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Dispersion relation and the dielectric tensor for magnetized plasmas
with inhomogeneous magnetic field
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We investigate the dispersion relation for a magnetized plasma with weak magnetic Geld gradients
perpendicular to the ambient magnetic Geld. An explicit expression for the efFective dielectric
tensor is derived, incorporating the relevant contributions due to the inhomogeneity, which include
corrections to all orders in the small parameter e, where e = K1/Bs)(dBO/dz)]. It is shown that
this effective dielectric tensor satisGes the required symmetry conditions and is the tensor which
should be utilized in the dispersion relation, in order to describe correctly wave-particle interactions
in media with inhomogeneous magnetic field. The case of high frequency oscillations propagating
perpendicularly to the magnetic field in a Maxwellian plasma is considered as an example and
the effect of inhomogeneities in the magnetic Geld upon the absorption coefIicient and the optical
depth of ordinary mode waves is discussed. A region of negative absorption coefBcient is predicted
near the electron cyclotron frequency for sufficiently high inhomogeneity. Moreover, it is shown
that significant difFerences may exist between the absorption coeKcient evaluated with the present
formulation and results from other approaches found in the literature which do not exhibit correct
symmetry properties.

PACS number(s): 52.25.Mq, 52.40.Db, 52.35.—g

I. INTRODUCTION

The subject of wave propagation in inhomogeneous
plasmas is far from being simple from a mathematical
point of view, since it involves Maxwell's equations for
the electromagnetic field components, coupled to equa-
tions which describe the charge and current densities. In
a collisionless plasma, these are a set of Vlasov equa-
tions for the distributions of each of the plasma species.
However, in the case in which the wavelengths of the os-
cillations are much smaller than typical scale lengths of
inhomogeneities, the treatment of the problem can be
simplified. The Buctuations can be described by means
of a WKB approximation and a local relation can be as-
sumed between the current density and the electric field.
The resulting dispersion relation is then valid at each
point and its solution for a given wave frequency gives the
local refraction index. This approach can be called the
"locally homogeneous approximation" and is frequently
employed in order to gain information about wave prop-
agation and absorption in inhomogeneous plasmas.

A further step in the inclusion of inhomogeneity effects
in the description of the dielectric effects is to take into
account in the evaluation of the dielectric tensor com-
ponents the space derivatives of the parameters that de-
scribe the plasma at each point, inserting them into the
same dispersion relation previously mentioned [I]. The
method has provided quite general expressions for the
components of the dielectric tensor in the case of den-
sity and temperature inhomogeneities. This method has
been applied. to several situations, such as the study of
low frequency waves and drift instabilities, with the wave
vector perpendicular to the direction of the inhomogene-

ity [I—3], or the study of whistler instabilities due to in-
homogeneous beams [4].

An important feature about these studies is related to
the symmetry properties of the dielectric tensor. The
dielectric tensor of a homogeneous plasma satisfies On-
sager symmetry relations, but the addition of terms re-
lated to the derivatives of the plasma parameters de-
stroys this symmetry, leading to the existence of non-
resonant contributions to the anti-Hermitian parts of the
dielectric tensor components [5]. This feature persists for
any angle of propagation relative to the direction of the
inhomogeneity, except for propagation perpendicular to
the inhomogeneity. From another point of view, it has
been demonstrated that this approach for the derivation
of the dielectric tensor leads to a tensor depending on
the wave frequency and the wave vector, which is not in
fact the Fourier transform of the dielectric tensor in real
space [6,5]. As a consequence, when this tensor is intro-
duced into the dispersion relation, it does not describe
adequately the dielectric properties and the exchange of
energy between wave and particles.

A significant evolution of the treatment of the problem
was achieved by the application of an iterative procedure
to the wave equation, which has shown that the dielec-
tric properties of the plasma may be well described by a
dispersion relation that is formally the same as in a ho-
mogeneous plasma, but with an effective dielectric ten-
sor replacing the homogeneous plasma dielectric tensor
[6]. The effective dielectric tensor obtained according to
the iterative procedure developed by Beskin, Gurevich,
and Istomin in Ref. [6] (denoted in what follows as BGI)
should be adequate for the description of the dielectric
properties of the plasmas and to the correct description of
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the energy exchange between waves and particles, since
it would be the actual Fourier transform of the dielec-
tric tensor in real space [6]. In other words, the efFective
dielectric tensor is constructed in order to ensure that
the absorption coeKcient obtained Rom the solution of
the dispersion relation is really connected to the energy
exchange between a wave and particles [6,5,7].

The iterative procedure as proposed by BGI assumes
that the gradients in the physical parameters are sufFi-

ciently weak such that a WKB approach is justified and
mode conversion and reHection are ignored. This is a
sensible assumption which may be violated in parameter
regions where two dispersion curves approach each other,
or in a resonance region, or when the wave approaches a
"cutoff." The description of mode conversion phenomena
in these localized regions is certainly an interesting theme
of research and recent developments continue to appear
in the literature [8]. However, many interesting wave phe-
nomena occur in inhomogeneous plasmas, for which the
validity of a WKB approach is justified. Such is the case,
for instance, of high &equency oscillations propagating
perpendicularly to the magnetic field near the electron
cyclotron resonance. A wave-dynamical treatment of or-
dinary mode waves propagating perpendicularly across
the resonance layer has been made and demonstrated
that the validity of the WKB approximation can be eas-
ily shown for tokamak parameters [9]. Moreover, it has
been demonstrated by means of wave absorption calcu-
lations that the WKB approximation results are good,
even when the formal validity conditions are violated [9].

Explicit expressions for the components of the effective
dielectric tensor using the BGI approach were provided
later on, valid for electromagnetic waves of any frequency
propagating in an arbitrary direction relative to the mag-
netic field and to the direction of inhomogeneity [5]. In
the derivation of these expressions, it was assumed that
any of the parameters appearing in the distribution func-
tion could be inhomogeneous, as density or temperature,
but the magnetic Geld was supposed to be homogeneous.
The expressions obtained were fully relativistic, included
inhomogeneity efFects up to order I, where L is the
scale length of spatial variations, and were valid as long as
the Larmor radius of the particles was small relative to L.
Although the direction of wave propagation could be ar-
bitrary, the direction of the inhomogeneity was assumed
to be perpendicular to the magnetic Geld. An investi-
gation about inhomogeneity effects on electron cyclotron
absorption by a Maxwellian plasma near the fundamen-
tal electron cyclotron frequency was then conducted with
the use of this formalism [7].

In the present paper we discuss the derivation of the di-
electric tensor for the case where the magnetic field is in-
homogeneous. The case of the inhomogeneous magnetic
field has a fundamental difference relative to the case of
the homogeneous field because the unperturbed orbits of
the plasma particles are afFected by the magnetic field
inhomogeneity, while they are not afFected by inhomo-
geneities in other plasma parameters such as density and
temperature. As a consequence, the resonance condition
in momentum space is affected by the inhomogeneity and
an infinite number of corrections is necessary to be added

in order to build up the efFective dielectric tensor [6]. We
also discuss the symmetry properties of the efFective di-
electric tensor and compare with other approaches found
in the literature for the description of dielectric proper-
ties of plasmas in inhomogeneous magnetic fields.

The plan of the paper is the following. In Sec. II we de-
scribe the physical system to be considered and the eval-
uation of the unperturbed orbits of the plasma particles
in an inhomogeneous field. In Sec. III we give a short ac-
count of the procedures to be employed in the derivation
of the efFective dielectric tensor for electromagnetic waves
in an inhomogeneous magnetized plasma. Section IV is
reserved for a discussion about the symmetry properties
of the efFective dielectric tensor and for a comparison
with other approaches utilized in the literature. In Sec.
V we apply our expressions for the case of high &equency
waves propagating perpendicularly to the magnetic field,
for a particular distribution function, and show the ef-
fect of the inhomogeneity of the magnetic field on the
absorption coefBcient and the optical depth of ordinary
mode waves propagating in an inhomogeneous slab of
plasma with parameters in the range of the parameters
of present day tokamaks. Finally, Sec. VI is reserved for
conclusions.

II. PARTICLE ORBITS IN INHOMOGENEOUS
MAGNETIC FIELDS

In what follows we will consider the magnetic Geld
pointing in the z direction and inhomogeneous in the x
direction Bo ——Bo(z)e, . The waves will be assumed to
be propagating in arbitrary directions, making an angle
0 with the direction of the magnetic field and an angle
@ between the perpendicular wave vector and the direc-
tion of the inhomogeneity. In the proposed geometry, the
relevant constants of motion are the quantities

2
pg) p]] ) P~ —pg sin p + 70~
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where p~ and p~~ are the components of the particle mo-
mentum respectively perpendicular and parallel to the
magnetic field, P /(m 0 ) is the x coordinate of the
guiding center position, x is the coordinate of the par-
ticle position along the x axis, y is the angle between
the vector p~ and the x direction, m is the particle
rest mass, and 0 (x) = q Bo(z)/m c is the particle cy-
clotron angular frequency; q is the particle charge and
c is the velocity of light.

The constants of motion are important in the present
context because in a collisionless plasma, the equilibrium
distribution function for a plasma species n satisfies the
Vlasov equation and is an arbitrary function of the con-
stants of motion. The unperturbed orbits of particles of
species o. are the solutions of the equations
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with the initial conditions given by

x'(t'=t) =x,

p' (t' = t) = p = e~pz cos y + e„pg sin y + e,p~~ .

In the case of weak inhomogeneities, the magnetic field
can be represented by two terms of a Taylor series and
the cyclotron frequency can be written as

0 (x' ) - 0 (x)[1+&(x' —x)],

III. THE DIELECTRIC TENSOR FOR
INHOMOGENEOUS PLASMAS

The procedure to be employed in order to obtain the
effective dielectric tensor requires as an initial step the
evaluation of a tensor in whose derivation a plane wave
approximation is employed, as in the homogeneous case
[6,5]. The Vlasov-Maxwell system is linearized and the
method of the characteristics is utilized. Following the
usual steps, it is possible to write the formal expression

p', (t') = pii, (5)

x' (t') = x+ p~(sin 8 + sin y)
maga a

2

[cos y cos 8 —
4 cos 28pJ

m'. ~.' .'
——(3cos y+ sin y)],

y' (t') = y + p~ (cos 8 —cos y)
ma 'Ya a

2

[2s P w —cosy(sin8 + siny)
a+a a

+ 4 (sin 28 + sin 2y)],
z' (t') = z+

m~ Q~

where

where e =
& &,' . When this approximation is

utilized in Eq. (2) and the orbit equations are correctly
written up to order e, care must be taken in order to
avoid secular terms, which requires a nonlinear correc-
tion to the oscillation frequency. As a result, the or-
bit equations are written as a series in powers of e, in
which the coeFicients incorporate an infinite number of
corrections, through the nonlinear modification to the
frequency, which appear as argument of trigonometric
functions [10]. The correct orbits for particles of species
o., correct up to order e, are therefore

p (t ) = pi cos 8

p&[—cosysin8 + 2 sin28 ],ma fa a
p'„(t') = —p~ sin 8

+e p~[- —cos y cos 8~ + 2 cos 28~]
mQQQ Q

s' =b —i) X d'p"'
ncx +ex

where
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In these expressions, u is the wave angular frequency and
n is the density of particles of the species o..

The orbits of the particles have to be inserted in Eq.
(7) in order that an explicit expression for the compo-
nents of the tensor can be obtained. If we take Eqs. (5)
with e = 0, the result is the well-known dielectric tensor
for a homogeneous medium. As the next step, instead of
taking the orbits correct up to order e, as given by (5), we
consider only the most important contributions of the in-
homogeneity to the orbits, namely, the macroscopic drift
and the nonlinear correction to the frequency, which is
essential in order to avoid undesirable secularities [11,12].
Moreover, we restrict the discussion to the case of high
frequency oscillations, in which the ions can be consid-
ered as a neutralizing background and only the electrons
need to be taken into account in the dispersion relation.
This simplifies the notation, although it does not mean
any loss of generality. In what follows we will avoid un-
necessary use of the index e appended to the electronic
quantities. We also choose the coordinate system in or-
der to write our expressions around the position x = 0
and therefore have the following orbit equations for the
plasma electrons:

p =, 0 =0 (x)+e
Pa m Qr

s —= sgn(A ), 8 =s P7 —y, 7—:t' —t.

I
p = p~ cosl9~ )

p'„= —p~ sin 0

The orbits given by Eqs. (5) are consistent, in the
sense that the momenta are obtained from the temporal
derivatives of the position, and the initial conditions are
satisfied. If e = 0, the orbits given by Eqs. (5) reduce
to the traditional expressions obtained in the homoge-
neous case. There is a secular term in the y direction,
which is related to the macroscopic drift of the particles
in the inhomogeneous field and does not disappear with
the nonlinear correction to the frequency.

P& =Pll )

PJ (sin 8, + sin y),mO

y —y = (cos 8, —cos y) + ep PJ
mO 2m20p

z z 7&ll

my
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where

+e,p~B„FO

where

C(Fo) —= piic)p Fo —pic)„Fo,

Z(Fo),
mpcu

4'o(Fo) —= B&~Fo—

k = k~cosg
k&

——k~ sing,

Moreover, with the unperturbed orbits given by Eqs. (8),
we have

Hs = O(2') + E' — —P )
Pg 7

m- 'Y

08= —~ —(p=8, (e=O),
y

A(x) = A(1+ ex),

n=n. ='
mc

In these expressions, m is the electron mass.
We now concentrate our e8'orts on the less general

case of an electron distribution function F,o = Fo(p&, p~~)
since we wish to stress the study on inhomogeneities in
the magnetic field; other kinds of inhomogeneities, where
the distribution is explicitly dependent on position and
therefore must exhibit the dependence on the constant of
motion P„were already discussed in our previous stud-
ies [5,7j. The ion distribution therefore carries the cur-
rent in the y direction, which must exist in the plasma
in order to satisfy the equilibrium configuration with the
z-dependent magnetic Geld pointing in the z direction.

Therefore, with the electron distribution function
F,o = Fo(p&, p~~), the quantity 0, which appear in (7),
may be written as

1 k~

jPJ
p' e C'o(Fo) + e l:(Fo) cos@

mph'

kg
+p'„e„@o(Fo)+ e, C(Fo) sin @m f(d

With the use of these expansions, the 7 integral can be
easily performed and the quantity A~ can be written as

ib sin(rp —g) )~
—tpe

e
—'n(& —q)

D„x @o(Fo)P,"—b~s
" i (Fo)J„(b)

p(dp~
(12)

where

k IIJ'll

m

PP = cosg —J„(b)
6

P2 = sin@ —J„(b)
b

D

Ps = J-(b) .
PJ

ebp~ sin@
( )

nap„
2

—i sin @J' (b),

+ i cosgJ„'(b),

d~ e'D-
)

we reintroduce the ~ dependence in the quantity A~,

ib sin((p —Q) )—pc d7, CiDn&

We are then left with the momentum integrals to be per-
formed. However, there is a practical difhculty. In the
case of the homogeneous magnetic Geld, the quantity D
which appears in the denominator of the integrand, is
independent of y. In the case of azimuthally symmet-
ric distribution functions, the p integral is then trivial
and the resonance condition D = 0 is satisfied over an
ellipse in momentum space, the so-called "resonance el-
lipse" (actually a semiellipse since p~ must be positive).
However, in the case of an inhomogeneous magnetic field,
the resonance condition is modified and becomes p de-
pendent. The y dependence in the resonant denominator
precludes an easy analytical solution of the momentum
integrals which are necessary for the components of the
dielectric tensor.

At this point, we adopt another approach. By the use
of the identity

k (x' —x) = b sin(8, + @) + b sin(p —@)

+] +r k((p(( ebp~ sm @l
( mp 2m' (10)

in(g g)@ (—F )pn—

ib sin((p —g)XC
e —in(~ —y)

where b = k~p~/(mO). The unperturbed orbits also
appear in expression (9), with the result that we have
in the integrand combinations of trigonometric functions
and exponentials, which can be expanded as

ibsen(e. +y) ~ J (g) in(e. +q)j
n= —oo

x Z(Fo) J„(b)

Therefore, the e,. components can be written as

X 1=b; ——8s—)n 2'e n= —oo

(14)

. A" ~—z ——
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ibsen(ss+Q) ~ ) JI (b)
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xexp i~ up—

x P,
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where

P,"(e) = i b sin((p —g) —in(~ —Q)pp, e

—in~a sin g

We now define the quantities b and 0

b = (b —n rc osg) + (n 7 sing)
n„r sing

b —n rcosg0 = tan (16)

and write the quantity P; as a function of these new
variables

2'
. ~»- »~(~—4—-)pp, e

0

Xe—xn(~ —Q —0„)

With the use of Bessel function expansions such as those
in (11) for the p; components, we arrive at

P,"(e) = 2mp~ e

where

yi ——cos(g+0 ) J (b )+i sin(g+0 )J'(b ),
yz ———i cos(g+ 9 )J'(b ) + sin(g+ 0 )—J (b ),

J„(8„) .
PJ

With the use of these expressions in (15), the e, compo-
nents can be given by the expression

c,, = b,~
——b,3b~3 d p

o ~ 3 &(+o) &il o+x,, ~e '7 P&

where

)
72/ e

xexp i
~

wp—
m

—ins~pn n
2

d3». eo(I-o)

lebp~ sing —nn(x)
~

r
2m r

This tensor does not satisfy Onsager symmetry condi-
tions for e g 0, as can be easily veri6ed. This is an in-
dication that it does not describe adequately the energy
exchange between a wave and particles and therefore it
is not the appropriate tensor to be used in the dispersion
relation.

Another important point which must be noted is that
the tensor e is not really the Fourier transform of the
dielectric tensor, as it would be in the case of a homo-
geneous medium. A general nonlocal linear relationship
between the current density and the electric field may
be written as J(r, t) = f dr dt'0 (r, r, t, t') E(r, t').

The Fourier transforms of J and E may be related as
J(k, ~) = 0. (k, u) . E(k, w) if one uses the convolution
theorem with the hypothesis that the medium is homo-
geneous and stationary. In order that c can be taken
as the actual dielectric tensor in the dispersion relation,
a homogeneity hypothesis must be assumed, something
which is inconsistent with the keeping of terms due to
the inhomogeneity in c

If these fundamental features are disregarded and the
tensor is introduced in the dispersion relation, the en-

suing absorption coefBcient displays terms that are not
connected to the energy exchange between waves and
particles. This is a common feature between the e and
other versions of the dielectric tensor obtained with sim-
ilar approximations (i.e. , which incorporate inhoinogene-
ity effects, but are not really the Fourier transform of
the space- and time-dependent dielectric tensor). The
inadequacy of the dielectric tensor reveals itself in the
lack of proper symmetry, which has a consequence that
the anti-Hermitian parts contain nonresonant terms [5].
These nonresonant terms describe the variation of the
wave amplitude due to the variation of the group veloc-
ity in an inhomogeneous medium, not true absorption or
amplification [13,14]. The efFective dielectric tensor ob-
tained by the iterative procedure devised by BGI, on the
other hand, features the anti-Hermitian part free of these
nonresonant terms. When it is utilized in the dispersion
relation, the absorption coefEcient really describes ab-
sorption and/or amplification due to the wave-particle
interaction [6,5].

The effective dielectric tensor, which should be used
in the dispersion relation for the case of inhomogeneous
plasmas, can be obtained by the addition of corrections to
the tensor given by Eq. (19) [6,5]. In a previous study,
for the case of a plasma with density and temperature
inhomogeneities and homogeneous magnetic field, in the
derivation of the equivalent to the present e, we have
kept first-order corrections due to the inhomogeneity in
the expansion of the space-dependent distribution func-
tion [5]. In such a case, it was sufficient to add first-order
corrections to obtain the correct effective tensor. How-
ever, in the present case of an inhomogeneous magnetic
field, the resonance condition itself is affected by the in-
homogeneity and the addition of first-order corrections
is not suKcient to arrive at the effective tensor with the
correct properties [6]. The addition of corrections to all
orders of the inhomogeneity parameter e to the e, - com-
ponents is necessary. The task can be accomplished by
the use of Eq. (21) of Ref. [6], which gives the compo-
nents of the effective dielectric tensor as

1
sic (x, k, esp) 3

(2~)
i(k' —a)-~

d 77K' K+ —,k, ~

(20)

After performing the integrations indicated in (20), for
the situation which we are considering, we obtain

e;~ (x, k, ~) = e,.~ (x, k' = k + e„,kii, k~~, ~), (21)

where e = neer/2 It is convenient to. observe here that
n r = 2e b/k~ Defining .now the quantity
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+ cosg
~

+ sin
(kg )

it is possible to show that

where

tan0„'

)n

in

kg(„,
b(„,
bg „,
2(e„/k~) sing
1 —(e„/k~)

7r

( 1)n+l —b,,~

vrP = —
~

cosg+ "
~

J„(bg„)—i singJ„'(b(„)1 ( e„l n

k~r b„
1 - n

sing J„(b(„)+i
i
cosg+ "

~
J'(b(„)

kg)

J„(bg„),
pJ

and the prixned. quantities denote those quantities ap-
pearing in c,-. that are dependent upon O'. Finally, we

may then write the components of the effective dielectric
tensor as

3 ~ (+&) &
I I~„=b;, ——b3b,-3 d p +x'g ~

pJ
where

(23)

g,, = —oX' —) do f d p po do(Io)
n= —oo

xexp i
~

wp — — sin@ —nO(z)
~

7'

rm 2m

(24)

This expression for the components of the effective di-
electric tensor is one of the theoretical cornerstones of the
present investigation. A simplified form, valid for prop-
agation along the direction of the inhomogeneity, has al-
ready appeared in the literature [15].

IV. SYMMETRY PROPERTIES OF THE
EFFECTIVE DIELECTRIC TENSOR AND

COMPARISON WITH OTHER APPROACHES
FROM THE LITERATURE

The effective dielectric tensor must satisfy the correct
symmetry relations, the so-called Onsager relations, since
it was built in order to describe correctly the energy ex-
change in the wave-particle interaction. As is well known,
the Onsager relations are based upon the time reversal
invariance of the microscopical equations of motion. In a
time reversed situation, all the velocities are reversed and
the symmetry is ensured by the change of —Bo for Bo.
The wave vector k also must be reversed [16]. Moreover,
since the velocities of all particles are reversed, the dis-
tribution function of the particles must be reversed with
respect to the velocity component parallel to the mag-
netic field. As a consequence, the symmetry condition

that must be satisfied may be written as

V( o P(» PII)) = .'( —
P

— P(» —&II)) .

(25)

A. Unperturbed orbits with drift term and without
nonlinear correction to the frequency

Let us first discuss an apparently sound approxima-
tion, which considers that the unperturbed orbits are
equal to the orbits in homogeneous fields, with the addi-
tion of terms due to the macroscopical drift [3]:

p = picose
2

p = —p~ sln0+ E )2mB '

I
pz

—x = (sin&+ sing),pJ
mO

(26)

z —z =I

pJ pJ
2

(cos 0 —cos (p) + E 2
7

mO 2m20p
PII

7 )ml'

where we have used the same definitions as those utilized
in (8). The formulation that utilizes these approximated
orbits and can be found in Ref. [3] will be called in what
follows approach A.

Following now the same steps as those utilized after
Eq. (8), but with the approximated orbits (26), we arrive
at an expression for the quantity A~, which is similar to
that of Eq. (12), with an added term, and with a diferent
resonant denominator,

ib sin(odo —Q) )~
—zpe

e—in{(p—Q)

D„
D

x C p(Ep)P& —b&s Z(Ep) J (b)'7~pi

+8,2 4p(Ep) J„(b)2m20p (27)

The effective dielectric tensor given by Eq. (23) indeed
satisfies this symmetry condition, which of course is the
same condition satisfied by the dielectric tensor of a ho-
mogeneous plasma. For the homogeneous case, however,
the symmetry condition can be cast in a simplified and
more familiar form, namely, s &(Bp) = s& (—alp) ~ This
form is possible due to the peculiar form of the dielectric
tensor in the homogeneous case and does not exclude or
contradict the correct condition given by Eq. (25).

We now proceed by comparing the effective dielectric
tensor obtained in the present paper with other forms
of the dielectric tensor, utilized in the recent literature.
They are derived under different assumptions, with the
common feature that they are intended to be used in
the usual dispersion relation, without the addition of any
corrections such as those proposed by BGI.
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where

k(~p~~

&bent

sm@
Dn = Cdg— —nO .

m 2m

This expression has to be inserted into Eq. (7) in or-
der to arrive at the dielectric tensor components. The p
integral is now readily performed since there is no p de-
pendence in the resonant denominator. For azimuthally
symmetric distribution functions, the components of the
dielectric tensor for high frequency oscillations can there-
fore be written as

homogeneous case. Therefore, for perpendicular wave
vector parallel to the magnetic field gradient there is no
effect due to the inhomogeneity in contrast to the situa-
tion occurring when the nonlinear correction to the fre-
quency is incorporated, as in the formulation developed
in the present paper. This point can be verified by inspec-
tion of the resonant denominator of Eq. (12), in which
it is seen that the term originated &om the correction to
the frequency is proportional to p„and not only gives a
contribution even for g = OP, but is also responsible for
the p dependence of the resonant denominator.

0 = b;~+
+ooX(d )~

n= —oo
B. Unperturbed orbits with the nonlinear correction

to the frequency, without taking into account the
BGI corrections

"2mB
X s C(Pp) ( p

2
d'p

(&~ )
The quantities B,.z are given by

R = J' (6)+cos @i —J (6) —J' (6) i

R =0,
2

R „=
~

—J (6) —J' (6)
~

singcosg,

RI„= —J„(b)J„'(6),

R, = —J (6) cos@,
b

R, = J (6)J' (6) sin@,
n2 n'

R„„=—J„(b) + cos g i
J„' (6) ——J„(b)

~

R„, = J(b) sin—g,
R„=—J„(b)J„'(6)cos Q,
R, = J„(b),
a.'. = 0,

(28) In order to continue with the comparison between
the symmetry properties of the effective dielectric tensor
given by (23) and other approaches to the study of the di-
electric properties of plasmas in inhomogeneous magnetic
fields which appear in the literature, we now discuss an-
other version for the dielectric tensor components, which
we will call approach B [12,13,17,18]. The procedure em-
ployed for the derivation of the dielectric properties of the
plasma in these papers has been based on the gyrokinetic
theory [19,20] and is quite different from the one utilized
in the present paper and developed in Sec. II. However,
the same results can be obtained by the introduction of
several simplifications in our derivation of the auxiliary
tensor c . This we demonstrate by taking the derivation
of the component c„as an example.

We start from Eqs. (7) and (12) and then make sev-
eral simplifying assumptions. We consider a Maxwellian
distribution function, and therefore 2(Ep) = 0, and
@p(Ep) = B~Ep. We also neglect relativistic effects, mak-
ing p = 1, and consider the particular case k~~

——0 and

g = 0. Therefore, the component so„can be written as

+oo 2f v~~ )
s,', =1+X—) d v v&

Ie
with R, = R, and R,, = R,, [5]. —

These expressions are similar to those obtained for the
homogeneous part of the dielectric tensor, with terms ap-
pended to the components ei„and with an e-dependent
term in the resonant denominator [5]. The striking fea-
ture about this tensor, which shows the inadequacy of the
approximated orbits utilized as characteristics, is that it
does not satisfy Onsager symmetry relations and there-
fore does not describe correctly the wave-particle interac-
tion, according to the arguments previously expounded.
If this tensor is utilized in the dispersion relation, the out-
come is that the imaginary part of the wave vector is also
dependent on nonresonant terms, which do not describe
the energy exchange between a wave and particles.

Another feature of this approximation which deserves
comment is that the resonant denonimator is modified
only by the addition of the drift term, proportional to
sin@, as compared to the resonant denominator in the

ijc~v~ sin y/0 &
—in'

x B„FpJ„(kivi/0) .
w —nB z —nev~ sin &p

(29)

Ag 2/ 2

Vr3/2V3T
(So)

where T is the electron temperature and vT = +2T/m.
Using this distribution function, the dielectric tensor
given by Eq. (29) can be written as

The assumed Maxwellian distribution will be denoted
by
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n= —oo, +0
dVy

P yg V'

X ~—~n(~) —v
SLY'UT y

OO

dV~

x Jp(k~pv~),

2 2
e ~".+"~i J„(k~pvg)

zk ~ P'Uy —('U +'v )Vy C

where the velocities have been normalized to the thermal
velocity vT and p is the electron Larmor radius p = vT/O.

We now introduce another approximation: We con-
sider that for wave frequencies near the electron cyclotron
frequency only harmonics n = 0, +1 are important. We
also assume a small Larmor radius, so that J0 1,
Jq (x) 2:/2, and J q

—x/2. After some algebraic
manipulation, Eq. (31) can be written as

study has been developed using the wave equation for-
malism, in a rather straightforward way [14]. However,
BGI corrections are not utilized and therefore the rela-
tionship between the current density and the electric field
in (k, cu) space is made by a conductivity tensor which
daes not feature Onsager symmetry and is not the Fourier
transform of the dielectric tensor in configuration space.
As a consequence, the dielectric tensor that can be ob-
tained by means of this formalism is equivalent to our r
tensor. This point can be demonstrated quite easily by
taking the e, component from Eq. (19). By assuming
a nonrelativistic Maxwellian distribution as given by Eq.
(13) of Ref. [14], one arrives at the zz component of Eq.
(15) of Ref. [14].

C. Final remarks about the comparison with other
approaches from the literature

Xcdkgp ( . kgple', , =1 —X+i —ziZ
~

zi —i
2evT ( 2 )

.kgpl+z 1Z
I

z—1 ) (32)

where z (u —nO(x)

This expression for the zz component of the dielectric
tensor, obtained from our e, after several approxima-
tions, corresponds to Eq. (57) of [17]. It is utilized in
that publication in order to discuss ordinary mode waves
propagating perpendicularly across the fundamental elec-
tron cyclotron resonance [17]. The outcome is that the
imaginary part of the wave vector, connected to the anti-
Hermitian part of e „is obtained as a solution of the dis-
persion relation and has contributions which depend on
the nonresonant electron response [17]. Since these are
not connected with energy dissipation by the wave, they
are neglected in the evaluation of the optical depth [17],
although they can affect the local value of the absorption
coefficient [14,17].

A formalism similar to the one utilized to discuss the
0 mode by Lashmore-Davies and Dendy [17] has been
employed to study ion cyclotron damping, for propaga-
tion both perpendicular and oblique to the magnetic field
[13,18]. For these waves, other components of the di-
electric tensor have been evaluated, also lacking the ade-
quated symmetry properties. This is not surprising since
these components can be obtained from our e, compo-
nents after several simplifying assumptions, as we have
seen in the case of the zz component. The lack of sym-
metry exhibited by the dielectric tensor derived with the
utilization of approach B has as a consequence the non-
resonant contribution to the imaginary part of the wave
vector, which does not appear in the formulation devel-
oped in the present paper.

Another discussion of electron cyclotron resonance
heating in an inhomogeneous medium utilizing orbits
which include the nonlinear correction to the frequency
has recently appeared in the literature [14] and general-
izes for the relativistic case same results previously ob-
tained in the nonrelativistic approximation [17]. The

First of all, it is possible to conclude that the approx-
imated orbits given by Eq. (26) are not adequate to be
utilized in the derivation of the dielectric tensor. The
important term to be kept is the nonlinear correction to
the frequency. However, introduction of this correction
is not enough to ensure the correctness of the dielectric
tensor, as we have seen in the derivation of (32). It has to
be coupled with the derivation of the effective dielectric
tensor, following the procedure described by BGI, in or-
der to get a tensor with the correct symmetry properties
to describe wave-particle interactions in inhomogeneous
magnetic fields. The importance of the nonlinear modifi-
cation of the frequency has already been recognized in the
literature, with some discussion about its consequences
[ll—14,17,18]. However, the connection with the symme-
try properties of the dielectric tensor had not until now
been adequately discussed, to the best of our knowledge,
and a useful, complete, and general form of the dielec-
tric tensor components satisfying the required symmetry
conditions was not yet available.

V. ABSORPTION OF ORDINARY MODE WAVES
FOR PERPENDICULAR PROPAGATION

In order to investigate quantitative effects due to the
inhomogeneous magnetic field in the absorption of elec-
tromagnetic waves, we consider the case of perpendicu-
larly propagating waves with frequency near the electron
cyclotron frequency, in a plasma with a Maxwellian elec-
tron distribution function. For a distribution function
that is even in p~~, as in the case of a Maxwellian distribu-
tion, the dispersion relation factorizes into two branches,
named the ordinary and extraordinary mode branches,
respectively,

2 =N~ ——~, ,

(33)
1V& [c cos g + e» sin g + (e „+e„)sing cosgj

&xx~yy &xy&yx )
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3/2
2 p —pu /2E()(u~, uii) = n,

27r
e (34)

where Ng = ck~/e is the refraction index.
The Maxwellian distribution function for the electrons

can be written as follows, as a function of the components
of u = p/(mc):

where n,, is the electron density and p = m, c2/T„where
T, is the electron temperature; considering a weakly rel-
ativistic regime p 1+ u2/2, 8 = a/2 and wave propa-
gation along the direction of the inhomogeneity (@ = 0),
from Eq. (23) we arrive at the following expression for
the effective dielectric tensor components:

3/2 OO ,*I — &(*)j
't2 22

27K n= —oo 0

—-",
~~~ (1—~=~)

ull e ggg~ e p e 2m
2

t = —w

P
A„—:@[1—nO(x) /(u],

n—:1 ——ep, P sin@,1/2

(36)

(37)

where P = K~/(Yp ~ ) and Y = 0/ur. Equation (35)
can then be written as

OO.,-, =~„+-2 Xp'

iA t —inO'

The notation can be simplified by the definition of the
following quantities:

and A„, —:@[1—nsO(x)/~]. The quantities M, and K,
result from the momentum integrals and are dependent
upon the modified Bessel function of the first kind, the
I function [21],

ns —ns

2(1 —' t)

(
1 —int ) q 1 —int

p'(c ~
—c—.) ~

2(1 —int) )
p'(„,( „.~, (p ( .g

1 —int ) ( 1 —int

ull e
The a,". . and b," coefficients. ,. which appear in Eq. (39),

are given by

3 —
2 (1— t) (38) 0

n' (~„,tb '

s;, =h,, +) ) s,", +s,o,o,
n=l a=+1

(39)

where

eia„s t e
—inc„'

e,". .' = —iXp dt
(„,( „.(1 —it) ~ (1 —int)

a,'
(„,( „,(1 —int)

0
22.(= .. ..

ns —
ns aqua+

(1 —int) 2

b1 b2
+~ Zg +

(1 —int) (1 —int) 2
i j=12

eiA, t e —in'„'
dt 3/2 Mns

o (1 —it) (1 —int)
ns ns ns ns

~13 31 ~23 ~32

F33 = EXP

By performing the momentum integrals, we arrive at
the following expression for the components of the dielec-
tric tensor:

n' . (F.„,t )
al2 —— 2 sin@

~ )
0 0 0 0

@+ ~(

.AS (~„,tb
al2 = i—1 + 2 cos g(cos g —sin @)

~p

—2cosv/r
i&pr i»

.AS
a2l —— i 1 —2c—os/(cos @ —sin—@) ~P

I)
.2ns . (e„,t ) (e„,tl '

a22 ——i sing
~

'
~

1+2cos g+
~) )

al l = — Sill
p
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~21 = -b12 ~22 = b»
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f
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(4o)

It is possible to separate the argument of the I func-
tion by using an addition theorem for Bessel functions
[21]. Using a small Larmor radius approximation for the
first term and the lowest-order term in the expansion for
the second, we arrive at the following result:

(a. )
e'ss ——1 —X+ —EXP ) Z

~4 mls g 2eis )
where

2

Z(y) = 2ie ~ dye

is the well-known Pried-Conte plasma dispersion func-
tion.

where we have defined the quantity e, = naacp, ~ j(2w).
In the derivation of Eq. (39) we have introduced the
symbol 8 for the sign of n.

In the homogeneous case (e = 0), the s;.' quantities,
which appear in Eq. (39), are equivalent to Eq. (62)
of Ref. [22] and may be expressed in terms of the rela-
tivistic plasma dispersion functions Wq. In the inhomo-
geneous case, Eq. (39) can also be expanded in terms
of these well-known plasma dispersion functions, but we
think that the explicit expansion does not contribute to
simplifying the appearance or the use of our expressions.
However, by the use of some restrictive approximations,
we can write the effective dielectric tensor in terms of the
very familiar plasma dispersion function Z.

Let us consider as an example the case of c . Inserting
the distribution (34) into Eq. (23), using a nonrelativis-
tic approximation (p = 1), and taking into account only
the n = 0, +1 terms in the expansion, we arrive at the
following zz component, after performing the u-space in-
tegrals:

This result shows that the anti-Hermitian part of c,
is connected only to the imaginary part of Z(y) and
therefore only to the resonating particles. The remaining
terms of the expansion of the Bessel functions also dis-
play the same property. It is interesting to compare this
result with Eq. (32), obtained by the use of approach
B, whose anti-Hermitian part has contributions due to
nonresonant particles [17].

For the numerical investigation, we consider ordinary
mode waves propagating perpendicularly to Bo in the
equatorial plane of a tokamak described by a plasma slab,
with profiles given by

(n. (~) = n. (O)~ 1 ——, ~ ,a~)

( x'l'
T.(~) = T.(0)~ 1—

a )

Bo(T):B (0) (o1
—

)
where a is the radius of the plasma column and B is
the torus radius. Therefore, the waves are propagating
along the direction of the inhomogeneity (sing = 0).
According to our previous definitions, the quantity e is
therefore given by e = —B

Initially, we assume JET-like parameters (JET: Joint
European Torus), with central electron density n, (0) =
1 x loi4 cin s, central electron temperature T, (0) = 5.0
keV, magnetic field at the center Bo(0) = 3.4 T, a = 120
cm, and consider B ranging &om B a to B —+ oo,
that is, &om a small aspect ratio to a very large aspect
ratio, in order to study the effect of different degrees of
inhomogeneity on the ordinary mode absorption (the as-
pect ratio is defined as p = R/a). We also choose simple
profiles, with p = 1 and q = 2. We then assume a real
wave &equency equal to the electron cyclotron &equency
at position x = 0 cm, launched from the external side of
the tokamak in the equatorial plane, with k~~

——0. We
solve numerically the ordinary mode branch of the disper-
sion relation (33), obtaining the complex quantity N~.
Figure 1 shows the real and imaginary parts of N~ for
the ordinary mode, respectively, denoted by Re(Nc)) and
Im(Nc)), as functions of position, for three values of B,
corresponding to aspect ratio values p = 2.58, p = 2.00,
and p = 1.50. For each case the locally homogeneous
result, obtained with the use of e = 0, is shown as a
full line and the inhomogeneous result is shown as a bro-
ken line. As the aspect ratio is decreased the absorb-
ing region moves toward the central position of the slab,
as expected. The comparison between the homogeneous
case and the inhomogeneous cases shows that the inho-
mogeneity effect is practically irrelevant for these param-
eters, even in the most inhomogeneous situation of very
small aspect ratio. The reasons for this feature can be
qualitatively understood by the following considerations.

For the geometry considered, sin @ = 0, and therefore
the quantity 0' vanishes, o. becomes 1, and M, can be
written as
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f P'+ n'c'Y'pe't'/(40') 5
M„, = exp!—

l (1 —it) r
!

t p2 n2c2Y2pe2t2/(4g2) gxI„! !1 —2t
(43)

xp, (1—na Y—ns Ye+)t

0 (1 —it)'~'

tensor, given by (39), depends on the integral

0.5 I I I
I

I I
I

I I f

As a consequence, the zz component of the dielectric P2 + n2c2Y2pe2t2/(4g2) )xexp!—
l (1 —it) r

fP2 n2c2Y2pe2t2/(4fl2) )xI„!
1 —it (44)

b

It is seen that inhomogeneity-related factors appear in
the arguments of the exponential function and the mod-
ified Bessel function. These arguments can be written
as

0.4
n cy pt. 19x10 t

]
4 ~2 g2J

(45)

Homogeneous
Inhomogeneous

(a): p=2.58

(b): p=2.00

(c): p=1.50

The right-hand side of (45) has been written by consid-
ering that, for the spatial region where cyclotron absorp-
tion is meaningful, Y 1 and the real part of N~ is also
near unity. Equation (45) is written for B measured in
centimeters, T in keV, and B in tesla. For the parameters
utilized for Fig. 1, namely, Bo ——3.4 T, T, (0) = T = 5
keV, and B = 120 cm, (45) reduces to

0.3 I I I

I
I

I P 1 +457 x 10 t (46)

0.06

0.05

0.04

0.03

a b c
The integrand in Eq. (44) is quickly convergent, being

significant only for values of t such that t & 2. Therefore,
Eq. (46) shows that in the region of t values for which
the integrand of Eq. (44) is meaningful, the arguments of
the exponential and Bessel functions are very close to the
values for the homogeneous case. However, for smaller
values of the temperature or the magnetic field intensity,
the effect of the inhomogeneity may become appreciable.
Consider, for instance, the case of Bo ——1.5 T, T = 0.5
keV, and R = 100 cm, for which (45) is given by

P 1 + 0.34t (47)

0.02

0.01

0.00
-30 -20

x (cm)

-10 0

FIG. 1. Real and imaginary parts of the refraction index
for the ordinary mode, Re(N&) and Im(N&), vs position in
the plasma slab, for three values of the aspect ratio and for
8 = 7r/2 and @ = 0; Bo ——3 4 T, T = 5 0 keV, n = 1 x 10
cm, a = 120 cm, and the wave angular frequency cu = A(0).
"Homogeneous" results are obtained with the use of the di-
electric tensor for locally homogeneous plasmas, and "inho-
mogeneous" results are obtained with the use of the efFective
dielectric tensor.

where it is seen that for values of t which are relevant
for the integral, the inhomogeneity contribution for the
argument has become meaningful.

As an illustration, we assume parameters in the range
typical of small tokamaks, with Bo(0) = 1.5 T, T, (0) =
0.5 keV, n, (0) = 1 x 10~s cm, a = 20 crn, p = 1,
q = 2, and consider R ranging &om R a to R —+ oo.
In the small aspect ratio limit, these parameters are sim-
ilar to those expected for START (Small Tight Aspect
Ratio Tokamak) and other small aspect ratio devices al-
ready in operation or planned for the near future. As
in the case of Fig. 1, we choose the wave &equency to
be equal to the electron cyclotron frequency at position
x = 0 cm, launched Rom the external side of the tokamak
with A:~~

——0, and solve numerically the ordinary mode
branch of the dispersion relation (33). Figure 2 shows
the outcome of these calculations, in the form of the real
and imaginary parts of N~ as functions of position, for
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FIG. 3. Integrated absorption g(2:) for the ordinary mode
vs position in the plasma slab, for the same values of the
aspect ratio as in Fig. 2; other parameters are the same as in
Fig. 2.

the result that the integrated absorption does not depart
very much from the prediction of the homogeneous case.

These results, particularly those of Fig. 2, have shown
that the magnetic field inhomogeneity is effective near the
electron cyclotron frequency, where the absorbing parti-
cles are in the body of the distribution function. For this
range of frequencies, the inhomogeneity effects may com-
pete with relativistic effects, while further away from the
cyclotron frequency relativistic effects are clearly domi-
nant and the effect of the inhomogeneity is negligible. It
may be remarked that in the case of density and tem-
perature inhomogeneities the inhomogeneity effects were
more noticeable for down-shifted frequencies, mainly ab-
sorbed by electrons in the tail of the distribution function
[7].

We now compare the results predicted by the use of
the effective dielectric tensor given by (39) with results
obtained from other approaches to the problem of wave
absorption in inhomogeneous plasmas. In order to do
that, we solve the dispersion relation for the ordinary
mode, as given by (33), with the use of different versions
of the dielectric tensor. The results are shown in Fig. 4,
where we plot the imaginary part of N~ as a function of
position, for three different cases. Figure 4(a) has been
obtained with the use of the same parameters utilized in
Fig. 1 and B = 180 cm. The curve labeled (1) is the same
as the broken line curve c in Fig. 1 and depicts Im(&o)
obtained with the use of the effective dielectric tensor,
as given by (39). The curve labeled (2) shows the result
obtained with the use of the tensor whose components
are given by Eq. (19), the relativistic dielectric tensor
prior to the introduction of the BGI corrections (as we
have stressed, this tensor does not display the required
symmetry properties). It is seen that near the electron
cyclotron frequency a region of negative values of the ab-
sorption coefBcient appears, similarly to what has been
obtained for different parameters in a recent publication
[14]. This negative value of the imaginary part of the re-

fraction index is due to nonresonant terms in the dielec-
tric tensor and does not mean true wave amplification
[14]. Curve (3) shows the result obtained with the use
of the approximated nonrelativistic tensor derived with
the use of approach B, whose components are given by
Eq. (32). Finally, curve (4) shows the result obtained
with the use of the tensor whose components are given
by Eq. (28), following approach A. As we have already
mentioned, in the case of this version for the dielectric
tensor, derived without the nonlinear correction to the
frequency in the unperturbed orbits, the inhomogeneity
effect disappears for g = 0' and curve (4) in fact coin-
cides with the homogeneous result.

From these results, as well as from those of Fig. 1,
it is observed that the use of the correct effective dielec-
tric tensor, with relativistic effects included, predicts very
small effects of the inhomogeneity in the magnetic field
for these parameters. The same is true when it utilized
the tensor without the BGI corrections, the auxiliary ten-
sor e . The description in this case is not correct, as we
have seen, but it has in common with the correct descrip-
tion the fact that the inhomogeneity leads to small mod-
ifications as compared to the homogeneous result. This
is in contrast to the results obtained with the use of the
nonrelativistic approximated tensor of approach 8, with
components given by (32). The homogeneous limit can-
not even be treated in the nonrelativistic approximation
for the present case of perpendicular propagation and the
inhomogeneity effect modifying the resonant denomina-
tor results in high values of the absorption coefFicient,
symmetric around cyclotron frequency. Therefore, it is
illustrated that the effective dielectric tensor not only has
adequated formal features, but when utilized in the dis-
persion relation predicts results quantitatively different
from those obtained with other approaches utilized in
the literature.

In Fig. 4(b), we consider the case of the same param-
eters utilized for Fig. 2, with B = 90 cm, namely, a
case where the aspect ratio cannot be considered small
and the inhomogeneity effect still does not lead to the
appearance of the region of negative absorption coefFi-
cient. The curve labeled (1) has been obtained with the
use of the effective dielectric tensor and is the same as
the curve obtained with p = 4.5 in Fig. 2. The curve
labeled (2) shows the result obtained with the use of the
auxiliary tensor Vo [Eq. (19)], curve (3) shows the result
obtained with the use of the approximated nonrelativistic
tensor derived according to approach B [Eq. (32)], and
curve (4) shows the result obtained with the use of the
tensor of approach A [Eq. (28)], being coincident with
the homogeneous result. The modification of the absorp-
tion coefficient appearing with the use of the c tensor
in this case becomes very conspicuous and the region of
negative absorption coeKcient extending beyond the cy-
clotron frequency is clearly seen. As we have discussed,
it is due to nonresonant terms and does not mean true
wave amplification [14].

For the case depicted in Fig. 4(b), the quantitative
differences between the results obtained with different
approaches become much more meaningful than in the
case of Fig. 4(a). There are regions where the inhomoge-
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neous result given by curve (1) difFers significantly from
the homogeneous result [coincident with curve (4)]. An
appreciable difference can also be noticed between curve
(1) and curve (2), for which the energy exchange between
a wave and particles is not correctly described, and an
even more appreciable difFerence between curve (1) and
curve (3), obtained with the use of Eq. (32) for the com-
ponents of the dielectric tensor. It may be repeated here,
for the sake of completeness, that when the components
of the dielectric tensor are given by Eq. (28), there is no
eKect of the inhomogeneity predicted for the direction of
propagation considered here.

In Fig. 4(c) we consider the case of the same param-
eters utilized for Fig. 2, with R = 60 cm. For this case
we observe the appearance of the inhomogeneity driven
negative absorption coeKcient. The results are displayed
in the same way as in Figs. 4(a) and 4(b). The curve
labeled (1) has been obtained with the use of the effec-
tive dielectric tensor and is the same as the curve which
shows the result obtained for p = 3.0 in Fig. 2. The
curve labeled (2) shows the result obtained with the use
of the tensor whose components are given by q.1 W (yg)
curve (3) shows the result obtained with the use of the
approximoximated nonrelativistic tensor whose components

a«given by Eq. (32), and curve (4) shows the result
obtained with the use of the tensor whose components
are given by Eq. (28), being coincident with the homo-
geneous result. Comments similar as those which apply
to Fig. 4(b) are also applicable to Fig. 4(c), regarding the
comparison between diferent approaches.

Therefore, these examples have shown that the utiliza-
tion of three versions of the dielectric tensor whose com-
ponents do not respect the correct symmetry, namely,
those given by Eqs. (19), (32), and (28), lead to quite dif-
ferent results for the absorption coeKcient. We have seen
that the correct inclusion of inhomogeneity efFects modi-
fies the usual results for the absorption profile of the ordi-
nary mode near the electron cyclotron frequency, where
the inhomogeneity correction may compete wztri rela-
tivistic efFects. The absorption grows near the electron
cyclotron frequency. It continues to grow as t e xnho-
mogeneity is increased, acquiring some similarity to the
absorption profile displayed by curve (3) in Figs. 4(a)—
4(c), obtained with a nonrelativistic formulation. How-
ever, the absorption peak originating from the correct

d theformulation does not appear to be symmetric aroun t e
electron cyclotron frequency, as obtained with approach
B, because the relativistic eR'ect precludes significant res-

0.06

0.05

0.04—

o 003

0.02

0.01

0.00

0.15

0.10—

0.05

E 0 00

-0.05

(c)

~ ~
I

~
~

~
~

I
~

~
~

-0.01
-20 -15 -10

x (cm)

I I I I I I

-5 0
-0.10

-0.8 -0.6
I I

-0.4 -0.2
x (cm)

I

0.0 0.2

0.12

0.10

0.08

0.06
2 0.04

0.02

0

(1)
(2)——(3)

I I ...I

I

-0.02
-0.04
-0.06

-1.0

(b)
I I I

-0.8 -0.6
I I I

-0.4 -0.2 0.0
x (cm)

0.2

ex for the ordinar mode vs position in the plasma s a~ ~ ~

for w = 0 0 and forFIG. 4. Imaginary part of the refraction index for e or ina y
R = 180 cm' (b) Bo ——1.5 T, T = 0.5

h f ll 'n convention: (1) using the efFective dielectric tensoranel the curves are labeled according to tne iooowing conven ion:
e ~(3) usin a roach B, and (4) using approach A (which, mgiven by the present formulation, (2) using the auxiliary tensor s, ~3~ using approac, an

the present case, coincides with the homogeneous result).



242151 DISPERSION RELATION AND THE DIELECTRIC TENSOR FOR. . .

0.15

0.10

0.05
6

FIG. 5. Imaginary part of the refraction
d f the ordinary mode, m , vs

/ ~O
~

for several values of e, evaluate wi
the use of the effective dielectric tensor in t e

= 0.5 keV,
n, = 1 x 10 cm, 8 = s/2, and g = 0.

-0.05
0.990 0.995

I

1.000 1.005

onance above the cyclotron &equency, unless tLie inhomo-
geneity parameter e is very large.

dThe features discussed above can also be illustrate
ousi e et 'de the context of tokamak pro es,

'
es in order to isolate
or er to do that, wethe effect of the inhomogeneity. In order o

l d the dis ersion relation for the ordinary mode,
with the use of the effective dielectric tensor, or e

those describing the center position
f h t kamak in the case of Fig. 2, namely, BG ——oft e o ma

T, T =05keV, andn = 1x10 cm, an
7r/2 and j'i = . e iip = 0 The imaginary part of the refraction
index resulting om isl & this calculation is shown in Fig.

several va ues ofas a function of angular &equency, for several va ues o

les that for sufBcientlyIt has been seen in our examp es tha or
ion of negative absorption co-large inhomogeneity, a region
ran e of &e uencies. T is isefBcient may appear in a range

a result that deserves further investigation.ion. The imagi-
nected to ac-nary par o et f th wave vector must be conn

exchan e since it was obtainedtual wave-particle energy exc a g
lY'' » the use of the e ective&om a dispersion relation wit. t..

d l t t r one can nonetheless ver' yrif whether theie ec ric ensor,
m lifi-negative a sorp ion in e0 t' deed corresponds to wave amp i

cation or whether it is related to the reversed sign in t e
roup velocity. n or er o o. I d t do that we have assumed realg

th ordinary mode branch of Eq.k~ and complex ur m e or
x ression for33) and used the familiar approximated expression or

the growth rates, valid for
~
u; ~&& cu„,

(49)

arts of the dispersion relation. e curvenary par s o e
~ ~

Cd VS& 0 )

obtained according to these proce urures for the same
5 and the same value of ~parameters utilized in ig. a

cient in Fig.which resulted in negative absorption coefBcient in ig.n, = —0.0167. It is seen that there is a region
in the same &equency interval inof positive values o u;, in e s

o b pth' h Fi . 5 exhibits a negative va ue oo the a sorp ionw ic g
coefBcient. We also display in Fig. 6, by

1x103

8 x 104—

6x 104—

4x 104—

2x104-

—2x10 4-

—4x10 4—

—6x10 4—

—8x10 4-

1x10 3

0.9970

/

/

/

I

s I.

0.9975 0.9980
coJ(D (

0.9985

0), (&)——— co,. (2)

V
gX

I
'

j

I

I

I

I

I

I

/

0.9990

0.05

0.03

0.02

0.01

0.00
0.9995

FIG. 6. u, /&u vs ~„/~Q ~, for the ordi-

)

expression u, —;vg
obtained from the dispersion relation).



2422 R. GAELZER, R. S. SCHNEIDER, AND L. F. ZIEBELL

cu, (2), the result of an alternative procedure, which as-
sumes that the growth rates are approximately given by

—k, v~~, where e~ is the x component of the group
velocity. It is seen that the result obtained with this
second method predicts a frequency interval of unstable
waves which coincides with the interval obtained with
the use of Eq. (49), with close agreement of magnitude.
Figure 6 also displays the numerically evaluated group
velocity for the same frequency range. It is seen that
the interval of unstable waves occurs in a region of well-
behaved group velocity (vs ( c) and does not coincide
with regions of anomalous dispersion, where the group
velocity changes sign.

Therefore, it is verified that the negative absorption
coeKcient obtained for sufEciently large inhomogeneity
is not due to the reversed sign of the group velocity. In
fact, because of the correct symmetry properties of the
effective dielectric tensor, its anti-Hermitian part is only
due to resonant terms and this ensures that the imagi-
nary part of the refraction index really describes energy
d.issipation or energy growth. This is in contrast to the
results obtained with other formulations, featuring nega-
tive values of the absorption coeKcient which are due to
nonresonant terms in the dielectric tensor.

Finally, it is interesting to note that in a recent pub-
lication it is stated that the correction in the cyclotron
frequency due to the inhomogeneity does not compete
efFiciently with the relativistic correction and that the
effect due to the inhomogeneity in the absorption of per-
pendicularly propagating waves is negligible in all cases
of practical interest [23]. We have seen that the use of the
effective dielectric tensor confirms this statement for pa-
rameters typical of present large tokamaks. However, by
exploring other parametric ranges, it has been shown that
significant inhomogeneity effects on the local absorption
coeKcient of ordinary mode waves may be present under
laboratory conditions, although with negligible effect on
the optical depth.

VI. CONCLUSIONS

In the present paper we have studied the dielectric
properties of plasmas in weakly inhomogeneous magnetic
fields by considering the case of inhomogeneity in the di-
rection perpendicular to the ambient magnetic field. We
have derived the unperturbed orbits for such a geometry
and the components of the dielectric tensor which must
be utilized when solving the dispersion relation. This di-
electric tensor is an effective tensor, derived according to
an iterative procedure proposed by Beskin, Gurevich, and
Istomin [6]. The BGI procedure has been devised in order
to ensure energy conservation when the effective dielec-
tric tensor is utilized. with a dispersion relation which is
formally the same as the dispersion relation for a homoge-
neous plasma. Along with the derivation of the effective
dielectric tensor, we have stressed the somewhat subtle
but fundamental differences between the effective tensor
and other formulations which also incorporate inhomo-
geneity effects but do not satisfy the required symmetry.
This emphasis is important since some confusion about

these differences and the use of the effective dielectric
tensor remains in the literature, as recently recognized
by Istomin [24].

Regarding the subject of energy conservation, there are
other approaches which do not utilize the BGI procedure
and also claim energy conservation. Therefore we have
to be careful about the precise meaning of the expres-
sion. When we say that the effective dielectric tensor en-
sures energy conservation, we mean that the absorption
coefFicient resulting &om the dispersion relation really
describes the energy exchange between a wave and par-
ticles, while other formalisms incorporate nonresonant
terms which are related to variations of the wave ampli-
tude due to variations of the group velocity in inhomo-
geneous media [14,17].

The expressions here derived for the components of
the effective dielectric tensor are valid for any direction
of propagation relative to the ambient magnetic field and
to the inhomogeneity and are valid for the case of any az-
imuthally symmetric distribution function. The analysis
has been restricted to the case of high frequency waves,
so that the ions have been neglected in the dispersion
relation. It was assumed that the ion distribution car-
ries the current, which must exist in order to satisfy the
equilibrium equations in the proposed. inhomogeneous ge-
ometry.

The components for the effective dielectric tensor,
given by Eq. (23), were shown to satisfy Onsager symme-
try, which is required by the time invariance of the micro-
scopical laws of motion, which rule the particle behavior,
in contrast to other approaches found in the literature for
the dielectric tensor of plasmas in inhomogeneous mag-
netic fields, which do not satisfy these fundamental re-
quirements. We have discussed the derivation of these
alternative approaches as compared to the derivation of
the effective dielectric tensor of the present paper. In the
derivation of these other approaches different approxima-
tions are utilized for the unperturbed orbits and the BGI
corrections are not utilized. The comparison between
these other approaches and the present formulation em-
phasizes the importance of a consistent derivation of the
unperturbed orbits and the importance of the BGI cor-
rection in order to obtain a tensor that exhibits the for-
mal symmetry features required for the correct descrip-
tion of the dielectric properties of the plasma and for the
correct description of the wave-particle energy exchange.

Quantitative consequences of the use of the effective
dielectric tensor have also been explored by the analysis
of ordinary mode waves propagating along the direction
of the inhomogeneity and perpendicularly to the direc-
tion of the magnetic field. The parameter measuring the
degree of inhomogeneity has been assumed to be the as-
pect ratio of tokamaks, modeled by a slab of plasma.
For this study we have assumed electrons described by a
Maxwellian distribution and parameters ranging between
those typical of small tokamaks and those expected for
the next generation of large tokamaks. The outcome of
the numerical analysis can be summarized. as follows.

(i) There is a significant difFerence between the value of
the absorption coefficient obtained with the use of the ef-
fective dielectric tensor in the dispersion relation and the
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value obtained with the use of other approaches utilized
for comparison. Particularly, one of these approaches
(approach A) predicts a null effect of the inhomogeneity
for propagation parallel to the direction of inhomogene-
ity, while the present approach has shown a significant
effect for a range of parameters. Another approach (ap-
proach B) has not incorporated relativistic effects and
therefore has the inhomogeneity playing the role of res-
onance broadener alone. The absorption is predicted to
be symmetric around the cyclotron frequency, which is in
strong contrast to the outcome of the calculations made
with the efFective dielectric tensor. A third approach re-
cently appearing in the literature includes relativistic ef-
fects, but does not take into account the BGI corrections.
The resulting dielectric tensor also lacks Onsager sym-
metry and important qualitative and quantitative difFer-
ences appear in the ensuing absorption coefficient, when
compared to the results from the present formulation.

(ii) The inhomogeneity effect has been shown to de-
crease with the quantity B B T . For values of density,
temperature, and magnetic Geld similar to those of JET
or INTOR (International Tokamak Reactor), the absorp-
tion coeKcient obtained for the ordinary mode has been
quite close to the result predicted when inhomogeneous
efFects are neglected in the dispersion relation, even when
a small aspect ratio is considered. However, for parame-
ters typical of small tokamaks, the inhomogeneity effects
can become meaningful when the aspect ratio decreases.

(iii) These local modifications in the absorption coef-
Gcient, even when meaningful, are almost canceled out
when integrated. along the trajectory. The i.ntegrated
absorption, which is related to the optical depth of the
plasma, has been shown to be relatively insensitive to the
inhomogeneity efFect.

(iv) The inhomogeneity in the magnetic field is most
efFective for frequencies near the electron cyclotron fre-
quency, where the inhomogeneity efFect may compete
with relativistic efFects, while in the case of inhomo-
geneities in the density or the temperature, the modi-

fication as compared to the homogeneous case is more
noticeable in the wings of the absorption profile.

(v) For sufficiently small values of the quantity
B B T, the modification in the absorption coeKcient
can be large enough to cause the appearance of a re-
gion of negative absorption near the electron cyclotron
frequency, featuring a positive growth rate that is not
due to reversed sign of the group velocity. This feature,
which emerges due to the inhomogeneity, certainly de-
serves further investigation in order to shed light upon
the detailed mechanism of the wave-particle interaction.
In principle, one may say that, although the distribution
function is Maxwellian, the existence of the nonequilib-
rium feature (the inhomogeneity in the magnetic field) is
incorporated in the dielectric tensor. The resonance con-
dition is modified by the inhomogeneity, which means
that it is satisfied by a difFerent population when com-
pared with the homogeneous case. This modification in
the resonant population can be regarded as an efFective
anisotropy, which has been shown to lead to negative ab-
sorption, for a given range of parameters.

These preliminary studies have been particularized for
the case of the ordinary mode due to the relative simplic-
ity of the dispersion relation. There are many other sit-
uations where interesting plasma phenomena occur in an
inhomogeneous magnetic field, related to modes of prop-
agation, ranges of &equency, or geometries other than
those considered in the present paper. It is our inten-
tion to pursue our studies on the subject and report our
findings in the near future.
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