntos que obtem melhores resultados em todos os estudos

de caso individualmente. Essa seleção resultou nos conjuntos Bst1�23 apresentados

na Tabela 6.2. O melhor resultado foi obtido através do conjunto Bst1. Ele atingiu

uma acurácia média de 80.1% com um desvio padrão de 6.3%. Dados os resultados,

ele é o conjunto que obtém os melhores resultados e que tem a menor assimetria.

Intuitivamente, combinar os dois tipos de informações analisados traria bons

resultados visto que uma das informações é relevante para comunicação e a outra

foca no papel desempenhado pelo elemento arquitetural. Contudo, nossos experi-

mentos mostraram o contrário. A abordagem de combinações de informações que

realizamos resultou em uma piora nos resultados, atingindo uma acurácia de 72.2%

como apresentado na Tabela 6.6.

Os dados obtidos atráves dos experimentos são relevantes, porém os dados

de acurácia não mostram diretamente os conceitos recuperados de uma arquitetura.

Visando entender melhor a relação entre arquitetura concreta e predita, nós desen-

volvemos uma ferramenta de suporte a pesquisa em recuperação de arquitetura �

chamada de ArchViz 2. Nossa ferramenta possuí funcionalidades básicas de gerên-

cia de arquitetura de software e três visualizações focadas na comparação entre

arquitetura concreta e predita. As três visualizações implementadas são treemap

(Figura 5.1), de módulos (Figura 5.3) e de elementos (Figura 5.4).

Descrito todo o processo de avalaição e experimentação desenvolvido du-

rante a elaboração desta dissertação, abaixo são descritas as principais contribuições

derivadas do trabalho realizado.

1. Diretrizes para o processo de recuperação de arquitetura usando aprendizado

de máquina. Com os resultados obtidos através dos experimentos, nós extraí-

2http:\\archviz.herokuapp.com

http:\\archviz.herokuapp.com


102

mos diretrizes para a construção de métodos de recuperação de arquitetura

baseados em aprendizado de máquina que são relevantes para serem aplicados

em futuras abordagens.

2. Comparação entre características de elementos da arquitetura. A avaliação

de quais características de elementos de software são mais relevantes auxilia

na escolha de informações utilizadas na recuperação de arquitetura. A com-

paração de duas características através de um método padronizado mostrou a

relevância de cada uma delas.

3. Uso de métricas e nomes para identi�car módulos da arquitetura. Nosso es-

tudo mostrou a relação entre métricas e nomes com arquitetura de software.

Obtendo resultados superiores do que a comumente usada informação de de-

pendência entre elementos.

4. Ferramenta de suporte a recuperação de arquitetura. Visando aumentar a

padronização dos métodos de recuperação de arquitetura, nós desenvolvemos

uma ferramenta que realiza a avaliação dos métodos de recuperação de forma

padronizada. Além disso, nossa ferramenta fornece visualização focadas em

comparar arquiteturas concretas e preditas.

Em resumo, nós avaliamos a relevância de diferentes fontes de informação

utilizadas para recuperar a arquitetura de software. De fato, a recuperação de ar-

quitetura de software continua sendo um assunto de pesquisa desa�ador. Contudo,

estabelecendo a relação entre as diferentes fontes de informação e a arquitetura de

software, nós fornecemos evidências para futuros métodos de recuperação de arquite-

tura reduzirem a demanda de interação humana e melhorarem seus resultados.


	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	Resumo
	Introduction
	Problem Statement and Related Work Limitations
	Proposed Solution and Contributions Overview
	Outline

	Background
	Software Architecture
	Concepts and Terminology
	Software Architecture Recovery

	Machine Learning
	Overview
	Feature Selection
	Clustering Techniques

	Final Remarks

	Related Work
	Pattern-based Approaches
	Dependency-based Approaches
	Semantic-based Approaches
	Final Remarks

	Procedure to Analyze Code-oriented Information for Architecture Recovery
	Procedure
	Information Selection
	Dataset Preparation
	Learning Process
	Results Analysis

	Features
	Component Dependency
	Metrics and Labels

	Case Studies
	Threats to Validity
	Construct Validity
	External Validity

	Final Remarks

	ArchViz: A Tool to Support Architecture Recovery Research
	Features
	Visualizations
	Treemap
	Modules Graph
	Elements Graph

	Implementation
	Final Remarks

	Experiments
	Element Dependency
	All Dependencies Results
	Individual Case Studies Results
	Selecting the Element Dependencies Best Subset

	Metrics and Labels
	All Metrics and Labels Use Analysis
	Individual Case Studies
	Selecting the Best Subset of Metrics and Labels

	Combining Source Code Features
	Final Remarks

	Lessons Learned
	Case Studies
	Learning Process
	Features
	Element Dependencies
	Metrics and Labels
	Combining Features

	Overall Analysis
	Final Remarks

	Conclusion
	Contributions
	Future Work

	References
	Appendix A – Complementary Results
	Appendix B – Resumo Estendido

