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This paper investigates the stability of off-axis continuous intense relativistic beams propagating
inside a circular conducting pipe. The equations of motion for the centroid and the envelope of
slightly off-axis beams are derived and used to determine equilibrium and stability conditions for the
beam transport. It is shown that depending on the parameters of the system, beams propagating
along the pipe axis may become unstable due to the presence of the wall, imposing a fundamental
limitation in the effective area that an equilibrium beam can occupy inside the conductor. © 2009
American Institute of Physics. [DOI: 10.1063/1.3204972]

I. INTRODUCTION

A better understanding of the equilibrium and stability
properties in the transport of magnetically focused high-
current beams is fundamental to the development of high-
intensity accelerators and vacuum electronic devices. These
devices are necessary to meet the needs in areas such as
communication, heavy-ion fusion, and basic science
research.’” In that regard, a matter of recent interest is to
investigate the physics of beams displaying some misalign-
ment with respect to the symmetry axis of the focusing
field.>™® Small deviations between the beam injection direc-
tion and the focusing field axis may drive off-axis beam dy-
namics that are potentially hazardous to the transport. Off-
axis dynamics can ultimately lead to collision between the
charges and the conducting walls surrounding the system,
causing particle beam losses, activation of the walls,7 and
pulse shortening in high-power microwave sources.®

For the particular case of intense, continuous, and round
beams propagating with nonrelativistic velocities throughout
a conducting cylindrical pipe, it has been shown that despite
the occurrence of an unstable orbit in the centroid dynamics
of off-axis beams,3 this orbit alone cannot be responsible for
pushing rms matched beams toward the wall.® It was also
found that there is virtually no coupling between the centroid
oscillation and the beam particles dynamics, which prevents
conversion of the centroid motion energy into beam particles
thermalization and the overall degradation of the beam
quality.6 These results indicate that off-axis dynamics do not
impose severe limitations in the transport of such beams.

If we now consider beams propagating with relativistic
velocities, the scenario may change significantly. For relativ-
istic beams, the electrostatic repulsive force between par-
ticles of the beam is partially screened by the attractive mag-
netic force imposed by the beam currents. However this
screening does not occur for the interaction with the image
charges produced by the presence of the conductor because
the conductor is completely permeable to the magnetic field
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generated by the beam current. As a consequence, the net
effect of the conductor is enhanced for relativistic beams.
This is true not only for ideal continuous beams but, more
generally, whenever the pulse duration of the beam is long
compared to the magnetic diffusion time 7,,~ uod?/c? (in
Gaussian units), where u, o, and d are, respectively, the
magnetic permeability, the conductivity, and the thickness of
the conductor wall, and ¢ is the speed of light in vacuum.’

In this paper we investigate off-axis dynamics for such
relativistic beams. The equations of motion for the centroid
and the envelope of slightly off-axis beams are derived and
used to determine equilibrium and stability conditions for
beam transport. In particular, it is shown that depending on
beam and focusing channel parameters, the system symmetry
axis may become unstable due to the presence of the wall. In
this case, any misalignment in the injection would lead to
beam loss. It is shown that this instability imposes a funda-
mental limitation in the effective area that an equilibrium
beam can occupy inside the conductor.

The paper is organized as follows. In Sec. II we intro-
duce the model and the corresponding equations of motion
for the beam particles. In Sec. III, we derive the dynamical
equations for the centroid and envelope of the beam; an sta-
bility condition for off-axis beams is obtained. In Sec. IV, we
obtain the critical value of the envelope of the beam, above
which we cannot find stable beam propagation anymore and
test it against results from self-consistent N-particle simula-
tions. Finally, in Sec. V, we conclude the paper.

Il. MODEL

We consider an unbunched beam propagating with a
constant axial velocity S,c along the inner channel of a cir-
cular grounded conducting pipe of radius r,; the beam is
focused by a uniform solenoidal magnetic field of magnitude
B.. Both pipe and focusing field are aligned with the z axis.
Given the uniform motion along z, we define a longitudinal
coordinate s=ct that plays the role of time in the system
and investigate the transverse beam evolution as a function
of s. The transverse beam density profile n,(r,s) is assumed
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to be axisymmetric with respect to its centroid located at
ro(s)=(r), where r is the transverse position vector measured
from the center of the conducting pipe and { ) means average
over beam distribution. Since we are interested in the stabil-
ity of the centroid motion, the beam is allowed to be slightly
off-axis.

In the Larmor frame of reference,'® the dynamical equa-
tion that dictates the evolution of a beam particle can be
written as

' =—oor = Vi, - Vi, (1)

where the prime denotes derivative with respect to s and V
operates on the transverse coordinates only. The first term in
the right-hand side of Eq. (1) is the focusing force, with o
=gB,/2v,B,mc? being the vacuum phase advance per unit
axial length, which measures the focusing field strength, and
q, m, and y,=(1 _'8127)_1/ 2 are, respectively, the charge, mass,
and relativistic factor of the beam particles. The second term
corresponds to the direct interaction with the other beam par-
ticles, disregarding wall effects. It takes into account both
self-electric and self-magnetic interactions. The self-potential
¢, 1s determined by the Poisson equation

V2(// 3 27K
d— Nb

ny,(r,s) (2)

in the absence of boundaries, where K=2¢°N,/ yZ,Bimcz is
the beam perveance that measures the space-charge interac-
tion and N, = [n,dr=const. is the number of particles per unit
axial length. Finally, the third term is due to the image
charges generated by the presence of the conductor walls.
Once Eq. (2) has been solved for i, the potential i; can in
general be determined using an inversion technique.11 Nev-
ertheless, in the beam configuration analyzed here, one can
readily compute ¢; by noting that outside of an axially sym-
metric charge distributions, its equipotentials are identical to
the equipotentials of a beam with vanishing transverse
dimensions—a line of charge. Therefore, from the point of
view of the pipe, the beam behaves like a line of charge
located at r(y, whose image is located outside the pipe at r;
=(r,/ry)’r,. The image potential is then given by

y
r— _21'0(5)

o

(r,s) = VK log : 3)

Note that Eq. (3) is independent of the specific form of n,
and is valid for any r, as long as the beam density profile is
axisymmetric with respect to its centroid. The yzb factor ap-
pears in Eq. (3) precisely because the conductor is a bound-
ary for the self-electric field but is not for self-magnetic field.

lll. CENTROID AND ENVELOPE DYNAMICS

By taking the average of Eq. (1) over the beam distribu-
tion, we obtain an equation for the evolution of the centroid.
The equation reads

1) =— ogro— (Vi) — (V). (4)

As shown in Ref. 4, because of momentum conservation the
average self-field interaction (Vi,;) exactly vanishes. As for
the contribution from the induced charge at the conductor,
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we can explicitly calculate (Vi) to find that as long as n,, is
axisymmetric with respect to r, centroid and image-charge
interact like attracting lines of charge located at r( and r;,
respectively. Details of the calculations are presented in the
Appendix. Since we are interested in the stability at the fo-
cusing channel symmetry axis r=0, we retain only linear
terms in ry to find

= <_og+’if)ro. (5)

w

From Eq. (5) it is clear that whenever the beam perveance
exceeds a critical value,

2.2
ool

7W, (6)
b
the beam will become unstable, with its centroid continu-
ously moving away from the focusing field symmetry axis. A
more detailed analysis of the centroid nonlinear dynamics
reveals that the onset of the instability is due to a bifurcation
of the equilibrium solution ry=0 caused by a collision with
an unstable fixed point already present in the nonrelativistic
3612 1 Ref. 9 an analogous stability condition was de-

K>

case.
rived for the trajectory of a single particle located at the
centroid position. In that regard, Eq. (5) is more stringent
because it shows that the beam as a whole will depart from
the conducting pipe center when the instability condition is
met. In any case, as will be shown, depending on the beam
parameters this condition may not be achieved; one still
needs to investigate the beam transverse size as well in order
to determine the relevance of the instability.

The effective transverse size can be measured by the
beam envelope defined as r,=[2(r?)]"2. Taking the second
derivative of r;, with respect to s and using Eq. (1), one can
readily obtain an equation for the envelope evolution as

e 2
r;;z—o'zorb+§—r—b<r-Vl//>, (7)
b

where e=2[(r*)}{r'?)—{rr')?]"? is the beam emittance and
= ;+ ;. In principle one needs to specify the transverse
beam density profile in order to compute the space-charge
contribution {r-V) in Eq. (7). Nevertheless, using Poisson
equation (2) it is possible to eliminate the explicit depen-
dence on n,(r,s) and write'”

e Vg=-7"% . [(r(?r a0 ,:,Wda’ (8)

where 6 is the angular variable in polar coordinates. Equa-
tion (8) shows that in order to determine (r-Vi), we only
need to specify the potential ¢ along the conductor boundary.
Taking advantage again of the fact that outside of the beam it
behaves just like a line of charge, we can simply substitute in
Eq. (8) the potential generated by two lines of charge, one
corresponding to the beam located at r( and the other to its
image located at r;. With that, we can readily evaluate the
integral to find
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<r-w>=——(1+%). 9)
2 w10

Hence, the overall effect of the pipe on beams that are dis-
placed from the center is to enhance the effective space-
charge force on r,. However, Eq. (9) shows that the depen-
dence of (r-Vi¢) on the centroid is, to leading order,
proportional to (ro/r,)>. Because we are interested in the
stability of slightly off-axis beams, this dependence can be
safely disregarded, and Eq. (7) turns into
rZ:—o‘zor,,+é3+£, (10)
r,o T
whose form is identical to that of round beams. This shows
that the initial assumption on the axial symmetry of n,(r,s)
is accurate. Actually, this detachment between envelope and
centroid dynamics is corroborated by self-consistent numeri-
cal simulations that show that even in the case of beams
presenting large amplitude centroid motion, the envelope is
mostly insensitive to it.

IV. CRITICAL ENVELOPE

From Eq. (10) we can determine an equilibrium state for
which the beam envelope remains constant as the beam
propagates: the so-called matched beam condition. This state
is most desirable in practical beam transport devices because
it prevents emittance growth, halo formation, and, ultimately,
beam losses.”' "> Setting ;=0 in Eq. (10) and solving for
the perveance, we obtain

4
K= O%rb—zé. (11)
Ty
Substituting Eq. (11) in the instability condition for the cen-
troid motion, Eq. (6), we can define a critical envelope radius

L {1 oL 4.52)} -

b= 512 7217 yi U(z)ri ’
above which an equilibrium beam loses its stability, depart-
ing from the pipe center axis. It is worth noting that since the
image effects given by ¢; in Eq. (3) are independent of the
specific form of n;, and consequently of the beam transverse
size, it may sound contradictory that the presence of the con-
ducting wall introduces a critical envelope radius in the beam
transport. However, the matched condition expressed in Eq.
(11) imposes a certain relation among the parameters of the
system, which can be readily used to translate the critical
perveance of Eq. (6) into the above stability criterion on the
beam envelope. In Fig. 1, it is shown r} as a function of 3,
for two distinct values of the emittance: a fully space-charge
dominated beam with €=0 (solid curve) and a finite emit-
tance beam with €=0.30r2, (dashed curve). The region be-
low each curve corresponds to stable beam propagation for
the given emittance, whereas envelope values above the
curve mean that off-axis motion is unstable. It is clear in Fig.
1 that operating with beams of higher emittance tends to
raise the r, curve, decreasing the instability region in the
parameter space. In fact, an inspection of Eq. (12) reveals
that relatively tenuous beams with > o-orfv are not subjected
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FIG. 1. Normalized critical envelope radius above which beam transport
becomes unstable as function of B, for €=0.0 (solid) and 6:0.30‘()7"2‘,
(dashed).

to the off-axis instability, irrespective of the value of 3;,. The
figure also shows that for nonrelativistic beams with 8,— 0,
the transport is always stable, in agreement with previous
analysis that showed that off-axis instability is not relevant
for such beams.® However, as B, is increased the instability
may set in for certain values of r;, and pose severe limitations
on the maximum area that the beam can occupy inside the
pipe. In particular, as we move toward more intense and
relativistic beams with e—0 and ,— 1, the instability is
virtually always present, irrespective to the beam transverse
size.

In order to verify the occurrence of the instability and
the limitation it imposes on the beam transport, we perform
self-consistent particle simulations. In the simulations, N
=5000 macroparticles are launched according to a waterbag
distribution'® with the prescribed envelope and emittance
and evolve according to the force Eq. (1). The self-fields are
calculated using a Green-function method.® The centroid of
the particle distribution is set to be at the pipe center, but due
to the finite number of particles, a small r arises; this serves
as the seed for any instability to occur. Results showing the
evolution of the centroid in the simulations are shown in Fig.
2 for e=0 (panel a) and e=0.30'0r3v. (panel b). The solid
(dashed) curves correspond to beams with envelopes slightly
below (above) the critical envelope, namely, r,=0.98r, (r,
=1.02r}). It is clear that for the beams with r, <r}, the cen-
troid motion is stable with no growth in its amplitude. These
simulations were run up to large axial distances s=1000.0,
the stability was found to be preserved, and no particle loss
was detected. On the other hand, in agreement with the
theory, for beams with envelopes above the critical value, r,
grows and the beam eventually hits the wall. This leads to a
complete beam loss, confirming the fundamental limitations
on the transverse beam sizes imposed by the instability.

V. CONCLUSION

We have investigated the off-axis stability of intense
relativistic beams propagating inside a circular conducting
pipe. The equations of motion for the centroid and the enve-
lope of slightly off-axis beams were derived and used to
determine equilibrium and stability conditions for the beam
transport. It was shown that there exists a critical transverse
effective size of the beam, above which the centroid dynam-
ics becomes unstable. In this case, beams that are injected
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FIG. 2. Evolution of the centroid in self-consistent simulations for beams
with initial envelopes slightly below r,=0.98r; (solid) and above r,
=1.02r; (dashed) the critical envelope in Eq. (12). In (a), €=0.0 and 5,
=0.7, and in (b), €=0.30¢r2 and 8,=0.8.

with any small misalignment are driven toward the wall,
leading to beam loss. This imposes a fundamental limitation
in the effective area that an equilibrium beam can occupy
inside the conductor. Self-consistent simulations confirm the
results from the theory.
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APPENDIX: DETERMINATION OF (VW)
The average image-charge force is defined as

(A1)

<V’;01> = iJ‘ (Vl,b,‘)”lh(l‘)dl‘.

For the sake of simplicity and without loss of generality, we
choose the x-axis to be along the direction of the centroid
displacement from the system symmetry axis, i.e., ro=rgX.
Given that, the image charge that describes the conductor
effects is located along the same axis, at r;=rX, with r;
=72 /ry. In Cartesian coordinates Eq. (A1) becomes

%K [ —r)R+yy

= ,y)dxdy, A2

V)
where use has been made of Eq. (3). Since the beam distri-
bution is assumed to be axisymmetric with respect its cen-
troid, it is convenient to use polar coordinates (p, ¢) centered
at ry, defined by
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X=ro+pcos ¢, (A3)

y=p sin ¢. (A4)

It is clear that in these coordinates, the beam density is a
function of p only, i.e., n,(r)=n,(p), and

(Vig) = %( f n,(p)pdp
b

><J2’T(pcos ¢—a)X + p sin ¢y
0 a*+ p* —2ap cos ¢

do, (A5)

where a=r;—ry is the distance between the image-charge and
the centroid. Performing the integration over ¢, we readily
obtain

277)/51(
aNb

(A6)

(Vi) =- f n,(p)pdpX = — %(x

where use has been made of 27 [n,(p)pdp=[n,(r)dr=N,.
Equation (A6) shows that the interaction between centroid
and its image is equivalent to the force of two attracting lines
of charge separated by the distance a. Using r,-=rfv/r0 and
roX=r,, we can finally write

K
(Vg =- ’f’ 2 (A7)
r,—To

Expanding this result to linear order in ry, we obtain (Vi)
=—1v,Kr,/r., which is used to obtain Eq. (5).
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