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ABSTRACT

Designing Tactile Vocabularies for Human-Computer Interaction

This thesis presents a study about tactile languages in human-computer interaction
and a novel approach for vibrotactile prefixation. We intended to analyse how the choices
made during the design process of tactile vocabularies would affect the user performance
on an interactive task. Therefore, we have designed and tested different sets of tactile
signals for aid navigation in virtual environments. It leaded us to fashion the concept
of Modifier Tactile Pattern for vibrotactile communication which was tested through user
experiments. In the assessment of the modifier-based vocabularies we attempted to effects
of multisensory stimulation, factors related to the processing of tactile sequences and
masking caused by multiple stimuli delivered in a same time. Results show that those
participants who used modifier-based vocabularies performed better the navigation task.
That and others results related to perception, learning and interpretation of our tactile
vocabularies show the validity of the use of modifiers on tactile languages. The statements
made from this work will be useful for designing usable tactile interfaces that demand
expressive vocabularies.

Keywords: Haptic interaction, vibrotactile communication, virtual reality, navigation.





RESUMO

Projetando Vocabulários Táteis para Interação Humano-Computador

Esta dissertação apresenta um estudo sobre linguagens táteis em interação humano-
computador e uma nova abordagem de prefixação vibrotátil. Nós pretendemos analisar
como as escolhas feitas durante o processo de concepção de vocabulários táteis afetam
o desempenho do usuário em uma tarefa interativa. Por isso desenvolvemos e testamos
diferentes conjuntos de sinais táteis para suporte à navegação em ambientes virtuais. Isso
nos levou a esboçar o conceito de Padrão Tátil Modificador para comunicação vibrotátil
que foi testado por meio de experimentos com usuários. Na avaliação dos vocabulários
táteis construídos com padrões modificadores foram considerados os efeitos de estimula-
ção multisensorial, fatores relacionados ao processamento de seqüências táteis e o mas-
caramento causado pela exibição de múltiplos estímulos ao mesmo tempo. Resultados
mostram que os participantes que usaram vocabulários construídos com padrões modifi-
cadores obtiveram desempenho melhor na tarefa de navegação. Esse e outros resultados
relacionados à percepção, aprendizagem e interpretação dos nossos vocabulários atestam
a validade do uso de modificadores na construção de linguagens táteis. As conclusões
extraídas deste trabalho se mostram úteis no auxílio à concepção de interfaces táteis que
sejam usáveis e que demandem expressividade de seus vocabulários.

Palavras-chave: Interação háptica, comunicação vibrotátil, realidade virtual, navegação.
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1 INTRODUCTION

The development of software and hardware components for displaying information in
visual and aural ways is extremely common. Nonetheless, conveying information by the
sense of touch has gained popularity. It can be found in joypads and smartphones that
use different tactile parameters for convey information through touch. Tact is a mean by
which we acquire several information about the environment that surrounds us and there
are surveys that present it as a channel of communication as efficient as vision and hearing
(CONWAY, 2001).

The sense of touch is more complex than vision and hearing. It is basically divided be-
tween two other sub-senses: kinesthetic and cutaneous. The term “kinaesthesia” usually
refers to the ability to sense the position and movement of our limbs and trunk (proprio-
ception). Such sense is provided by joints and muscle receptors. Moreover, more recent
research has considered sense of position and sense of movement as two different senses
(PROSKE; GANDEVIA, 2009). Cutaneous stimuli on the other hand are sensed through
mechanoreceptors in the skin layers (taction). These receptors allow us to sense differ-
ent types of stimuli, such as thermal properties, pressure, pain and vibration of varying
frequencies (LINDEMAN et al., 2006).

Basically, there are two areas where the cutaneous stimuli have been explored: the
development and improvement of techniques for simulation of texture and other tactile
sensations, and the development of tools to enable tactile communication. This work
focuses on tactile communication, which means to build mechanisms that support infor-
mation of complex meanings, images, spatial information, as well as expressions and
arbitrary signs. The greatest challenge in this area was well described by Sherrick (1991)
as the discovery of a set of tactile patterns that, as speech sounds or letters, are clearly
discriminated, rapidly processed and easily learned.

1.1 Problem

Mechanisms for tactile communication exist that are made to support orientation,
locomotion, postural correction and even musical instrument teaching (LINDEN et al.,
2011). In most of them, the set of tactile patterns is iconic, following an approach known
as “tap-on-shoulders” (ERP et al., 2005). This approach can be exemplified by a tactile
sensation printed on the side of the user body that is facing a particular target or obstacle,
for example. The set of tactile patterns in “tap-on-shoulders” approach is easy to un-
derstand but also limited, providing a relatively small amount of information to the user.
A more expressive language would be more efficient in assisting users in their tasks by
transmitting them all necessary information to achieve their goals.

Different kinds of information can be expressed by the use of different parameters, as



20

for example, variation of intensity and frequency of vibrators in a vibrotactile display. The
meaning for each parameter is assigned arbitrarily. The addition of a small set of arbitrary
elements may increase the complexity of the language, but also allows the transmission
of a greater amount of information. The present work focuses on the study of how to use
and combine such elements. We aimed to discover how to increase the expressiveness of
a tactile language, keeping it as easy as possible to learn and to understand. Therefore,
we explored design approaches for tactile languages and proposed a novel approach for
prefixation.

The proposed approach was used to design vibrotactile patterns for aid navigation
tasks and it was tested in navigation on virtual environments. The messages transmitted
to support navigation in virtual environments should also be used for navigation in phys-
ical environments. Therefore, it is expected that the same vibrotactile language could be
applied with few adjustments to several applications, such as gaming, robot-teleoperation
systems, pedestrian orientation and so on. The development of the tactile language and the
research on vibrotactile prefixation was conducted through an iterative and incremental
process. So, we present our finds from the perspective of a cyclic set of steps of (re)design,
prototyping, user experiments and analysis of different tactile vocabulary designs.

1.2 Overview

In the remainder of this thesis, we present on Chapter 2 a literature review and back-
ground for vibrotactile communication, haptic interaction design and tactile navigation.
The section aforementioned contains contributions from the field of Human-Computer
Interaction as well as from Virtual Reality, Linguistics and Psychophysics. On Chapter 3
the proposed prefixation approach is presented and discussed. Then, the remaining chap-
ters will present phases of design, prototyping and user experiments related to an iterative
development of a vibrotactile language for navigation. Chapter 4 presents the design and
evaluation of a primary vocabulary for navigation; Chapter 5 presents an improvement
of such vocabulary and a new prototype; and Chapter 6 presents the last phase with the
redesign of the tactile language and an application test. Finally, a summary about all the
findings can be found on Chapter 7 in conclusion of this thesis.
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2 REVIEW OF HAPTIC INTERACTION

The haptic sense comprises proprioception and taction. The latter is most used for
communication due the facility on generating such kind of stimuli. Vibrating stimuli is
broadly used when it comes to tactile communication systems (HAYWARD; MACLEAN,
2007). The capacity to manipulate vibration parameters such as burst/interburst duration
and frequency makes the display able to rapidly produce different patterns in the user’s
skin. Varying vibrotactile parameters make it possible to encode additional meaning to
a same signal (or tactile icon). However, it is necessary to be attentive to perceptual,
cognitive and motor attributes to ensure the effectiveness of the haptic interaction.

Many tactile devices have been built for human-computer interfaces. A great advan-
tage in the construction of haptic devices is that tactile displays can be placed on different
parts of the body (CHOLEWIAK; BRILL; SCHWAB, 2004). The hardware can be de-
signed to be wore and to deliver passive touch cues directly to the user’s skin. Another
advantage is that the tactile display can be used by users with different profiles. Formerly,
many applications aimed to replace the senses, thinking about tactile devices as a good
alternative for deaf and blind people. However, several more recent applications focus on
complementing senses instead (CHANG et al., 2002). The haptic feedback as comple-
mentary modality is generally suggested when other senses are already loaded, implying
multitasking and disruptions. Therefore, issues related to attention, memorizing and pro-
cessing of tactile sequences also have to be considered at haptic interaction design.

In this section we present a background for vibrotactile communication and interac-
tion design. Such studies should help in making decisions during the construction and
evaluation of the tactile icons and display. We start presenting some example of devices
made for vibrotactile communication and studies on tactile expressiveness. After a review
on tactile icons, we also present studies on spatiotemporal processing, learning and mem-
orizing of tactile sequences. Concerning interaction design, we present methodologies for
construction of haptic interfaces and tactile icons, as well as factors related to multitask
and multisensory applications. We close this section discussing some works related to
navigation task.

2.1 Vibrotactile Communication

The sign as a linguistic unit contains a signifier (acoustic image) and a signified (con-
cept) (SAUSSURE, 2006). A sign represents a denoted object and its meaning relates to
an immaterial representation, while its signifier relates to a material representation of this
object. Such dyadic relation also exists in haptic representations. The design of interfaces
for haptic communication must look at both aspects of haptic representations: meaning
and haptization. While meaning concerns the information conveyed by the haptic cue,
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haptization concerns the haptic artifacts felt by the user. The term haptization means the
haptic equivalent of visualization for sight (SWINDELLS; SMITH; MACLEAN, 2005).
In this section we present concepts related to haptic representations, such as examples of
displays for haptization, the expressiveness of tactile languages and how to design tactile
icons. The design of tactile icons encompasses spatiotemporal factors and characteristics
of processing, learning and memorizing of tactile sequences, also presented later in this
section.

2.1.1 Tactile Displays

The first devices designed to transmit information via cutaneous stimulation have been
developed in the form of an array of actuators (display), usually vibrators and contactors.
Gault (1924), already in the 1920s, proposed the creation of a tactile display for communi-
cating with deaf children by transmitting the acoustical energy from speech into vibrations
delivered to the hand. A similar approach was used by Kirman (1973) who developed a
15x15 vibrator matrix to display correlates of a speech stream on the palm of the hand.

Among the early tactile displays, some followed an approach of reproducing or trans-
lating the alphabet letters to tactile patterns. Geldard (1957) designed a vibrotactile lan-
guage called “Vibratese” that generated patterns corresponding to letters of the alphabet
using a braille-like vibratory code. Then, he designed another application called “Opto-
hapt” which converted printed letters to complex vibration patterns distributed over nine
positions on the body (GELDARD, 1966). Bliss (1974) developed a small reading device
as the Optohapt and called it Optacon. The Optacon however, displayed the information
through a 6x24 matrix of vibrators locate on the reader’s finger. Nowadays, it is possible
to find new versions of those same tactile displays.

To be wearable and able to be placed in different parts of the body is a great advan-
tage of the construction of tactile devices. Nowadays, there are several tactile applica-
tions made for different purposes, such as support posture correction (MIAW; RASKAR,
2009), learning dance steps (ROSENTHAL et al., 2011), alerting (MATSCHEKO et al.,
2010), motion learning (SCHöNAUER et al., 2012) and even musical instrument teaching
(LINDEN et al., 2011). All these tactile displays make use of simple or informative tactile
signals rather than alphabet-like or braille-like vibratory codes (Figure 2.1).

Figure 2.1 - Examples of tactile displays: (a) The Optacon, as many early tactile displays,
converted printed words into tactual stimuli; (b) MusicJacket deliver tactile signals on
different parts of the body
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2.1.2 Expressive Capacity

Braille readers pass their fingers over the patterns made by the raised dots, so it is
considered an active form of touch. Tactile feedback is generally used as aid in multi-
tasking environments further than for assistive devices. In multitasking environments the
user’s primary attention and hands are engaged in another task. Therefore, the tactile cues
are delivered passively by tactile displays to the user’s skin. To accomplish that, tactile
devices basically make use of two sorts of tactile patterns: simple signals and more infor-
mative signals. Each one should be adopted under specific conditions and they have their
own limitations and expressive capacity.

Usually, the design of tactile interfaces follows a “tap-on-shoulders” approach (HAO;
SONG, 2010). This approach can be exemplified by a tactile sensation printed on the
side of the user’s body that is facing a particular target or object. It adds an iconic
factor on the tactile language because the sensation directly evokes the behavior (ERP;
WERKHOVEN, 2006); such as the rooting reflex in newborns that means to a baby to
turn their head in the direction of a stroke on the cheek. Those simple signals are limited
in terms of expressiveness. Hence, simple signals are mostly adopted when there are lim-
itations of either hardware or context of use. They are also applied to deliver alert signals
and other limited informations that do not demand a cognitive component in the response
(MACLEAN; HAYWARD, 2008).

Early research has applied the tactile stimuli to present complex data in order to re-
duce visual and auditory data overload (JONES; SARTER, 2008). In such circumstances
it is necessary for the tactile signal to be more informative. In such case, the tactile
icon (tacton) can be designed metaphorically (symbolic) or more arbitrarily (abstract)
(MACLEAN; HAYWARD, 2008); each design approach have its pros and cons. The
construction of tactile icons involves cognitive and perceptual factors that must be taken
in consideration in order to design signals that are easy to learn, memorize and process
during the task. There are several studies that make use of arbitrary tactile patterns as a
way to enhance the vocabulary expressiveness (ENRIQUEZ; MACLEAN; CHITA, 2006;
ENRIQUEZ; MACLEAN, 2008; TERNES; MACLEAN, 2008). The present work fo-
cus on the use of prefixation signals to construct tactile vocabularies that can be either
expressive and easy to learn and process.

2.1.3 Tactile Icons

According to Brewster and Brown (2004), a Tactile Icon is a structured, abstract mes-
sage that can be used to communicate complex concepts to users non-visually. The word
Tacton is an agglutination of “Tactile Icon”. Following the definition of icon as “an im-
age, picture or symbol representing a concept”, a Tacton is a way to represent concepts
succinctly. As a graphical icon, which can substitute a complete word or expression and
speed up the interaction, a Tacton can convey tactile information in a smaller amount of
space and time than Braille, for example. Graphical and aural icons are broadly used in
user interfaces. The aural icons, also called Earcons, are similar to tactile icons.

Some Earcons have a clear meaning, as the sound of a paper being crushed that usually
indicates a computer file being deleted. However, there are more abstract concepts and
Earcons with no intrinsic meaning, whose meaning has to be learned. There are researches
that study the perception of different musical parameters, as timbre, frequency and am-
plitude to create abstract earcons that are easier to learn and remember. At this point the
creation of tactile icons can be compared to earcons. In general, both earcons and tactons
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are sequential in time. Furthermore, tactons are also created by encoding information us-
ing parameters like frequency, amplitude, and so on. The perception of different stimuli,
however, must be studied to better understand how to relate a pattern to some kind of
information making it as easy to learn as possible (MACLEAN; ENRIQUEZ, 2003).

Similarly to the construction of Earcons, different parameters are used to transmit dif-
ferent kinds of information in a tactile device. Defining which parameters will be used
and how they are related with the set of messages is a great portion of the construction
of tactons. Fortunately, regardless of the specific tactor technology (electromechanical,
piezoelectric, etc.), the tactile hardware will likely have some basic capabilities to ma-
nipulate parameters such as burst duration and frequency (RIDDLE; CHAPMAN, 2012).
Brewster and Brown (2004) list the parameters and other variables that can be used to
construct tactons. They also classified tactons according to their construction mode.

The basic parameters used in the creation of earcons can also be used to create tac-
tons. These parameters are frequency, amplitude, waveform, duration and rhythm. In the
tactile language design methodology presented by Riddle and Chapman (2012) there are
some examples of which information each parameter can better represent (this method-
ology will be further discussed later). Frequency and amplitude, as for earcons, offer a
great range of variation. However, sensibility to these features is not well understood and
neither has great results for the entire range. It has been proposed that only nine different
frequency levels should be used and only four in amplitude. Brewster and Brown (2004)
defend that changes in amplitude influence the perception of frequency. Thus, there are
conditions for variation of both parameters in a same pattern.

The variations of timbre in sound can be better differentiated than waveform variations
in tactons, so this variable became less important in tactile language design. Duration is
a parameter easy to control whatever the hardware controller is. A burst duration can be
used to express proximity to an object and differentiate an attack (short burst with less
than 0.1s) from other sentences. Groups of bursts with different durations can compose
rhythmic units. Rhythm can address groups of events on the same area of the skin and
it is good to inform temporal characteristics as proximity changes and pace velocity, for
example. Rhythmic tactile sequences also can be constructed by prefixation or transfor-
mational approaches (TERNES; MACLEAN, 2008), which is discussed in more detail
later.

In addition to hardware features and the type of information conveyed, spatiotemporal
factors should be taken into consideration in the design of a vibrotactile device. The
position and area of the body where the tactile patterns are printed, and also the relative
position of a tactor in a tactile display affect the quality of discrimination, memorization
and learning of a tactile language.

2.2 Human Factors in Haptization

A structured form of communication can not be successful in conveying information
via touch if its design does not contemplate the neurological and physiological factors
related to the sense of touch. The physiological properties of the mechanoreceptors and
how they report to tactile perception can be found in numerous reviews, with names like
Cholewiak, Collins and Sherrick in front of important work and significant contributions
in this area (CONWAY, 2001).

Just a glance at the Homunculus (Figure 2.2), initially proposed by Penfield as a rep-
resentation of the relationship between parts of the cerebral cortex and the sensory and
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motor systems, confirms the importance of proprioception in tactile communication. Fig-
ure 2.2 is a version of the illustration used by Penfield in his work called “The cerebral
cortex of man” and consists of a diagram of a cross-section of the cerebral hemispheres.
In this diagram, solid bars were drawn at the periphery of the hemispheres and the length
of the bars give an indication of the relative cortical areas from which the corresponding
responses were elicited (SCHOTT, 1993).

Figure 2.2 - The motor and sensory homunculus

Source: Penfield and Rasmussen (1950).

The homunculus can be considered as some form of “map” of human cortical repre-
sentation, being more or less precise in relation to actual brain areas identified at surgery.
In this representation it is possible to notice a large sensory area devoted to hands, as well
as to feet and vocal tract. This is one of reasons why many devices are built as displays for
printing patterns on the palm of the user, for example. Furthermore, the glabrous skin on
the human body has different types of mechanoreceptors in contrast to hairy body sites,
like torso and arms (JONES; SARTER, 2008; CHOLEWIAK, 1999).

2.2.1 Influences of Body Site and Space

Many experiments have been conducted to determine the sensitivity of various areas
of the skin, the pattern-detecting ability of the skin, and other psychophysical attributes.
Most of these studies are interested primarily in the “low-level” aspects of temporal tactile
perception and/or spatial tactile perception as opposed to more complex forms of learning.
Few experiments have been conducted which examine the learning of temporal patterns
or sequences containing complex sequential regularities (CONWAY, 2001).

For testing vibrotactile pattern recognition and discrimination at several body sites,
Cholewiak and Craig (1984) employed similar patterns and techniques to compare pro-
cessing across loci. In these studies, subjects judged comparable sets of spatial patterns
presented in the same way to the finger, palm, and thigh in tests of recognition, discrimi-
nation, and masking.

The acuity of several body parts were tested in processing tactile patterns. Among
them: arm (CHOLEWIAK; COLLINS, 2003), forearm (OAKLEY et al., 2006) (BARGH-
OUT et al., 2009), the abdomen (CHOLEWIAK; COLLINS, 2000) and finger (GOBLE;
COLLINS; CHOLEWIAK, 1996) by generating stimuli in different settings (SHERRICK;
CHOLEWIAK; COLLINS, 1990) to identify the influence of body parts according to dis-
play size, arrangement of actuators, age of users and stimulus time.
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Tactor position in the matrix is also an important factor. According to Weber, “If
two objects touch us simultaneously, we perceive their (suprathreshold) spatial separation
and their arrangement more distinctly if they are oriented along the transverse rather than
the longitudinal axis of the body” (CHOLEWIAK, 1999). Not only the location of the
stimulus but also the size of the stimulated region influence the quality of tactile com-
munication. These findings were observed in the current work where the tactile feedback
were delivered in glabrous and hairy sites.

2.2.2 Temporal Processing of Tactile Sequences

Tactile sequences may represent a perceptual issue on a task. The limitations of tem-
poral processing on different parts of the body is not completely known (GALLACE;
TAN; SPENCE, 2007a). In fact, several studies have demonstrated that attention dwells
on a stimuli (visual, aural or tactile) for several hundreds of milliseconds. Therefore, it is
common a person to wrongly report the existence or position of a second target of two tar-
gets displayed in sequence (Attentional Blindness) (HILLSTROM; SHAPIRO; SPENCE,
2002). Furthermore, Cholewiak and Craig (1984) found that the level of performance
across sites depended, to different degrees, on duration.

The temporal processing of tactile sequences is directly related to the processing and
memorizing of tactile patterns and therefore learning. Hirsh and Sherrick (1961) sug-
gested that temporal processing can be broken down into two processes: the ability to
correctly perceive that two events occurred (i.e. two strokes); and the ability to accurately
judge which of two events occurred first. Thus, we know that at least two main issues
are present in the tactile processing: the processing of multiple stimuli at a time; and the
processing of sequence of stimuli.

Analyzing these two processes and comparing different stimuli (visual, aural and hap-
tic), some authors, in different studies and using different strategies, reached similar find-
ings which prove that tact is more accurate than vision. However its accuracy is smaller
than the hearing in simultaneity tests. As for the temporal order, many tests do not grant
significant finds about difference in performance between different senses, while others
show at least that the vision is also less accurate than touch (CONWAY, 2001).

2.2.3 Learning and Memorizing Tactile Sequences

Learning is strongly linked to memorizing. However, the relationship between mem-
ory and learning of tactile sequences is not completely known. Gilson and Baddeley
(1969) as well as Sullivan and Turvey (1972) showed that memory for the tactile stimuli
locations is best in the first 5 or 10 seconds after memorizing a tactile sequence. Gilson
and Baddeley also noted that memory for touch declines when the training is stopped
(CONWAY, 2001).

The rehearsal is important for memorizing tactile sequences. Its relevance was evi-
denced in studies by Watkins and Watkins (1974). They also noted that the way the infor-
mation is encoded for storage is important. Asking the user to memorize a sequence of
touch associating each tactor to a numerical index is different to accomplish the same task
by asking the user to associate each tactor to a cardinal point. The user experiments we
present later in this work were made in a way to respect such characteristics. A GUI was
designed to guide the training step giving the user time to rehearsal. Also, a cylindrical
keyboard was designed to match the position of the tactors on the user waist. Therefore,
the user could encode the information in a more natural way.

A multisensory reinforcement training is advantageous even when the stimulus will
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later be invoked purely through the haptic channel (MACLEAN; HAYWARD, 2008). Fur-
thermore, the use of metaphors assists identification and memorisation of tactile patterns.
It is a conventional approach to design tactile icons based on metaphors. The metaphors
chosen by the designer can be teached to the user. So, it would simplify the association
between meaning and the arbitrary tactile pattern. Those associations are commonly es-
tablished by the designer. However, the users can also chose the stimulus-meaning associ-
ations themselves. There are studies that present good results (ENRIQUEZ; MACLEAN;
CHITA, 2006; ENRIQUEZ; MACLEAN, 2008). In this work the metaphor and associa-
tions were chosen by the designer.

2.3 Haptic Interaction Design

A central concern of interaction design is to develop interactive products that are us-
able (ROGERS; SHARP; PREECE, 2002). It is not different in haptic interaction design.
Haptic interfaces also must be designed to be easy to learn, effective to use, and provide
an enjoyable user experience. The conventional practices for user interface design can be
applied to the design of haptic interfaces as well. However, haptic design does differ in
a significant way from visual and auditory design. In this section we present some con-
ventional practices for user interfaces design. Also, some particular practices for haptic
interaction design and tactile language design are presented.

2.3.1 Haptic Interaction Design Practices

A haptic interface design must be centered on the user. The interaction design must
look at the supported activities, the user profile and the use context in order to be usable.
It is common for the people who work with haptics to become more concerned about
mechanics and automation. However, the problems are better solved by looking closely at
the user’s need. Thereby, to design suitable solutions it is necessary to watch and listen to
people and notice where they struggle. Working together with people who have different
backgrounds and training can also be productive. It is important for the teamwork to be
multidisciplinary (ROGERS; SHARP; PREECE, 2002; MACLEAN; HAYWARD, 2008).

Design an unfamiliar modality has some challenges. People are not habituated to pro-
cessing haptic representations of abstractions and there is no predefined tactile vocabulary
to describe such representations. According to MacLean (2008) “our subjects have been
using vision for the kinds of tasks we test since early childhood, and they have been using
the tactile version for perhaps a 3-30 min training period”. Figure 2.3 shows a design
space of haptic components that can be used to aid the design of haptic representations
(SWINDELLS; SMITH; MACLEAN, 2005).

The process of interaction design involves four basic activities: the identification of
the needs and requirements; design; prototyping; and evaluation (ROGERS; SHARP;
PREECE, 2002). Evaluating is very important and focus on ensuring that the product is
usable. So, it usually seeks to involve users throughout the design process. The evaluation
process must include perceptual and interaction questions. It has to contemplate how
information is interpreted and remembered (meanings), as well as characteristics of the
development and use of physical haptic signals (haptizations).

We present below some methodologies for design, implementation and evaluation of
tactile signals.
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Figure 2.3 - Possible Design Space of Haptic Components

Source: Swindells, Smith and MacLean (2005).

2.3.2 Tacton Design Methodology

The construction of tactons depends on the capabilities of the hardware that will be
used and the type of information to be transmitted. The type of information will determine
what kind of metaphors can be used to design the tactile representation. Also the hardware
capabilities delimit the possibilities of combining different parameters and consequently
how many different signals may be constructed. Chapman and Riddle (2012) presented
a method for building tactile patterns. This methodology provides a five steps flow for
building tactile signals (see Figure 2.4).

Step 1 is about defining the message set. The scope of the message set may vary given
the purpose of the haptic interface. Usually, tactile languages are made ad hoc. Defining
the message set comprises the identification of the concepts to be communicated and the
metaphors that will be used. Designing tactile signals with metaphors makes them more
comprehensible (MACLEAN; HAYWARD, 2008). Step 2 concerns specify the tactile
hardware parameters. Understanding the capabilities and constraints of the system is
important in determining the parameters available for manipulation.

Step 3 is to define application-specific design rules. Design rules are intended to
facilitate standardized construction. Literature suggests that tactile parameters can already
have some implied meanings (BREWSTER; BROWN, 2004). If those meanings can be
linked to the inherent meaning of messages within the message set, a mapping can be
derived between tactile parameters and messages (Figure 2.5):

The Step 4 is the creation of tactons. The previous steps were taken to enhance the
intuitiveness of the tactile messages. Now the tactons are composed for making complex
messages. Complex tactons and complex messages are made up by addition of qualifiers



29

Figure 2.4 - Tactile Language Design Methodology

Source: Riddle and Chapman (2012).

Figure 2.5 - Linkage of perceptual characteristics of message with tactile parameter (par-
tial message list)

Source: Riddle and Chapman (2012).

to other simple tactons. The qualifier gives details about the message. So, if the message
is about navigation, the qualifier gives descriptive information about direction, distance
and pace, for example. This composition can be done by following any approach to syn-
tax development (BREWSTER; BROWN, 2004). Finally, Step 5 of the tactile language
design is evaluation. After constructing the tactons, they should be evaluated to validate
their design and performance.

For Chan (2008), when designing haptic icons, it is desirable to maximize memorable
icon set-size. Additionally, it is necessary to observe at least four variables: easiness of
association of stimulus with target meaning, individual stimulus salience, discernibility
of items in the set, and maintenance of desired salience level under cognitive workload.
Therefore, Chan proposes an iterative and user-centered four-step process to encompass
those variables (Figure 2.6). Step I concerns the icon set prototyping. While Chan (2008)
designed his icons based on his own observations and insights from past work, the Rid-
dle’s method could be used to systematise this step. The progressive refining of the tactile
icons is the main advantage of the Chan’s methodology. In Step II a perceptual adjustment
is made in order to guarantee that the families of stimuli are related and yet distinguish-
able. The remaining steps are related to evaluation; Step III concerns the validation of the
icons in workload context and Step IV is the application trial.
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Figure 2.6 - A process for developing haptic icons. Solid lines are standard progression,
and dotted lines indicate iterations that might be needed

Source: Chan, MacLean and McGrenere (2008).

The work described in this thesis was not focused on a particular application for tactile
navigation. Therefore, we did not follow the methods aforementioned in a way to design
and test a single set of tactile icons. We aimed to explore prefixation approaches and to
propose a novel one. So, we rather designed and tested several sets of stimuli to anal-
yse the effects of our choices in the design process. However, we followed the Riddle’s
approach to design the sets of icons that we used for tactile navigation.

2.4 Tactile Aid for Navigation

Tactile stimuli have been used as a channel for rendering supplemental information
when sight and hearing are unavailable or overloaded. Therefore, tactile displays are use-
ful for navigational support in environments such as dark mines, closed forests or smoky
areas. Commercially, the automotive industry has explored their potential. Tactile feed-
back can be delivered in a car through steering wheels (ANGELINI et al., 2013), gas
pedal (ABBINK et al., 2011), seat (VAN ERP; VAN VEEN, 2001) and other locations
in contact with the driver’s body. The iDrive is an example of tactile application present
in BMW vehicles. Also in human-machine interaction, tactile stimuli have been used
to provide collision-proximity feedback and aid robot teleoperation (BARROS; LINDE-
MAN; WARD, 2011) and navigation in virtual environments (MOUSTAKAS et al., 2006;
LINDEMAN et al., 2005).

Tactile displays are commonly made for a specific purpose. In mobility and navigation
tasks, there are tactile vocabularies made to display instructions and directions for astro-
nauts (ERP; VAN VEEN, 2003), militaries (JONES; KUNKEL; TORRES, 2007) and
visually impaired pedestrians (DAKOPOULOS; BOURBAKIS, 2009). In all those works
only one set of tactile icons was designed and refined to a specific application. In the
work presented in this thesis, instead, many tactile vocabularies were designed through
an iterative and incremental development.

The palm of the hand is a sensitive site of the human body. Many authors explored the
construction of arbitrary signs in mobile devices (PIELOT; POPPINGA; BOLL, 2010)
or in displays for tactile visualization (WALL; BREWSTER, 2005) to be perceived by
the users with their hands. A system based on the hand for navigation in physical envi-
ronments was presented by Yoon (2009). In Yoon’s system, obstacles are recognized by
ultrasound sensors and exhibited through a tactile display on the user’s hand to replace
vision. The information rendered about obstacles is in part iconic and in part arbitrary.
Based on researches about construction of tactile icons (BREWSTER; BROWN, 2004;
RIDDLE; CHAPMAN, 2012), we have also built a tactile display to support navigation
by displaying obstacle information in a display for the hand. However, differently of the
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display presented by Yoon (2009) and other similar displays (JACOB; MOONEY; WIN-
STANLEY, 2011; PRADEEP; MEDIONI; WEILAND, 2010), we wish to additionally
transmit as much information as necessary with the tactile display.

The perception we have about the location of our own body in the three-dimensional
space is often referenced to the orientation and location of the relatively stable trunk of
the body (CHOLEWIAK; BRILL; SCHWAB, 2004). Tasks that demand perception of
three-dimensional space also require accurate localization of stimuli, and abdomen has
a good performance in such aspect (KARUEI et al., 2011; ERP et al., 2005). In a study
on vibrotactile localization at sites around the circumference of the abdomen, Cholewiak
(2004) shows that the relative position of eight motors equally spaced around the torso
is well perceived by a person. This occurs because, like touch, vibrating stimuli are best
located when they are presented near anatomical points of reference, such as the navel and
the spine. In a study about the perception of vibration across the body in mobile contexts,
the stimuli delivered on the spine was the one with the best results (KARUEI et al., 2011).
Other studies also presented vibrotactile displays made with eight motors for mobility and
navigation tasks (ERP et al., 2005; BOLL; ASIF; HEUTEN, 2011). In the present work
we also designed a vibrotactile display as a belt for navigation.

The navigation task usually involves the use of multiple senses. Some studies ad-
dress issues related to multisensory stimulation and workload (CHAN; MACLEAN; MC-
GRENERE, 2005; ERP; WERKHOVEN, 2006; GALLACE; TAN; SPENCE, 2007b;
MENELAS et al., 2010). When navigating in a virtual environment, the user perfor-
mance will be affected by the perception of the different stimuli presented. Thus, the
vision competes with the sense of touch and affects the decision on navigating. Also the
use of tactile sequences may represent a perceptual issue on the navigation as presented
before. Our experiments were not made with blindfolded users as we did not want to
explore sensory substitution. Therefore, we noted the effects of the multisensory stimulus
on the navigation tasks.

2.5 Summary

Vibrating stimuli is most used for tactile communication due the facility to manipulate
vibration parameters. It makes possible to encode additional meaning to a same signal
and to design expressive tactile icons. Tactile displays are usually made by arranging
arrays of actuators to produce what we can call haptic visualization (haptizations). The
design of haptizations encompasses human factors, such as spatiotemporal factors and
characteristics of processing, learning and memorizing of tactile sequences. All these
factors were observed during the design process of our tactile vocabularies described later
in this dissertation.

The design of tactile interfaces is still at a rather early stage. There is a need for
standardization and for models to design such interfaces. Nevertheless, some of the con-
ventional practices for user interface design can also be applied to the design of haptic
interfaces. There are specific design practices for haptics and approaches for design of
tactile icons that were presented in this work. Rather than applying those approaches and
heuristics to design a set of tactons for a specific navigation task, we explored the ele-
ments involved in the construction of tactile icons and designed many vocabularies in this
work. Differently of previous works, we also propose here a novel concept of modifier
signal as an important breakthrough to increment the tactile language.
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3 NOVEL APPROACH FOR CONSTRUCTION OF TAC-
TILE MESSAGES

The parameters used in the construction of tactile patterns were presented earlier in the
literature as haptic phonemes. According to Enriquez and Maclean (2006), they represent
the smallest unit of a constructed haptic signal to which a meaning can be assigned. Once
a meaning is assigned to a parameter or to a combination of parameters, they can be treated
as morphemes instead. As morphemes, they constitute the minimal meaningful unit of a
tacton and can be classified as free (e.g. roots) or bound (e.g. prefixes). This characteristic
of a tactile pattern behavior as free or bound morpheme has not been emphasized before.
However, prefixation is not a novel approach for tactile languages. In Braille, some signs
are reserved to work as prefixes. Each prefix can be attached to a basic sign modifying its
meaning. A modifier pattern however modifies the meaning of an entire tactile sequence
or several sequences at once.

It is possible to expand the expressiveness of a tactile language varying the elements
involved in the construction of the tactile patterns, such as body position, tactor position
and parameters of vibration. Thereby, different kinds of information can be expressed by
the use of different parameters, as for example, variation of intensity and frequency of
vibrators in a vibrotactile display. The addition of a small set of arbitrary elements, such
as vibrotactile parameters, can increase the complexity of the language, but also allows
the transmission of a greater amount of information without being necessary to scale the
tactile display resolution. So, it is important to study how to use and combine these
parameters to discover how to increase the expressiveness of a tactile language keeping it
as easy as possible to learn and to understand.

In order to reduce the number of chunks of a tactile language as we increase its ex-
pressiveness, we have found inspiration from morphology and formalized the concept
of Modifier Tactile Pattern for vibrotactile displays. Arbitrary variations may result in
vocabularies that are difficult to memorize and process. The use of prefixation with mod-
ifiers could enhance the tactile vocabulary expressiveness keeping it easier to learn due
the number of signals to recall. Hereinafter we present the concept of Modifier Tactile
Pattern and means to design tactile icons with modifiers. Assessment of modifier-based
vocabularies are presented later in chapters 4 and 5.

3.1 Modifier in Braille

The Braille code was invented by Louis Braille, who introduced this writing system
circa 1824. It has evolved from the tactile “Ecriture Nocturne”, code invented by Charles
Barbier for sending military messages that could be read on the battlefield at night, with-
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out light. Braille is written with up to six raised dots arranged in a grid of two columns
and three rows. This combination enables the configuration of 63 simple signals, as well
as a blank. Therefore, basic signs are concatenated to form composite signals (double,
triple, etc.) and increase the capacity of graphical construction.

Some simple signals are reserved to serve as prefixes. So, from 63 possible signs, 6
are reserved as prefixes, remaining 57 basic signs and the blank. One or more prefixes
form a compound with one basic sign. Thus, a composite signal is characterized only
when a simple signal appears after the prefix, or the set of prefixes. Some prefixes also
have the role of modifiers. As a modifier, they affect a sequence or several sequences of
symbols. A prefix is bound to a word and has a full meaning only when it meets a simple
sign, while a modifier qualifies the meaning of several signs at the same time.

On Braille, the uppercase prefix is made by two raised dots (see Figure 3.1). This
prefix is bound to a word or letter to apprise that the next signal should be assumed as
uppercase. If more letters must be interpreted as uppercase, it is necessary to concatenate
the same prefix twice in a row, which will work as a modifier. As an uppercase modifier,
it turns all letters of the next word to uppercase. The uppercase prefix repeated three times
in sequence turns all words of the sentence to uppercase.

Figure 3.1 - Uppercase modifier in Braille formed by concatenating the uppercase prefix

Source: Compiled by author.

3.2 The Modifier Tactile Pattern

A Modifier Tactile Pattern is a tactile signal that modifies the interpretation of the
remaining signals on a Tacton or tactile sequence. The concept of Modifier Tactile Pattern
is subject to some of the same rules that govern the use of modifier signs in Braille. The
Modifier can be composed by more than one pattern. It can change the meaning of the
current Tacton or the meaning of the next Tacton. It can also change the meaning of an
entire tactile sequence. In that case, the influence of the Modifier on a tactile sequence
remains during the period of the pattern burst or continues until another flag appears. So,
as a pair of parenthesis, a pattern can be used to interrupt the action of the Modifier.

The Modifier works differently for haptizations. Vibrotactile cues are dynamic and
are composed by several parameters. In Braille, the modifier affects one or more patterns
in sequence, while the Modifier affects patterns or vibrotactile parameters sequentially or
simultaneously. The vibrotactile Modifier acts like a specializing flag. When it is activated
the user is receiving the message that parameters should be understood differently. For
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example, assuming a tactile language made for a desktop application. The tactile display
could use rhythm to communicate distance of a cursor to a point, relative position of a
tactor to communicate position of the current window and amplitude to differentiate alert
situations. A Modifier can be added, previously or simultaneously, changing the type of
information conveyed by the display at the moment. Thus, rhythm would now inform
the remaining capacity of a folder, position of tactor would suggest position of files and
amplitude would differentiate user permissions.

In this work, we do not intend to classify tactile languages according to some morpho-
logical typology as natural languages. We just focus on the potential of treat meaningful
units of a tacton as morphemes. And mostly, on the tactile signal characteristic to be
bound or free. A simple Tacton is like a stem word or a root and have a meaning which
does not depend of other Tacton semantically. On the other hand, a modifier is a variation
of an affix which is a bound pattern. As a bound pattern, it has a meaning but it cannot
be written without a simple Tacton. A modifier, as well as any other bound pattern, is
pointless when displayed alone. In order to make the concept clearer we exemplify the
utilization of Modifiers for design vibrotactile vocabularies.

3.3 Design With Modifiers

According to Riddle and Chapman (2012), a base tacton is created at the moment
when a tactile parameter is combined with a metaphor associated to the message. Com-
plex tactons and complex messages are made up by addition of qualifiers to other simple
tactons. The qualifier gives details about the message. So, if the message is about navi-
gation, the qualifier gives descriptive information about direction, distance and pace, for
example. This composition can be done by following any approach to syntax develop-
ment. Brewster and Brown (2004) presented three approaches to syntax development
of Tactons: compound, hierarchical and transformational. Hereinafter, we use such ap-
proaches as an example of how to design Modifiers.

3.3.1 Compound Approach

The construction of the language can be given in many different ways according to
this approach. The main characteristic here is the existence of a set of signals that can
be concatenated in different ways to compose a new message or Tacton. In this case, the
Modifier Pattern must be inserted into the set of Tactons and its combination is subject to
the usage rules of Modifiers.

As an example to demonstrate the approach, consider the patterns depicted in Fig-
ure 3.2.

It is possible to use ‘Delete’ and ‘Create’ as prefixal patterns, because the informed
action is expected to know which object should be the target of such action. Thus, ac-
cording to the implementation, when receiving the ‘Delete’ information one might ask
“‘Delete’ what?”. As prefixes these patterns would complete the information with the
next basic pattern. Sentences such as “Delete file”, “Create folder” and “Create file”, for
example, could then be printed.

With this vocabulary, the tactile display could inform a list of items to be deleted by
displaying: “Delete file” and “Delete folder”. To avoid the prefix ‘Delete’ to be printed
repeatedly for each possible deleted item, the pattern ‘Delete’ can be specialized to a
Modifier. As a Modifier it should affect multiple items. The list could now be printed
as “Delete_ file folder”. In the design, the modifier action on a sequence can be defined
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Figure 3.2 - Compound approach. Four Tactons formed by different parameters being
combined to construct sentences

Source: Adapted from Brewster and Brown (2004).

to be valid until a blank (no motor active) or until the occurrence of another pattern that
expresses the end of the modifier action.

The difference between the basic pattern and the modifier is a choice of the designer.
The new modifier pattern ‘Delete_’ can be created by concatenating the pattern ‘Delete’
twice. So, ‘Delete’ + ‘Delete’ = ‘Delete_’. Or the pattern can remain the same and
be treated only as a modifier. For example, the sequence “Delete folder file” can be
interpreted as two different expressions “Delete folder” and “file”, or as the expression
“Delete folder and file”. The difference is in using the pattern ‘Delete’ as a prefix or as
Modifier.

3.3.2 Transformational Approach

In transformational approach, each property of an entity is represented by a different
tactile parameter. If a property of an object is represented by frequency, all objects that
have the same property with the same value will be expressed with the same frequency.
Besides, other property can not be expressed with frequency to avoid ambiguity. The
different values of a property also need to be mapped to different values of the parameter
chosen. For example, if frequency represents file type, each file type must be related to a
single frequency value. Files of the same type are represented by the same frequency.

Modifiers can be created using a signal to inform that some parameters should be
interpreted differently. A modifier may indicate, for instance, the change of the entity
represented: instead of reporting about the desktop, the display passes to convey infor-
mation about the hardware using the same parameters. What we want to promote is the
reuse of parameters in a way to facilitate the learning of the tactile vocabulary. The forms
of application are diverse and depend on the design strategy.

As we said in previous sections, prefixation is not a novel approach for tactile lan-
guages. Through the transformational approach or similar approaches, a set of tactile
messages can be constructed by the junction of a base tacton with qualifiers. Ternes and
MacLean (2008) called it “icon precursors in their tactile variant”. However, the main
difference between the transformational approach and the modifying approach is concep-
tual. A Modifier Tactile Pattern is not only an affix; it specifically changes the meaning
of the remaining signals and parameters.



37

3.3.3 Hierarchical Approach

The main characteristic of the hierarchical approach is the structure of derivation used
to define the construction of patterns. The hierarchical structure gives support to the
design choices and manifests the characteristics inherited by each Tacton depending on
the type of the transmitted information. Following the hierarchical structure, patterns can
be constructed by transformational or composition methods. Figure 3.3 shows a literature
example to explain the hierarchical approach.

Figure 3.3 - In a hierarchical way, each Tacton inherits properties from the levels above it

Source: Adapted from Brewster and Brown (2004).

Note that in Figure 3.3 some patterns are formed by composition; in Level 2 the rhyth-
mic structure inherits the Tacton from Level 1 and adds to it a higher frequency Tacton
played with a squarewave. The figure also shows that other patterns can be formed by
transformation where different values of the same parameter represent different values of
the same property; in Level 3 the parameter tempo of the two Tactons is changed. There-
fore, in the hierarchical approach, the construction and use of modifiers occur as in the
composition and transformational approaches, depending on the designer’s choice. For
instance, the “Error” signal could be repeated to compose a modifier and then reuse its
parameters and meaning to create another Tacton.

3.4 Summary

We have explored the design of vibrotactile languages through a morphological point
of view. Therefore, we have emphasized the use of a prefixation approach for construction
of tactons. That way its possible to reuse the same patterns to convey different meanings,
just by concatenating them with prefixal signals. So, based on Braille, we have defined the
concept of Modifier Tactile Pattern as a tactile signal that modifies the interpretation of the
remaining signals of a Tacton or tactile sequence. By reusing patterns we could get tactile
vocabularies made by less signals to recall. Thus, the use of modifiers could enhance the
tactile vocabulary expressiveness keeping it easy to learn. To evaluate such characteristic
we have designed tactile vocabularies and performed user tests in virtual environments.
Hereinafter we present the design and assessment of modifier-based vocabularies and the
results of the user experiments.
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4 INITIAL VOCABULARY FOR TACTILE NAVIGATION

We have created a vibrotactile language to characterize elements of a path, such as
obstacles and routes to aid navigation. What we called Initial Vocabulary is actually
the first iteration of our development process. As a means to ascertain the feasibility of
designing such interface, we designed and tested this primary vocabulary. This vocabulary
is basic and the construction of its signals took into consideration the use of a grid of
tactors with limited parameters. The Modifier concept was not formalized yet. Although,
it was applied experimentally in this initial design.

This section presents the development of both a vibrotactile language and a display.
The tactile display was built for delivering tactile cues on the palm of the user’s hand
as tactile displays for tactile communication. As a large cortical area is devoted to it, the
palm of the hand is a sensitive site of the human body skin. Either perception of the tactile
cues and interpretation of the tactile icons were tested in user experiments. Even without
acquaintance with this kind of interaction, all participants performed the task successfully,
reaching the destination with the support of the tactile display.

4.1 Tactile Language Design

The methodology of Riddle and Chapman (2012) was used as an initial reference for
the construction of patterns. We believe it is a good starting point as we are focused
on pattern construction only, leaving the cognitive load issues for a future analysis. Re-
searchers interested in evaluating the usage of the tactile language under workload should
consider other methodologies that fit better, e.g. (CHAN; MACLEAN; MCGRENERE,
2008).

The construction of the language will be presented here in three steps: identification
of the messages to be transmitted via cutaneous stimulation, the relationship between
messages, metaphors and activation parameters, and finally the construction of tactons.

4.1.1 Set of Messages

To simplify the language, our set of transmitted messages include only information
about destination and obstacles present in the route. In more elaborate environments and
in a real situation, additional information may be necessary for the user to move around
and orient him/herself without problems. However, in order to make inferences and test
the effectiveness of the haptic language on locomotion, it may be interesting to perform
such task first in a simpler and controlled environment. In a movie theater, a bank branch
or an university campus, for example, to know the direction that must be followed and to
recognize obstacles in the path until the destination seems to be enough information for
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most users to locomote successfully.
The set of messages for this application can be defined as shown in Figure 4.1. The

display should convey information about the destination and the obstacles immediately
around the pedestrian. About destination, only its direction should be informed. Unlike
destination, obstacles may exist or not in a path, so the user must be informed about the
existence of obstacles. Messages about the position of the obstacle should be simple just
presenting its direction in relation to the pedestrian.Thus, the messages about obstacles
are informed through a collision-proximity feedback.

Figure 4.1 - Message set hierarchy

Source: Compiled by author.

4.1.2 Messages, Metaphors and Vibrotactile Parameters

To represent the direction, which is a spatial information, the tactor position can be
used as a parameter. And to represent the existence of elements (destination or obsta-
cle) on the route, the duration of stimulus can be used. The information about the exis-
tence of an element belongs to a binary domain (the answer may be “yes” or “no”), so
duration of the stimuli can be null for the inexistence of obstacles and some non-zero
value for its existence. The non-null value will match the lifetime of the obstacle around
the pedestrian, so the vibration will extend while the obstacle remains close to the user
(collision-proximity).

To distinguish entities (destination and obstacle) a reserved tactor can be used as a
Modifier. The entities identified by the language are only “destination” and “obstacle”;
in this case the same parameter used for existence of an entity can be used to distinguish
entities. It means that, if this tactor is off the currently described elements do correspond
to obstacles. When it is on, the meaning of the signals changes to identify the destination.
As there will always be obstacles along the way, and information about the destination
will be requested by the user only in a few moments, the destination is characterized as
secondary information as it can be memorized. Thus, the reserved tactor may remain
disabled until the information about the destination is requested.

4.1.3 Construction of Tactons

Using the Compass rose as a metaphor for orientation, we positioned eight vibrators
at the cardinal and ordinal directions. This metaphor adds an iconic factor to the pattern.
These eight tactors should be used to represent the existence and direction of whatever
entity we want to display. Then, another arbitrary signal should be added in order to dis-
tinguish entities. We could choose one new pattern for each entity and then we would
have two different patterns to memorize, as well as the meaning of the eight tactors afore-
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mentioned (see Figure 4.2). Instead, as we differentiate the entities using just one pattern,
the modifier, only one new pattern must be recalled.

Figure 4.2 - Tacton composition

Source: Compiled by author.

So, considering a display composed by a 3x3 matrix of vibrating motors, the central
one can be used as the reserved tactor to differentiate destination and obstacles. The
messages were built from the junction of the basic Tactons by following the compound
approach. However, instead of displaying modifier and position in sequence, we display
them simultaneously as in Figure 4.3.

Figure 4.3 - The figure shows two Tactons: One (left) that informs the existence of an
obstacle towards east and another one (right) that informs the direction of the destination
towards east

Source: Compiled by author.

Figure 4.3 shows an example of two tactons. One of them informs the existence of an
obstacle towards east and the other one informs the direction of the destination towards
east. However, the users do not have to retain the information of direction as a cardinal
point in the environment as the motors are positioned perpendicularly to their bodys. That
is how the positioning of the motors adds an iconic factor to the pattern. A signal in the
left side evoques the existence of an entity in the left side. The same occurs with the
remaining motors and positions.

4.2 Prototyping

As mentioned before, tactile displays are built in several formats: as belts, watches,
waistcoats, etc. Based on the research related to proprioception, creating a tactile display
that prints patterns on the user’s hand is a smart choice. This is because the human hands
are very sensitive and they have a good performance in processing multiple simultaneous
stimuli (CHOLEWIAK, 1999). We tried the back of the hand (OLIVEIRA; MACIEL,
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2012), but the cues were better perceived with the palm. Therefore, we created a tactile
display for navigational aid in a virtual environment in the form of a matrix of vibrators
for displaying patterns on the palm of the user’s hand.

Nine tactors ROB − 08449 (Amplitude Vibration: 0.8G; Voltage Range: 2.5V ∼
3.8V ), each with 3.4mm, were attached to the surface of a plastic container. The vibrators
were positioned at a distance of 2.3 cm apart horizontally and 2.5 cm vertically. The
shape of the container used to build the display was chosen to facilitate the contact of the
palm with the vibrators. An Arduino Mega board is used to control the vibrators. The
communication between the board and the virtual environment is made through a serial
port.

Due to vibrational resonance, in our first design none of vibrators could be discerned
individually. That was because the vibrators were fixed on the surface of the container
and the vibration of each one went through the whole display. As a solution, we placed
small foam cubes under each vibrator in our final design. Thus, with the palm of the hand
pressing the vibrators against the surface, or with the hand lightly touching them, it was
possible to discriminate the vibration of each motor. Consequently, it allows to identify
the combinations that make up each tacton. The final version of the display is shown in
Figure 4.4.

Figure 4.4 - Final prototype of the hand-based vibrotactile display

Source: Compiled by author.

4.3 Evaluation

We performed user experiments to assess the effectiveness and usability of the display
and the tactile language designed with the modifier pattern. In this section we present
the planning of the user experiment. Initially, we present our hypotheses and then our
experimental setup.

4.3.1 Hypotheses

We constructed some initial hypotheses to test vibrotactile display and language de-
sign:
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• H1: the vibrotactile display allows the discrimination of different patterns. To con-
vey meaning through a vibrotactile pattern is necessary for the users to have the
capacity to differentiate such patterns. So, the design of the display should allow
this;

• H2: the modifier clearly expresses whether the target direction or obstacle direction
is being indicated;

• H3: patterns clearly state the direction of the target;

• H4: patterns clearly state the location of obstacles.

About the aimed support for user locomotion and orientation, we hypothesize that:

• H5: the combination of the designed display and language allows a person to navi-
gate in an environment where obstacles are not visible and avoid collisions;

• H6: the combination of the designed display and language with the modifier allows
a person to navigate to a destination in an environment where both obstacles and
destination are not visible.

4.3.2 Experimental Setup

Each user was asked to perform four tasks and to fill out four forms. The overall
experiment took between eighteen to thirty minutes for each participant. The tasks were
categorized into two groups: tasks to verify perception of tactons and tasks to verify the
usability of the language and display on navigation.

Perception of Tactons

Task one - Identifying patterns: In the first task, a set of vibrators was activated on
the tactile display and the participants should feel it with their left hand and mark in a
specific form how many and which vibrators were active. Fifteen randomly generated
patterns were displayed (see Figure 4.5). Each micromotor was activated for one second
and each pattern was displayed three times, with a delay of two seconds between them.
After an interval of six seconds the next pattern was displayed. The whole task lasted
exactly three minutes and fifteen seconds.

Task two - Identifying information: After the first task, the users were taught to inter-
pret the tactile patterns as tactons. Then, in a second task, twelve patterns among those
used in first task were printed in a different order. The participants read the pattern with
their left hand and marked in the second form what information they believe the pattern
conveys. They should answer if the printed pattern represented a destination or an ob-
stacle, and mark the indicated direction. Each tacton was printed three times every six
seconds. The whole task lasted exactly two minutes and fifty seconds.

Tactile Navigation

We would like to verify if the vibrotactile language built with a modifier could actually
support the user in locomotion and orientation through a virtual environment. So, all the
users also performed two navigation tasks. To perform such tasks, a virtual scenario was
constructed consisting of a gallery full of obstacles.
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Figure 4.5 - Graphical representation of the fifteen tactons used in task 1

Source: Compiled by author.

Task three - Gradual navigation: In the first scenario, the character manipulated by
the user (avatar) was initially positioned at the entrance of the gallery. The user moves
through this gallery to reach the opposite side, indicated by a large and bright picture. The
user was requested to avoid collision with obstacles along the way. The lighting along the
path was uneven, decreasing light intensity as the avatar approaches the target. The haptic
language is simplified to render only obstacles. It may not be useful or necessary in the
first half of the task where the obstacles are visible. However, it is essential in the second
half, where the user could not see the obstacles under a low illumination (see Figure 4.6).

Figure 4.6 - Testing locomotion using vibrotactile aid. The environment becomes darker
as the user advances toward the target, gradually increasing the need for the haptic display
to avoid the obstacles

Source: Compiled by author.

Task four - Blind navigation: Another test was performed rendering haptic informa-
tion about both obstacles and destination. In this test, the character is placed from the
beginning in a lounge with no light, thus having no visual information about the target
destination. In this situation, the use of the tactile display becomes even more necessary
for the user to acquire information about both the obstacles and the direction of the target
destination.
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4.4 Discussion and Results

Fifteen users have volunteered to participate in the tests; fourteen were male. The par-
ticipants have a mean age of 24 years old and all of them are Computer Science students
(six undergraduate, nine graduate). Four of them had previous experience with cutaneous
stimuli by the use of another prototype made as a belt with vibrating motors. Three users
present myopia and one of them also presents astigmatism. One user mentioned he suffers
from hyperhidrosis, but this condition did not seem to affect his results.

Despite two participants are left handed, the tactile display was placed on the left side
for all users because all of them state that they currently use the right hand to handle
mouse and keyboard arrows (for navigation). They also used the right-hand with the pen
to answer the survey (only cross marks). Testing was done in a private room where just
remained the volunteer and the researcher to best avoid distractions.

4.4.1 Perception of Tactons

Task one - Identifying patterns:

With task one, we tested if each vibrator could be clearly perceived and if the users
could identify the patterns. This task was devised to measure the user sensitivity free of
bias. Therefore, it was performed without any previous training.

In a strict analysis, the user must check the exact number of active motors and their
exact position. The average of correct answers was 8.13 (σ = 2.82), which represents
54.22% of the patterns (see Figure 4.7). Patterns made by the composition of three and
four motors had a greater number of errors. However, the results show that the misinter-
pretations were not caused by the number of tactors but rather by their relative positions.
In general, the users had a correct perception of the number of tactors, even though they
did not report the correct positions for all micromotors in the display. Such result was
expected as the hand is not the best location to deliver a great amount of stimuli due to
masking. With such result we could know exactly the kind of patterns that are more dif-
ficult to process. If nothing else, in this test all users reported the correct position of the
reserved motor.

Thus, we made a second analysis and this time we removed the patterns consisting
of four motors simultaneously active. Besides, we consider as being correct the patterns
in which the position of only one motor was swapped with a neighbor. In this relaxed
analysis the mean score was 13.4 patterns (σ = 0.9), which represents 91% of them, as
illustrated in Figure 4.7. This result was due to a large number of errors that have been
caused by marking a neighboring location when more than one motor vibrate at the same
time. We observed that, during a navigation task, the user can spend more time to feel the
pattern and avoid this misunderstanding. So, when delivering vibration on the user’s hand
we must create tactons with a smaller number of motors to improve user processing.

Our vibrotactile display allows the discrimination of different patterns, as predicted
by our first hypothesis. Even if the patterns composed by few motors are better discrimi-
nated than those with several motors vibrating simultaneously, the display is sufficiently
effective to be used with a more elaborate task.
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Figure 4.7 - Number of patterns properly recognized (y axis) by each user (x axis). Left:
The dashed line marks the mean 8.13 and the dotted line marks the standard deviation.
Right: The patterns made by four motors were removed. Also, the answers where the
position of only one motor was swapped with a neighbor were considered correct. The
dashed line marks the mean 13.4 and the dotted line marks the standard deviation

Source: Compiled by author.

Task two - Identifying information:

On task two, the tactile language design was tested. The users were taught to interpret
the tactile patterns as tactons. The tactons were made to convey information about obsta-
cles and destination. The central motor of the grid is used to differentiate those entities,
and the peripheral motors vibrate to denote existence of obstacles around the user. If the
central motor is turned on, the peripheral motors indicate the direction of destination in-
stead. Therefore, the central vibration motor became the first to be processed by users in
order to discern what kind of information the tactons were transmitting.

As in task one, the pattern of four motors simultaneously active achieved the worst
results, so it was removed from this analysis. In this second task, the users hit the correct
meaning conveyed by the modifier (destination or obstacle) in 95.75% of the displayed
patterns (see details in Figure 4.8). This result satisfies the second hypothesis (H2). All
users that failed in recognizing a pattern misinterpreted the pattern by only one motor.
They thought that a neighbor motor was active instead of the central motor.

Also, when the central motor was activated alone there was a misinterpretation. Some
users chose to mark the information as a “north signal” for example, assuming that the
orientation was mandatory for any tacton. At the end, thirteen out of fifteen participants
properly identified the information passed by the Modifier Pattern. Only two people were
confused about the real position of the motor in the second test. They hit its position in
the previous test, so this misinterpretation probably occurred due to a perception error
or due to an interpretation that the modifier must necessarily be followed by at least one
other active tactor.

In a strict analysis, the number of users that hit the exact position of the destination
and the exact position of obstacles was respectively 73.3% and 64.7%. Although the
motor placement and the use of a high number of motors still represent an issue in this
design, there was an improvement in recognition of tactons compared to task one. Mainly,
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Figure 4.8 - Number of correctly recognised modifier meanings for each user. The dashed
line marks the mean 10.53 and the dotted line marks the standard deviation 0.7. Twelve
patterns were displayed in this task

Source: Compiled by author.

the patterns that include activation of the central motor were better identified. Patterns
clearly state the direction of the targets and obstacles (H3 and H4), which can be observed
especially during the locomotion task. We summarize in Table 4.1 the values found in this
session.

Table 4.1 - Summary of results of Task one and Task two
Task Condition Avg. % Std. Dev.

Task one Strict 8.1 54.0 2.8
Relaxed 13.4 91.0 0.9

Task two Meaning 10.5 95.7 0.7
Exact dest. pos. 3.0 73.3 0.7
Exact obst. pos. 5.0 64.7 1.0

Source: Compiled by author.

4.4.2 Tactile Navigation

Task three - Gradual navigation:

In this task, each participant took an average of five minutes to complete the course.
The fastest one completed in two minutes and the slower in fifteen. All users privileged
the sense of sight in the more illuminated section of the path. In the middle of the scenario,
where illumination became very low, some users still insisted in using vision. Only in the
darker side of the scenario the participant switched their focus of attention to the aid of
the tactile display. Figure 4.9 shows the route taken by one of the participants.

We also evaluated the collisions with obstacles (Figure 4.10). Three users have shown
to be outliers and were removed for this analysis; they reported not to care about the num-
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Figure 4.9 - Map of the scenario used in the experiment. The blue line indicates the route
taken by one of the test participants. In this example the user completed the task without
colliding

Source: Compiled by author.

ber of collisions as long as they reached to the destination. Figure 4.10 shows that their
collision counts were much higher than the others. They collided around 2 deviations
above the average that includes them (86), and near 10 deviations from the average ex-
cluding them (30). Although these collision numbers are meaningful for comparison, the
absolute numbers are overshot. Our collision count method is time dependent and counts
many collisions when an user remains in contact with an obstacle. Moreover, there was
no feedback about collisions during the test, causing some people to remain in collision
for a while. Then, 60 collisions may actually mean only 1, 2 or 3. Zero, nevertheless,
means absolutely no collision.

Figure 4.10 - Number of collisions on task three (y axis) for each user (x axis). The
dashed line marks the mean of 86 collisions including outliers. The dotted line marks the
deviation. Only two users made no collisions, but absolute numbers are over counted as
explained in the text

Source: Compiled by author.
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After outlier removal, the remaining users achieved a mean of 30 collisions. Yet, most
of the collisions have occurred in the darkest part of the environment where users saw the
target but not the obstacles, creating a conflict between visual and tactile feedback. There,
they could see the target very close ahead, which encouraged them to anxiously ignore the
tactile feedback and collide. This confusion can be due to the hand-based design and must
be further explored. However, despite the large variance in the number of collisions, two
users completed the task without colliding. Considering that they received no training,
this supports hypothesis H5, showing that a person can navigate in a virtual environment
where obstacles are not visible using the proposed language and display and do not col-
lide. We cannot claim this is a good result in terms of efficiency, but we are convinced
that without the tactile aid it would not be possible in such a complex map (see Figure 4.9).

Task four - Blind navigation:

The second scenario, and last task of the whole test, took an average of eight min-
utes for each user to complete the course. The fastest user completed in two minutes and
the slower took twenty-nine minutes to finish. All participants agreed that the second
route was very difficult. Notice that no other orientation cue was given besides the haptic
display and all participants are untrained. Nevertheless, all users performed the task suc-
cessfully, reaching the destination. This shows that the combination of our display and
language effectively allowed the users to navigate to the destination in an environment
where both obstacles and destination were not visible, confirming H6.

There were many collisions in the task three that were due to the users preference to
rely on vision instead of tactile feedback. In task four, instead, the users had only the
tactile feedback to orient themselves. Therefore, those who made many collisions in task
three committed three times fewer collisions on task four.

4.5 Summary

The user experiments have shown the usefulness of the created tactile vocabulary
while aid for orientation and navigation tasks. Nonetheless, it has some issues that must
be improved concerning its usability. The test results inspired new strategies to optimize
the displaying of the tactile icons on the hand. The hand, although a sensitive loci, is
less effective in receiving large amount of vibration. However, we noted that the hand
perceives reasonably well about three vibrators at a time. We believe that the results
could be improved by delivering less vibration to the hand. As the users move mostly
forward on navigation, they use to keep their attention on the frontal motors. Turning
the rear motors off automatically during the navigation we can mitigate the masking and
enhance the interaction.

After ratifying the feasibility of the tactile navigation we went forward in the re-
search. The concept of Tactile Modifier Pattern was shaped and the tactile vocabulary
was increased in order to transmit more information during navigation. We also proceed
exploring means to construct vocabularies with modifiers and analyzing how their design
affects the user perception and the user performance in navigation. The following section
presents the enhancement of the tactile language for navigation with a new prototyping
and new user experiments.
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5 ENHANCEMENT OF THE TACTILE LANGUAGE

In a second iteration we created an enlarged version of the tactile language for naviga-
tion. This version was intended to be more expressive. So, the message set was increased
to transmit more informations during the navigation task. The tactile language was also
intended to be suitable for navigation in virtual environments and also physical environ-
ments. Thus, the prototype of the tactile display was redesigned to make it wearable. As
presented in previous sections, the perception we have about the location of our own body
in the three-dimensional space is referenced to the location of the torso. Therefore, the
new display was made as a belt. Such design proved to be more suitable as we wanted to
free the hands for other tasks.

The tactile prefixation with modifier patterns can occur on differents ways. The mod-
ifier pattern can be displayed simultaneously (superposed) with the basic tacton or in
sequence, following a compound approach, or can be attached at the beginning of the
sequence as an ordinary prefix (juxtaposed). The choice of designing the tactile icons
and messages by superposition or juxtaposition may affect the quality of the tactile lan-
guage in different ways. The use of sequences may be simple to process in a simple task,
but may demand a greater effort to process under heavy workload. Therefore, we de-
signed three vocabularies and conducted an user study to assess the differences between
tactile vocabularies made by a prefixation and a non-prefixation approach, and also the
characteristics of prefixed messages by superposition and juxtaposition. Each vocabulary
follows a different approach: a conventional one, based only on metaphors; a modifier-
based vocabulary with patterns made by juxtaposition of tactons in sequence; and another
modifier-based vocabulary with patterns made by superposition.

5.1 Vibrotactile Belt

Limbs are poor candidate sites for displaying tactile information to support orien-
tation and mobility tasks. The initial tactile display made for the hand was good as
it was fixed and positioned perpendicularly to the user’s body. If the vibrating motors
were attached on the hands, the cardinal references would be lost with the hand move-
ment. The human torso is another sensitive loci and more suitable for tactile navigation.
Previous works report that a belt made with eight motors is appropriate to work as a
display (STELTENPOHL; BOUWER, 2013; BOLL; ASIF; HEUTEN, 2011; ROSEN-
THAL et al., 2011; ERP et al., 2005). The waist location around the especially sensitive
navel and spine sites, has been privileged by a number of authors (KARUEI et al., 2011;
CHOLEWIAK; BRILL; SCHWAB, 2004). Also, some previous approaches arrange sev-
eral motor arrays along the person’s torso to display more information (MATEEVITSI
et al., 2013; LINDEMAN et al., 2005). However, to focus on the expressiveness of the
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tactile language, we choose to maintain the display small and manipulate the elements
that compose the tactons instead.

Our belt was constructed with eight electromechanical tactors ROB− 08449 (Ampli-
tude Vibration: 0.8G; Voltage Range: 2.5V ∼ 3.8V ), each with 3.4mm. The vibrators
were attached to pieces of Velcro and then positioned at equidistant locations. An Arduino
Mega board was used to control the vibrators. The communication between the board and
the virtual environment is made through a serial port (see in Figure 5.1).

Figure 5.1 - Final prototype of the vibrotactile display as a belt

Source: Compiled by author.

5.2 Increasing the Tactile Vocabulary

A number of different messages may be helpful to aid a person in the navigation task.
Some of them would rather be necessary to the task, such as destination loci. Others are
unessential, but still helpful for route planning, such as minimum distance to a point. We
designed a tactile language to transmit five different kinds of information. The number
of five means a great amount of information and still a reasonable number of objects to
memorize (Miller’s Law). The evaluation of such amount of information allows us to
observe to what measure they are essential for the navigation task and also how each
information helps a person to follow a better route. The messages displayed via tactile
stimuli indicate: Destination, Obstacle, Course, Warning and Itinerary (see Figure 5.2).

A navigation activity is basically defined as the problem of moving from an origin to
a destination. The navigator must ascertain a position and then plan and follow a route.
Therefore, the Destination is an imperative information for such task. A language could
convey information about position, distance and other characteristics of the destination.
Our language only conveys the direction of the destination in order to keep the set of
messages simple. Another important information we also convey is the presence of Ob-
stacle for collision-proximity detection. In Chapter 4 we demonstrated that a person in a
completely dark environment could move to an unknown position without colliding with
obstacles through the route just by using a vibrotactile display receiving Destination and
Obstacle messages.

The tactile language designed also convey information about Course and Warning,
similarly to a tactile paving (ISO 9001:2008). Both information are expected to help the
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Figure 5.2 - Message set hierarchy

Source: Compiled by author.

user to feel predefined routes. Thereby, the user can receive information about flows that
may lead to the destination (course message) and also be warned about stairs, ramps, and
other elements that are not insurmountable obstacles but also demand attention (warning
message). Finally, we also convey information about Itinerary. The itinerary messages
guide the navigator to take a specific route (e.g., the shortest or the fastest), mostly like a
GPS navigator. We display four distinct messages for itinerary, indicating that the navi-
gator must go forward, backward, to the left or to the right. Such information would be
also useful for drivers in the traffic.

5.2.1 Tactile Icons Design

The Compass rose is used as a metaphor for orientation. By placing eight actuators at
the cardinal and the ordinal directions around the user waist we could point to directions
from an egocentric perspective. This metaphor adds an iconic factor to the pattern, just
as the “tap-on-shoulders” approach. These eight tactors are used to represent the posi-
tion or direction of whatever entity we want to display. Then, other arbitrary patterns are
added in order to distinguish and characterize different entities. The amount of arbitrary
patterns and the way they are designed affect how they are learned. Therefore, different
compositions should result in vocabularies with different qualities for 3D navigation. We
have built three different set of tactons (or tactile vocabularies) so we could assess how
the different choices affect the navigation task.

First Vocabulary: Conventional Approach

A non-prefixed approach was chosen to design the tactons in this vocabulary. By
conventional we mean to create different vibrotactile patterns varying just the hardware
parameters and the respective actuator position.

In Section 4, we noticed that users rarely pay attention to the back actuators. While
navigating, they constantly move forward or rotate towards the destination, so there is
no urge to perceive obstacles behind. Therefore, only the five frontal actuators are used
to convey information about collision-proximity. The three rear motors are then free to
render other information. In the present design we use two of them to convey information
about course, while the remaining motor, on the spine, is used to display warning (see
Figure 5.3).
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Figure 5.3 - The tactor location is used to create patterns of Course, Warning and Obsta-
cles

Source: Compiled by author.

As we reserved the tacton position to transmit information about obstacles, course and
warnings, we had to choose other hardware parameters to transmit the remaining informa-
tions. To distinguish the destination from the obstacle position pattern, we use a change in
frequency. For the itinerary, we render waves of bursts in sequence towards the direction
suggested (see Figure 5.4).

Figure 5.4 - Frequency and shape were used to create patterns of Destination and Itinerary

Source: Compiled by author.

Second Vocabulary: Modifier-based by Juxtaposition

In this vocabulary, we designed the tactons based on a prefixation approach. The
frontal actuators are still used to convey information about obstacles, but the rear actuators
now are used to compose modifier patterns. Each message is transmitted as a tactile
sequence. First, the modifier pattern is displayed stating the entity. Then, the entity’s
direction or position is displayed by the activation of an actuator in the relative position
on the user’s waist.

Similarly to the conventional vocabulary, two rear motors were selected to print in-
formation about course. These two motors are activated to signalize that the display will
now render course information instead of obstacles. The course was made by printing the
two-rear-motors modifier plus the relative position of the course. As course and warning
were both inspired by systems of textured ground surface, we use the same modifier to
print the warning pattern. The warning sign is then made by printing the two-rear-motors
modifier plus the spine motor.
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The spine motor was, otherwise, used to mark the modifier sign for destination. First,
the spine motor bursts. Then, one of the eight motors is activated to show the direction of
the destination. To differentiate the itinerary pattern we created a compound modifier by
printing the same modifier twice. So, when the pedestrian must move to the left, the spine
motor is activated twice and then the left motor (see Figure 5.5).

Figure 5.5 - Modifier-based vocabulary. Three back motors were used to compose modi-
fier patterns

Source: Compiled by author.

Third Vocabulary: Modifier-based by Superposition

There are two mainly differences between the vocabulary presented in the previous
section and the conventional one: the use of prefixes and sequences. So, we designed a
third tactile vocabulary aiming to isolate sequence as an independent variable. As shown
in Table 5.1, four messages in the conventional vocabulary are exhibited as a single pat-
tern. The modifier-based vocabulary, in turn, was made only by patterns in sequence. We
then designed another vocabulary based on modifiers but with four messages exhibited as
a single pattern, without sequence (see Table 5.1).

Table 5.1 - Comparison between vocabularies. The first vocabulary has one message
exhibited as a tactile sequence. The second vocabulary has many messages exhibited as
sequences. The third vocabulary was done in an equivalent manner to the first one; the
difference is that it is based on modifiers

Message Vocabulary
First Second Third

Obstacles Single pattern Single pattern Single pattern
Course Single pattern Sequence Single pattern

Warning Single pattern Sequence Single pattern
Destination Single pattern Sequence Single pattern

Itinerary Sequence Sequence Sequence
Source: Compiled by author.
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The modifier patterns are displayed simultaneously with the entity’s direction or po-
sition, producing a single pattern (see Figure 5.6). In this vocabulary, the course was
made by printing the two-rear-motors modifier and the relative position of the course at
the same time. Also the warning was made by printing the two-rear-motors modifier and
the spine motor simultaneously. The spine motor and one of the seven left motors burst
to show the direction of the destination.

In the first vocabulary the itinerary is exhibited as a tactile sequence. So, we kept it as
a sequence in this third vocabulary for normalization. At this time, when the indication is
to move left, the spine motor is activated once and then the left motor.

Figure 5.6 - Modifier-based vocabulary with minimum sequence. The three back mo-
tors are used to compose modifier patterns that are printed simultaneously with direc-
tion/position information

Source: Compiled by author.

5.3 Evaluation

A tactile vocabulary based on modifiers is more expressive than a similar vocabu-
lary without modifiers as it uses less symbols to communicate the same information. On
the other hand, learning the relations between symbols, e.g. prefixation or juxtaposition,
may be more difficult than just memorize a greater number of symbols. We hypothe-
size, however, that modifier based vocabularies collaborate for a higher increase of user
performance along time than a conventional vocabulary. At the same time, we wish to
investigate how the use of sequential (prefixated) or simultaneous (juxtaposed) modifier
patterns influence the user performance.

The study below compares the three vocabularies described in the previous session
in many dimensions. Our main focus is to demonstrate that even with a minimal learn-
ing phase, modifier patterns can offer a gain in performance after a few trials. We also
focus on determining the situations where patterns in sequence can perform better than
simultaneous patterns.
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5.3.1 Experimental Setup

For a between-groups experiment, we divided our population into three distinct user
groups that will perform the same tasks but using a different vocabulary. First, each group
was instructed on one of the three tactile vocabularies.

After filling a pre-test characterization form, each participant was invited to wear the
tactile belt and use the tutorial app. The tutorial is a step-by-step visual description of the
vibrotactile language. It also explains the experiment task and demonstrates how the belt
works by activating it while a graphical representation is exhibited on the screen. Then,
each individual was exposed to tasks that evaluated their perception of the motors and
their interpretation of tactons displayed by the belt. Finally, each user navigates through
four different scenarios using the tactile belt. At the end they filled an evaluation form to
give their opinions on the tactile vocabulary. Hereinafter we describe the scenario of each
task.

Preliminary perception test

In this first task, a set of vibrators is activated on the tactile display and the participants
should sense it and answer how many and which vibrators were active. Fifteen randomly
generated patterns were displayed. Each set of motors was activated for five seconds
with a pause of two seconds between them. Before each new pattern be exhibited, the
participant should mark the position of each motor activated by pressing buttons in a
cylindrical keyboard we developed specifically for this task. This keyboard was made
isomorphically to the belt, with eight buttons arranged in locations respective to the eight
actuators. After pressing each button the corresponding motor is flagged on the screen
(as seen in Figure 5.7) and stored before a new pattern starts. The whole task lasted
exactly 1 minute and 45 seconds. This task is necessary to verify that the combination of
motors type and position with the hardware and software implementation is able to render
perceivable signals, independently of their meaning.

Figure 5.7 - Input device made as a cylindrical keyboard

Source: Compiled by author.

Interpretation test

In a second task, ten selected patterns are displayed through the belt. However, this
time the participants are asked to inform the meaning the pattern conveys as a tacton. They
should answer if the printed pattern represented a destination, an obstacle, a warning, an
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itinerary or a course and then mark its direction Figure 5.8. Each tacton is printed during
11 seconds; the whole task lasts exactly 1 minute and 50 seconds. The same sequence of
messages is displayed for all participants, but the vocabulary was different for each of the
three groups.

Figure 5.8 - Screen for the interpretation of the vibrotactile messages

Source: Compiled by author.

Navigation test

This task was presented as a game composed by four different levels. The goal in each
level is to reach the destination, an object lightened in red, using the information transmit-
ted by the vibrotactile display. The first level is the same for the three groups and the belt
only displayed information about obstacles. For the other levels, the scenario changes and
the set of messages transmitted in each new level is increased by one additional type of
information. The additional information is not always the same, being randomly selected
for each user. At the last level, the complete set of messages of the respective vocabulary
is exhibited to participants of each group.

The first scenario was the same used for navigation with the hand-based display pre-
sented in Chapter 4. The user should move through a gallery to reach the opposite side,
indicated by a large and bright picture. The user was also requested to avoid collision
with obstacles along the way. The lighting along the path was uneven, decreasing light
intensity as the avatar approaches the target (see Figure 5.9).

Figure 5.9 - Testing navigation using vibrotactile aid

Source: Compiled by author.
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In the first level, the destination is visible all the time. In the remaining levels, the
users depend upon the information displayed by the tactile belt to find the destination
location. They have to use the available tactile information, which vary as they progress
between levels, to reach the goal while avoiding obstacles. Depending on the information
available, some users may choose to follow the route suggested by the belt (itinerary), or
to follow some course + destination while still avoiding obstacles through the way.

5.4 Discussion and Results

A population of 58 individuals have volunteered to participate in the tests; 47 are male
and 11 females. The participants are students, covering an age range of 19 - 32 years.
Twenty three users have some degree of myopia, astigmatism or hypermetropia. Testing
was done in a dedicated room where just remained the volunteer and the researcher to
best avoid distractions. A number of 20 participants learned and used the first vocabulary;
19 participants made their tasks using the second vocabulary and 19 participants used
the third vocabulary. The overall experiment took between 18 to 30 minutes for each
participant.

The volunteers reported in the pre-test questionnaire about their experience with games
and their practice with joypads in the past six months. These questions are important be-
cause the participants had to use a joypad for the navigation task. The first group has a
few more participants that rarely or never played games or used a joypad in the past 6
months. Although, the experience among the three groups was balanced. In all groups
the majority of people have some practice in games, even though their playing habits are
mostly occasional (see Figure 5.10). The number of users that occasionally, frequently or
always play with joypads is barely the same for all three groups (see Figure 5.10).

Figure 5.10 - Participants background experience. (Left) Participants experience with 3D
games. The responses are based on the past six months before the experiment. (Right)
Participants experience with joypads. Some users reported to play 3D games frequently,
but use keyboard and mouse instead of a joypad

Source: Compiled by author.

5.4.1 Preliminary perception test

The users from the three groups performed this task. First, we measured the user’s
torso and then we placed the motors at equidistant positions. The belt was placed 3cm
above the navel of the participant, at the waist level. The torsos had an average of 80cm
(65cm - 105cm). For this test, the patterns were activated in sets of one to three motors
simultaneously. The results can be seen in the confusion matrix presented in Table 5.2.
At the table, motors located at the cardinal positions are marked in bold, being the motor
#2 placed at the central frontal position.
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Table 5.2 - Stimulus/Response Localization Confusion Matrix from Experiment 1, N = 8
Stimulus Site Response (%)

“1” “2” “3” “4” “5” “6” “7” “8” “ ”
1 53.07 1.75 0.00 0.00 0.00 0.00 0.44 8.77 35.96
2 2.34 67.25 1.17 0.00 0.00 0.00 0.00 0.00 29.24
3 0.75 2.26 52.38 9.52 1.00 0.00 0.25 0.00 33.83
4 0.00 0.00 4.09 46.78 8.77 0.00 0.00 0.00 40.35
5 0.00 0.00 0.58 9.36 43.27 1.17 0.00 0.00 45.61
6 0.00 0.00 0.00 0.00 3.51 83.63 6.43 1.17 5.26
7 1.32 0.00 0.00 0.00 1.75 0.44 68.86 8.77 18.86
8 7.89 1.75 0.00 0.00 1.75 0.00 16.67 67.54 4.39

Source: Compiled by author.

As expected, the locations around the navel and spine provided the best correspon-
dences. The results near the spine were correctly marked in 83.63% of the cases. This
result demonstrates the advantage of the motor on the back over the other motors. Such
result also justifies the choice of the center-rear motor as an indicator of warning signals
or pop-out signals.

The remaining rear motors also obtained a high number of correspondences. The left-
rear motor (number 7) had the second highest number of correct hits, 68.86%. However,
the right-rear motor (number 5) have not obtained the same level of perception, since in
43.27% of the times it was shown the response was left blank. Many occurrences have
been left unanswered for those motors that were exhibited multiple times in sets of two
and three motors. One-way ANOVA showed that there is a significant loss in the hits for
patterns with many motors (F(3.88)=27.99, p<0.00003). It means that a higher number of
motors causes more errors.

5.4.2 Interpretation test

The task was performed in a single trial. The same pattern sequence was displayed
for all users with their respective vocabulary. The results have not presented significant
difference between languages. However, the percentage of correct answers was lower for
the second vocabulary (see Figure 5.11).

Figure 5.11 - Interpretation of messages by three different vocabularies

Source: Compiled by author.
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With the second vocabulary, most of the users interpreted the Itinerary information as
Destination. Destination and Itinerary activate the same motor to generate the modifier
pattern, varying the number of successive activations. While the actuator vibrates once in
the back to indicate destination and another to indicate its direction, for itinerary it vibrates
twice in the back before displaying the direction of the itinerary. The third vocabulary
also uses the same activation motor to generate the modifier pattern. However, as only the
Itinerary is displayed using a sequence, we observed less confusion.

Confusion was also noticed in users that interpreted Warning information in the sec-
ond vocabulary as Course, and vice versa. That can also be due to the similarity of the
patterns. However, Course was confused less with Warning and more with Destination,
which does not bring the same modifier pattern. This time the confusion is due the nomen-
clature used in the experiment. Many users had difficulty assimilating the differences
between the terms Course, Destination and Itinerary in any of the vocabularies. Several
errors also occurred in all vocabularies when the vibration was rendered at the spine to
compose a Destination pattern.

We attribute most of the confusion and errors in this experiment to the total lack of
training. At the same time, the task was very useful as it provided a standardized training
for the navigation task that comes next.

5.4.3 Navigation test

Each user navigated through four distinct scenarios that worked as phases of a game.
The participants took a mean of 20 minutes to complete the whole task. Eleven users
have shown to be outliers and were removed for the analysis. Ten of them because they
reported to have felt significant nausea and dizziness, spending more than 2 standard
deviations above the average or not being able to complete the task. Actually, 8 among
those 10 were not able to complete the navigation through the four scenarios. The 11th
outlier is one that spent more than an hour to complete the experiment as he lost his way
and wandered for a while before finding the target.

Figure 5.12 - Mean time to complete the navigation task with each vocabulary

Source: Compiled by author.

Figure 5.12 shows the mean time of each group. The group of the third vocabulary
was the faster, with a mean of 20min (σ = 5:31min) to complete the whole task. The
group of the second vocabulary took 21:32min (σ = 7:35min); the third group was the
slowest with 22:50min (σ = 7:03min).



62

As presented in Chapter 4, during this experiment we also observed conflicts between
visual and tactile feedback. Most of the collisions occurred in the darkest part of the first
scenario where the users could see the target but not the obstacles; users could see the
target very close ahead, which encouraged them to anxiously ignore the tactile feedback
and collide. See the selected area in Figure 5.13. In this level the average collision were
significantly higher than in the others (see Figure 5.14).

Figure 5.13 - Enlightened vision of the darkest part of the scene. The marked region
shows the place where most of the collisions occurred

Source: Compiled by author.

Figure 5.14 - Number of collisions in each level/scenario

Source: Compiled by author.

The scenarios were displayed in a different order for each user, eliminating the ef-
fect of the scenario over the results. It is possible to observe the improvement of the
three groups along the levels as their times and number of collisions decrease. With all
vocabularies, users go faster at each subsequent level (see Figure 5.15).

In the interpretation test the second vocabulary seemed to have not been learned as
fast as expected. However, considering the duration and number of collisions during
navigation, it can be seen that the group of the second vocabulary obtained the best results
in some levels. The group that used the third vocabulary was the slowest at the third level
and also the one that collided more at the third level. However, the third vocabulary had a
great improvement at the last level.
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Figure 5.15 - Duration of the navigation in each level/scenario

Source: Compiled by author.

5.5 Subjective Data Analysis

We proposed three different approaches to build a tactile vocabulary for navigation aid
in VE. Our first vocabulary was made by varying hardware parameters as the metaphors
to navigation. The other vocabularies were made with a prefixation approach. The prefix-
ation was chosen to create tactons by the concatenation of a smallest set of tactons. The
user should remember the three abstract patterns designed as modifiers and the pattern is
completed with the vibration of one direction, as the “tap-on-shoulders” idea. The second
vocabulary was made by printing one modifier pattern before the iconic representation
of the information. And the third vocabulary was made by joining the sign to the prefix
in order to make one single pattern (except for the itinerary, that was made as a tactile
sequence).

Hirsh and Sherrick (HIRSH IRA J.; SHERRICK JR., 1961) suggested that temporal
processing can be broken down into two processes: the ability to correctly perceive that
two events occurred (i.e. two strokes); and the ability to accurately judge which of two
events occurred first. Thus, we know that at least two main issues are present in the tactile
language processing: the processing of multiple stimuli at a time; and the processing
of sequence of stimuli. Our first vocabulary is the one with more elements to recall.
However, the first vocabulary is also the one with tactons made by composition of fewer
motors at the same time. The second vocabulary was the one to address the sequence
issue. The third vocabulary was the one with tactons made by the vibration of many
motors at the same time.

In the second vocabulary four messages were displayed as sequences. Despite their
difficulty to correctly respond the interpretation test, the users learned the vocabulary.
However, they felt that the patterns in sequence were the most difficult to understand dur-
ing navigation. Figure 5.16 shows the user’s opinion that the messages displayed as se-
quences were the most difficult to process in the three vocabularies. Sometimes the users
did not even perceive the tacton. The attentional blindness (HILLSTROM; SHAPIRO;
SPENCE, 2002) may be the factor to explain this result. Many users understood the mod-
ifier, but could not perceive the direction. Even with the sequence issue, the performance
of the group with the second vocabulary in navigation was slightly better than the first
group.

The third vocabulary achieved good results in the interpretation test and in the nav-
igation task. The group that used the third vocabulary was especially slow at the third
level. This bad result seem to be more related with the number of tactors activated simul-
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Figure 5.16 - Users opinion about patterns that were the most difficult to process during
the navigation task

Source: Compiled by author.

taneously. In fact, the first task of the user experiment showed that the worst results were
obtained from the perception of several motors at the same time. In the first task the users
did not have to understand the meaning of the tacton; they had only to report the number
and position of the active tactors. However, many users comprehended well the meaning
of the tactons as seen in the second test. So, the processing of multiple stimuli at a time
is more difficult, but the way that the information was split into prefixation elements and
iconic elements seemed to help the memorization. Such result can be seen during the
second task and in the navigation task.

5.6 Summary

We have studied three different choices in the design of a tactile language for 3D
navigation. Analyzing the users performance we observed how it is influenced by tactile
sequences and larger number of stimuli at same time. Even the difference between the
performances of the three groups was not significant, the modifier-based vocabularies af-
forded the best results. The results suggest a great potential from our approach to express
complex information without increasing the number of symbols to be learned and remem-
bered. The tactile language designed for navigation in virtual environments could also be
used for navigation in physical environments. Therefore, our prefixal approach can be
applied to render supplemental information when sight and hearing cannot be used, e.g.,
for orientation support in dark environments, as mines, or for the visually impaired, first
person games for the blind and many others.
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6 REDESIGN AND APPLICATION TRIAL

As presented in Chapter 5, we tested three different vocabularies with five messages
each. Such assessment allowed us to evaluate eleven different families of signals. Those
signals were evaluated through an interactive questionnaire and also through a navigation
task. With this results in hand, we wanted to create a last tactile vocabulary based on the
user’s perception and performance on navigation. This last vocabulary was intended to
be more usable as its signals were chosen with focus on the user and the task. Therefore,
what we called Final Vocabulary is a set of tactile icons composed by the best perceived
and also more distinguishable patterns of our previous user study.

Along this work we have given some examples of applications that could use the tac-
tile feedback to convey supplemental information. Most of them for sensory complement-
ing, e.g., for orientation support in dark environments. Therefore, we chose to redesigned
our tactile vocabulary for aid the navigation in an underground mine which is one of our
target applications. We performed user experiments in a virtual representation of a mine
and the redesigned vocabulary provided satisfactory results. The experiment was made
with some previous participants as with some Mining Engineering students. Even with
no previous experience, the users presented a good performance in the task.

In this chapter we present the redesign process of our tactile language and results of a
new user experiment.

6.1 Tactile Vocabulary Redesign

We redesigned our tactile language observing the four-step method proposed by Chan
(2008). As presented in Chapter 2, the Chan’s methodology is user-centered and its main
advantage is the progressive refining of the tactile icons and the concern about the effects
of workload. The icon prototyping is the first step in the Chan’s methodology and it was
presented in Chapter 5. The five-step methodology of Riddle and Chapman (2012) was
used to design the tactile icons. Hereinafter we present the other two steps of the Chan’s
methodology: the perceptual refining of our set of stimuli and the validation of our icon
set based on the results from the navigation task. The last step is related to the user study
that will be presented in sections 6.2 e 6.3.

6.1.1 Perceptual Analysis

In Chapter 5 we presented a test in which ten selected patterns were displayed through
the tactile belt and the participants were asked to inform their given meaning. The same
sequence of messages was displayed for all participants, but the vocabulary was different
for three distinct groups of participants. From the results of this test we obtained three



66

confusion matrixes that were used as input for a factorial analysis (see Figure 6.1). The
analysis reveals groups of correlated icons concerning its meaning. As highlighted in
Figure 6.1, the icons used to convey information about Course, Destination and Itinerary
were grouped together.

Figure 6.1 - Factorial analysis of the created vocabularies. Factors are related to the
interpretation of the tactile signals. The signals used for convey information about Course,
Destination and Itinerary were grouped together and are highlighted on the graph

Source: Compiled by author.

We discussed in Section 5.4 that many users had difficulty assimilating the differ-
ences between the terms Course, Destination and Itinerary in any of the three vocabularies
tested. Those three messages conveyed very different informations, but all of them were
used to help the user to plan its route or follow a predefined route to the destination. To
simplify the Final Vocabulary we chose to maintain only one of those three messages to
aid the users to reach their destination. The Destination pattern allows the navigator to
ascertain a position and then plan and follow any route until there. However, the itinerary
guides the navigator through a specific route (e.g., the shortest or the safest one), like a
GPS navigator. Instead of leaving for the user the task of planning the route, we chose
to convey information about Itinerary. Thus, the final tactile vocabulary was designed to
display only informations about Obstacles, Itinerary and Warning (see Figure 6.2).

6.1.2 Analysis of Performance in Navigation

For Chan (2008), when designing haptic icons, it is necessary to look at least four
variables: easiness of association of stimulus with target meaning, individual stimulus
salience, discernibility of items in the set, and maintenance of desired salience level un-
der cognitive workload. Those were our focus when we redesigned our tactile language.
Initially, we have applied metaphors to the design of our patterns in order to facilitate
the stimulus association with its meaning. We also removed those messages who caused
more confusion due the design of its icons and the similarity of its meanings to ensure
the discernibility of the messages in the set. Finally, to complete the choice of the pat-
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Figure 6.2 - Message set hierarchy

Source: Compiled by author.

terns that will compose the Final Vocabulary, we considered the user’s performance in the
navigation task.

Users declared they had felt that the patterns in sequence were the most difficult to un-
derstand during the navigation for all three vocabularies (see Figure 5.16). Most of those
patterns were well perceived in the perceptual test. However, the tactile icons designed as
sequences were avoided in the final vocabulary. We removed the tactile icons that were
displayed as sequences and used the remaining tactons to do a new factor analysis.

This time we wanted to guarantee the individual stimulus salience. Therefore, we
performed another factorial analysis. This time the factors are related to the construction
of the patterns. Figure 6.3 shows the result of the analysis. The icons were clustered
in three groups, one of them with the icons that convey information about Obstacles. A
second group were made by the icons of Course and the remaining icons were grouped
in a third set; this one is composed mostly by icons that use the rear motor positioned on
the spine. We chose the icons that were positioned more distant from each other on the
graph.

Figure 6.3 - Factorial analysis of the remaining icons. Tactile icons displayed as sequences
were excluded of the analysis due its performance on navigation task

Source: Compiled by author.
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6.1.3 Final Vocabulary

First, the patterns were chosen according to the results of the interpretation task and
the difficulty to process the signal in navigation. Then, we complete the design of the
vocabulary matching the icons and the message set according the meaning we wanted
to convey. Figure 6.4 shows the Final Vocabulary with the selected patterns. The spine
is used as a reference point which helps to correctly identify the position of a vibration
around it. The rear motor was used as a prefix for Itinerary messages to guarantee a good
perception of its signal. No ambiguity was found in the vocabulary.

Figure 6.4 - Redesigned vocabulary

Source: Compiled by author.

We demonstrated in Chapter 4 that a person in a completely dark environment could
move to an unknown position without colliding just by using the information about Desti-
nation and Obstacle. In this tactile vocabulary we kept the information about Obstacle but
the information about Destination and Course was replaced by Itinerary. We display four
distinct messages for itinerary indicating that the navigator must go forward, backward,
to the left or to the right in order to avoid the most dangerous galleries inside the mine.
We also convey information about Warning to alert the user that a bad route was taken
and it is necessary to return to the predefined route. During the navigation in the mine,
the patterns are displayed according to the state-transition diagram shown in Figure 6.5.

Figure 6.5 - The state machine shows how the stimuli are exhibited during the navigation

Source: Compiled by author.
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6.2 Evaluation

Navigation in underground mines was the application we chose to test the redesigned
vocabulary. Underground mines have large areas that are not enlightened and many times
the miners count only with the light from their mining helmet. Due the use of explosives,
underground slips and the mineral exploration, the mine galleries can contain smoke and
powder fumes that can difficult the vision. In the underground environment the noise is
also frequent. Therefore, the tactile feedback seems to be suitable to aid the mine workers
in their tasks. To test this, we designed a virtual representation of a mine and simulated a
risk situation wherein the user should navigate in the mine to reach a rescue chamber.

We hypothesize that the users would get better performances as the redesigned vocab-
ulary was made after a perceptual selection of the tactile icons. This vocabulary also has
a smaller message set which can simplify its memorization. We invited some of the users
that have volunteered for the previous experiments. Therefore, the evaluation could show
the differences between user with previous experience with the tactile display. Some
Mine Engineering undergraduate students also were invited to perform the experiment.
Hereinafter we describe how the experiment was planned and executed.

6.2.1 Experimental Setup

First, we measured the user’s torso and then we placed the motors at equidistant po-
sitions. After filling a pre-test characterization form, each participant was invited to wear
the tactile belt and use the tutorial app. The belt was placed about 3cm above the navel of
the participant, at the waist level. The tutorial is a GUI with a step-by-step visual descrip-
tion of the vibrotactile language. It also explains the experiment task and demonstrates
how the belt works interactively.

Then, the participant should answer an interactive questionnaire. Eight selected pat-
terns were displayed through the belt and the participants were asked to inform the mean-
ing of the pattern. They should answer if the Tacton represented an obstacle, a warning
or an itinerary and then mark its direction. Each tacton was printed during 11 seconds.
The same sequence of messages was displayed for all participants. If the user marks the
wrong answer the questionnaire shows the right answer (see Figure 6.6). Thus, the user
could practice the vocabulary.

Figure 6.6 - Screen for practice the tactile vocabulary

Source: Compiled by author.

Finally, each user navigated through a virtual 3D representation of an underground
mine. A practice trial was available, so the user could try the task and get familiarized
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with the elements of the scenario and the tactile cues. After the practice trial, the user
had to perform three different routes in the mine. In Figure 6.8 we highlighted the three
predefined routes in the virtual mine. There were rocks along the path and fumes that
aggravated as the user was approaching the rescue chamber (see Figure 6.7). In the second
trial the belt did not display the tactile cues. At the end of the navigation task they filled
an evaluation form to give their opinions on the tactile vocabulary.

Figure 6.7 - Navigation task: there were rocks along the path and fumes that aggravated
as the user was approaching the rescue chamber

Source: Compiled by author.

Figure 6.8 - Predefined routes in the virtual 3D representation of an underground mine.
The distance between the beginning and the end of the route is the same for all scenarios

Source: Compiled by author.

6.3 Discussion and Results

Fifteen users have volunteered to participate in the tests; fourteen were male. The
participants have a mean age of 25 years old, covering an age range of 23 - 37 years.
Fourteen were students; four of them are Mining Engineering students and ten are Com-
puter Science students. Two users had participated in the test of the hand-based display,
seven users had participated in the previous test of the belt and the remaining users had
no previous experience with tactile interfaces. Seven users have some degree of myopia
or keratoconus.

The volunteers reported in the pre-test questionnaire about their experience with games
and their practice with joypads in the past six months. The majority of people have some
practice in games and half of the volunteers plays more than occasionally. However,
they hardly ever play with joypads (see Figure 6.9). We also asked the users about their
experience with 3D games and movies; fourteen users reported they had a satisfactory
experience with the 3D technology. This is an important question since we performed the
navigation task in a stereo large backprojection of the underground mine.
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Figure 6.9 - Participants background experience. Left: Participants experience with 3D
games. The responses are based on the past six months before the experiment. Right:
Participants experience with joypads. Some users reported to play 3D games frequently,
but use keyboard and mouse instead of a joypad

Source: Compiled by author.

6.3.1 Vocabulary Practice

The GUI used to practice the vocabulary had the only purpose of training. However,
the performance of the users reveals an improvement in the perception and interpretation
of the redesigned vocabulary. A few errors were made due a misunderstanding of the
perceived position or even due the limited time reserved for this task. The results can be
seen in the confusion matrix presented in Table 6.1.

Table 6.1 - Final Vocabulary Interpretation Confusion Matrix, N = 3
Information Response (%)

“Itinerary” “Obstacle” “Warning” “Don’t get it” “ ”
Itinerary 91.11 4.44 0.00 0.00 4.44
Obstacle 2.22 91.11 2.22 2.22 2.22
Warning 0.00 3.33 96.66 0.00 0.00

Source:

Compiled by author.

6.3.2 Navigation Task

Each user navigated through three predefined routes. The participants took a mean of
6 minutes and 41 seconds to complete the whole task. Three users were removed for the
analysis. One of them felt dizzy and were not able to complete the task. Another one lost
his way and spend fourteen minutes in the first trial.

Figure 6.10 shows the mean time of each trial. The users took a mean of 2:35min (σ
= 1:43min) to complete the first trial, 2:06min (σ = 0:46min) to complete the second one
and 1:57min (σ = 0:41min) to complete the third trial. There was a significant reduction in
time despite the paths have similar length; one-way ANOVA showed that the difference in
time across the trials was significant (F(3.28)=3.65, p<0.036) as well as the time between
the first trial and the last one (F(4.30)=5.11, p<0.033). However, the difference between
the times of trials where the belt displayed the tactile stimuli and the trial where the belt
were disabled has no significance (F(4.13)=0.67, p<0.41); we could improve this analysis
if the users had performed other trials without the belt feedback. Also the number of
collisions were not so different between the trials (see Figure 6.10).

The previous experience did not seem to affect user performance. The previous knowl-
edge of the Mining Engineering students also do not affect their performance in the task.
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Figure 6.10 - User performance in underground navigation. Left: Mean time to complete
the navigation task in each trial. Right: Number of collisions in each trial

Source: Compiled by author.

Even those who spent more time in the practice trial were not so different in the nav-
igation. Some users improved their performance along the task doing it better in each
consecutive trial; other users performed a little worse the second trial were the belt was
disabled (see Figure 6.11). In fact, the small population of this experiment restrain us to
find significant relations between the variables. Although, the feedback of the users were
very important and satisfactory. They show that the redesign improved the usability of the
tactile vocabulary indeed.

Figure 6.11 - Individual time to complete the navigation task in each trial. Each line
represents an user

Source: Compiled by author.

During the navigation task we also collected heart rate data from the users. They used
a Speedo Heart Rate Monitor and the data was collected with a Polar Heart Rate Monitor
Interface (SEN − 08661). Figure 6.12 shows three charts with the heart rate measured
from each user and for each trial. Each trial of the navigation task was also split in five
zones according the intensity of the fumes along the path. Thus, the Zone I concerns a
region without any fume while in the Zone V the fume is intense and obstructs the view
of the obstacles.

The average HR increases between trials for all users. As the users performed the nav-
igation in a standing position, the variation of their heart rate can be associated to fatigue
or anxiety. For some users, the variation of the heart rate was greater in the beginning
and for most of them the last zone was where the rhythm of their hearts became more
irregular. For all users, the moments when they leave the predefined route and face an
obstructed gallery were the most arrhythmic. Figure 6.13 shows an example. The fact
that the user presents physical symptoms when gets lost or involved by the fumes can also
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Figure 6.12 - Heart rate chart for each trial of the navigation task. Each zone corresponds
to the level of fume along the path

Source: Compiled by author.

be related to the immersion in the virtual environment. All users marked high values in a
scale about their sense of presence in the virtual underground mine. The hypothesis about
the causes of the heart rate variation during the navigation task can be better analyzed in
future works.

Figure 6.13 - Orthogonal top view of the underground mine: the white line is a route
made by a user; the zones wherein the user navigated through the right path are high-
lighted in green and the zones in which the user left the predefined route and faced an
obstructed gallery are highlighted in red (Zones III and V). The charts in the figure shows
the arrhythmia registered in the red zones. This behavior was also perceived for the other
users

Source: Compiled by author.
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In the last form, users who had performed previous experiments with the tactile belt
reported they enjoyed this version more. They said that the redesigned vocabulary was
easier to learn and to perceive during the navigation. Some negative points were high-
lighted about the prototype of the belt. Due to its materials and construction, the belt
could get a little loose causing the user to miss the vibration of the rear motor sometimes.
Through the observation of the experiment and the user comments in the final form, we
noticed that our tactile language for navigation has improved usability. What could im-
prove the tactile interaction now is the improvement of the tactile belt.

6.4 Summary

In this last iteration we performed a perceptual adjustment of our tactile language
and implemented it for the navigation in a virtual underground mine. We have followed
the method presented by Chan (2008), but instead of testing the perception of the tactile
icons under the influence of arbitrary visual and auditory distractors as he did, we tested
its perception during navigation. Its method allowed us to improve significatively the
usability of our tactile vocabulary. In a real emergency situation, the life of the mine
worker relies on the right perception of the tactile icons delivered by the tactile display.
Therefore, the usability of the haptic interface is crucial. After performing an experiment
using the redesigned vocabulary for navigation in an underground mine, we noted that the
next step to improve the user experience with our tactile interface is to improve the tactile
belt.
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7 CONCLUSION

Prefixation for vibrotactile languages is not a novel approach. Even without using the
term “prefix”, its possible to find it in the methods for syntax development proposed by
Brewster and Brown (2004). It is also used for construction of tactile messages in the
Terne’s (2008) research about the use and effects of rhythm. Nevertheless, we chose to
study the prefixation as a way to increase the expressiveness of a tactile language and we
proposed a novel approach for vibrotactile prefixation. This approach was studied in an
iterative and incremental process and presented as cycles of design-analysis-redesign of
tactile vocabularies for navigation in virtual environments. The result of this study is a
compendium that contains a large review of the research on vibrotactile communication
and the analysis of different tactile vocabularies and displays for navigation. More than
eighty people have participated of the user experiments. We prototyped tactile displays
for different body sites covering glabrous skin (hand) and hairy skin (waist). We also
addressed the effects of multisensory stimuli and sensory substitution in our experiments
through the navigation on completely dark scenarios and enlightened ones. And finally,
we have formalized the concept of Modifier Tactile Pattern for vibrotactile displays.

The prototyping of haptic devices is the focus of many other works. However, we
chose to focus on an experimental-guided study to explore the potential of vibrotactile
languages. Our results can contribute to the construction of other haptic interfaces for
navigation but there is a lot of work to do on the study about the effects of workload and
multisensory stimulation. We expect that our vibrotactile language can be applied with
few adjustments to several other applications, such as gaming, robot-teleoperation sys-
tems, pedestrian orientation and so on. We have designed and tested a dozen families of
tactile icons; those results can shorten the way to the development of a common grammar
for tactile navigation. With the ascension of wearable devices with small contact surfaces,
such as Google Glasses, the use of prefixes and modifiers can increase the capability of
Tacton construction.

As future work, the tactile belt could be improved to be more comfortable and usable.
Rosenthal (2011) presents a checklist with design requirements for vibrotactile belts that
comprises three dimensions: usability, functionality and performance. Following these
metrics can greatly improve the user experience on navigation. Navigation in physical
environments can also be tested; the physical environment has elements that cannot be
simulated in virtual environments. Our vocabulary can be used for this kind of navi-
gation, but the perception during the locomotion may have several differences from our
results. Different ambient conditions and context should be assessed too. For instance,
the vibration of the vehicles and tools in an underground mine can difficult the perception
of the tactile cues. The application needs to be validated in the real context. Different
user profiles also can be assessed; most previous studies focus on a specific profile, as
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blind people. A same application can be made for both profiles and then the differences
between the user’s perception can be highlighted. The construction of frameworks rather
than pipelines for tactile interaction design would be a great advance. The designer could
be helped by heuristics and the use of tested predefined tactile vocabularies. The results
presented in this thesis cooperate for the construction of those frameworks and better
methodologies for design of tactile interfaces.
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APPENDIX A FORM USED TO TEST PERCEPTION OF
THE INITIAL VOCABULARY

Figure A.1 - Form used to evaluate the tactile display and the perception of the tactile
cues in the First Vocabulary

Source: Compiled by author.
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APPENDIX B FORM USED TO TEST INTERPRETATION
OF THE INITIAL VOCABULARY

Figure B.1 - Form used to evaluate the interpretation of the tactile icons in the First Vo-
cabulary

Source: Compiled by author.
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APPENDIX C PROJETANDO VOCABULÁRIOS TÁTEIS
PARA INTERAÇÃO HUMANO-COMPUTADOR

Resumo da Dissertação em Português

O desenvolvimento de componentes de software e hardware cuja interação é fun-
damentada nas percepções visual e auditiva é sobremodo comum. Não obstante, outro
método de interação que vem se popularizando, principalmente através do uso de apa-
relhos celulares, é aquele cuja comunicação com o usuário se dá por via tátil. O tato
é outro meio pelo qual adquirimos diversas informações sobre o ambiente ao nosso re-
dor e há pesquisas que o apontam como um canal de comunicação tão eficiente quanto
a visão e a audição (CONWAY, 2001). O tato pode ser dividido basicamente entre dois
outros subsentidos: o cinestésico e o cutâneo. Enquanto que o sentido cinestésico (ou
proprioceptivo) procede de receptores musculares e articulares, o estímulo cutâneo por
outro lado é percebido via mecanorreceptores presentes nas diferentes camadas da pele.
Esses receptores permitem a percepção de diferentes tipos de estímulo, como temperatura,
pressão, dor e vibração em frequências variadas (LINDEMAN et al., 2006). Nesse âmbito
encontram-se as tecnologias de simulação e controle de sensações táteis e as destinadas a
comunicação tátil.

No tocante à comunicação tátil, busca-se construir mecanismos que deem suporte à in-
formação de significados complexos, imagens, informações espaciais e alertas, bem como
expressões e signos arbitrários via estímulo cutâneo. O maior desafio dessa área foi bem
descrito por Sherrick como a busca por um conjunto de padrões que, assim como a es-
crita e a fala, possam ser claramente discriminados, rapidamente processados e facilmente
aprendidos (SHERRICK, 1991). A construção de interfaces que se utilizam da comuni-
cação tátil envolve diversas variáveis como área estimulada, tipo de atuadores usados para
produzir o estímulo, relação entre parâmetros de hardware e seu significado em um padrão
tátil, duração do estímulo e entre estímulos, entre outras. As diferentes combinações dos
fatores supracitados produzem vocabulários táteis com diferentes qualidades afetando seu
aprendizado, memorização e interpretação.

Grande parte dos dispositivos que aplicam estímulo cutâneo na interação utilizam-
se de padrões icásticos, seguindo uma abordagem conhecida como "tap-on-shoulders"
(HAO; SONG, 2010). Tal abordagem pode ser exemplificada por uma sensação tátil im-
pressa no lado do corpo do usuário que está voltado para um determinado objeto. O
conjunto de padrões táteis nessa abordagem é limitado e pouco expressivo fornecendo
uma quantidade pequena de informações ao usuário. Existem pesquisas empenhadas em
explorar o potencial de expressividade de diferentes elementos que compõem o estímulo
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tátil. Inspirado na estrutura de linguagens naturais, o uso de parâmetros de hardware foi
explorado como building blocks de linguagens táteis e comparados a fonemas por En-
riquez (2006). Como projeto de mestrado, nós exploramos os menores elementos dota-
dos de significado de um padrão tátil, seguindo uma definição similar à de morfemas da
língua portuguesa. Muitas outras comparações podem ser feitas explorando o efeito de
diferentes elementos na percepção, interpretação e aprendizado de padrões táteis, bem
como seu efeito para a usabilidade de interfaces hápticas.

Esse trabalho apresenta nosso estudo sobre comunicação tátil e sua aplicação no su-
porte à navegação em ambientes virtuais. Partindo da ideia de que uma linguagem tátil
mais expressiva serviria melhor para dar suporte à realização de uma dada tarefa, logo
começamos a esboçar o conceito de Padrão Tátil Modificador estudando a prefixação
em sequências vibrotáteis. Demos início a pesquisa experimentando diferentes protóti-
pos de displays táteis, passando por uma versão para a palma da mão até chegar a uma
versão em formato de cinto. No entanto, nossa preocupação concentrou-se menos na
prototipagem do display e do ambiente virtual do que nas características da linguagem
tátil. Nossa linguagem tátil para navegação foi desenvolvida em um processo iterativo de
design-análise-redesign. O conceito de proposto de Padrão Tátil Modificador e o desen-
volvimento da linguagem tátil serão resumidos a seguir.

C.1 Proposta de uma Abordagem de Prefixação para Linguagens
Táteis

Existem diversas possibilidades de construção de padrões e sequências táteis, cada
uma no entanto com suas vantagens e desvantagens em termos de percepção e interpre-
tação. Em displays vibrotáteis, mensagens podem ser construídas por meio da modulação
de parâmetros de hardware, como frequência e amplitude, e pelo ajuste do tempo e da
ordem de ativação dos motores. Uma outra abordagem de construção é a utilização de
métodos de prefixação, como na linguagem Braille. Braille é escrito com seis ou mais
pontos em relevo dispostos em duas colunas e três linhas. A combinação desses pontos
permite a construção de até 63 (sessenta e três) símbolos, o que não é suficiente para
traduzir uma língua escrita. Nesse caso, a capacidade de construção gráfica é incremen-
tada pela concatenação de símbolos. Em Braille, alguns símbolos simples são reservados
para que sejam usados como prefixos.

Em Braille, um ou mais prefixos podem ser construídos pela combinação de um
mesmo símbolo básico. Logo, é possível reutilizar símbolos para transmitir informações
diferentes. Alguns prefixos também possuem o papel de modificadores. Como modifi-
cador eles afetam o significado de uma sequência inteira ou mesmo de diversas sequên-
cias de símbolos. Enquanto o prefixo é preso a uma única palavra e ganhe um significado
completo apenas quando encontra-se ligado a um símbolo simples, modificadores por
sua vez afetam o significado de diversos símbolos ao mesmo tempo. Nós exploramos tal
abordagem na construção do vocabulário tátil para o display da mão. A abordagem de
prefixação foi testada e o conceito de Padrão Tátil Modificador foi apresentado como um
padrão tátil que modifica a interpretação dos elementos que compõem um tacton ou toda
uma sequência tátil.

O Padrão Tátil Modificador atua como uma flag. Quando ativado o usuário estará
recebendo a mensagem de que parâmetros deverão ser entendidos de modo diferente. O
Modificador pode ser composto por mais de um padrão e pode ser concebido com a função
de alterar o significado do próximo tacton ou de uma sequência inteira. Neste último caso,
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a influência do Modificador sobre a sequência dura enquanto o Padrão Modificador es-
tiver ativo ou até que um dado padrão apareça. Logo, como um par de parênteses, um
outro padrão pode ser usado para interromper o efeito do Modificador na série. Além de
conceitualizar o termo de acordo seu uso em linguagens vibrotáteis, nós também exem-
plificamos sua construção. Para isso, usamos como exemplo três abordagens comuns de
desenvolvimento sintático de tactons apresentadas por Brewster e Brown (2004) e demon-
stramos como usá-las para a construção de tactons e mensagens táteis com Modificadores.

C.2 Design e Análise de Vocabulários para Navegação Tátil

C.2.1 Vocabulário Inicial

A palma da mão foi escolhida devido sua sensibilidade. O display para a mão foi
utilizado em testes com usuários e serviu como base para o restante da pesquisa. Esse
display foi criado com a finalidade de explorar formas de construção de linguagens táteis
e sua expressividade. Para testes com usuários foi escolhida a tarefa de locomoção em
ambiente virtual. Produzimos então uma linguagem tátil para comunicar a existência de
obstáculos no meio do percurso e a direção do destino.

Usando a Rosa dos ventos como metáfora para orientação, oito motores foram posi-
cionados de acordo os pontos cardeais e colaterais. A vibração desses motores caracte-
riza a existência e direção de uma dada entidade. Para diferenciar as entidades poderiam
ser adotadas abordagens comuns na literatura, como o uso de diferentes frequências ou
mesmo de diferentes padrões para cada entidade. No entanto, escolhemos diferenciar as
entidades pela utilização de um sinal modificador.

Como nosso conjunto de mensagens continha duas entidades distintas, escolhemos
ativar então um sinal modificador para marcar a impressão de uma dessas entidades.
Nossa hipótese foi a de que esta abordagem facilitaria a compreensão da linguagem.
Um motor central foi utilizado para imprimir o padrão modificador e o display passou
a ser constituído por nove motores dispostos em uma matriz 3X3 (ver Figura C.1 (a)). O
vocabulário resultante pode ser visto na Figura C.1 (b).

Figure C.1 - (a) Display tátil para palma da mão. Ao lado, (b) exemplos de padrões
exibidos pelo display

Fonte: Próprio autor.

Os testes realizados com usuários nos forneceram subsídios para esboçar o conceito de
Padrão Tátil Modificador. Tal conceito foi aplicado na concepção de novos vocabulários
e testado em experimentos com usuários. Sua conceitualização formal tem sido uma
importante contribuição da nossa pesquisa.
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C.2.2 Aperfeiçoamento da Linguagem Tátil

Numa segunda etapa, construímos um display em formato de cinto (ver Figura C.2).
Assim como o display para a mão, o cinto foi construído dispondo oito motores de acordo
os pontos cardeais e colaterais da Rosa dos ventos. A mesma metáfora foi aplicada a
sua construção pois o cinto também foi criado para navegação. A escolha do formato
como um cinto se deve à referência do tronco na locomoção (ego localização), sendo o
torso o local mais apropriado para receber o estímulo tátil dada a tarefa. A quantidade de
motores foi escolhida com base na literatura que compara a utilização de displays táteis
construídos com diferentes quantidades de atuadores dispostos ao redor do torso.

Figure C.2 - (a) Display tátil em formato de cinto. À direita, (b) indivíduo realizando
tarefa de navegação usando o cinto

Fonte: Próprio autor.

O cinto também permite que os membros fiquem livres para a realização de outras
tarefas, manipulação de objetos e mesmo locomoção. Logo, o cinto pode ser utilizado
tanto em ambiente virtual como em ambiente físico. Para teste com usuários em ambiente
virtual, foram construídos três vocabulários táteis (ver Figura C.3). Um vocabulário foi
concebido a partir de uma abordagem convencional, enquanto que o segundo foi cons-
truído seguindo uma estratégia prefixação adotando o uso de padrões modificadores. Um
último vocabulário foi construído a fim de identificar questões relacionadas ao uso de
Modificadores em sequências táteis e em padrões únicos. Tal comparação nos permitiu
identificar questões relacionadas a ambas estratégias e à utilização de ambos os vocabu-
lários na execução da tarefa de navegação.

Desta vez o conjunto de mensagens foi ampliado transmitindo informações sobre Iti-
nerário, Fluxo e Alerta, além de Obstáculo e Destino como no teste da mão. A construção
de ambos os vocabulários seguiram uma mesma metodologia, aplicando metáforas e as
características dos parâmetros de construção dos padrões de acordo o conjunto de men-
sagens definido. Enquanto que na linguagem convencional as entidades foram diferen-
ciadas por posição relativa dos atuadores, frequência de ativação e sequência (forma de
onda), nas linguagens baseadas em Modificadores as entidades foram diferenciadas por
padrões de prefixação. Ao realizar testes com usuários foram obtidos resultados próxi-
mos entre os três grupos de usuários que utilizaram cada um dos vocabulários, mas com
os grupos que utilizaram vocabulários prefixados apresentaram um desempenho melhor.

A Figura C.3 mostra como os vocabulários foram construídos. Os sinais para obstácu-
los foram os mesmos nos três vocabulários e o mesmo padrão para destino no Segundo
Vocabulário foi usado como itinerário no Terceiro Vocabulário. Desse modo, onze con-
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juntos de estímulo foram testados.

Figure C.3 - Exemplo de tactons em cada vocabulário

Fonte: Próprio autor.

C.2.3 Redesign do Vocabulário

Na última iteração o vocabulário foi melhorado considerando os resultados dos testes
anteriores. Foram feitos ajustes perceptuais considerando tarefas de interpretação dos
padrões táteis e do desempenho dos usuários durante a navegação. Este último vocabu-
lário foi testado em uma tarefa de navegação em mina subterrânea, pois esta é uma das
aplicações alvo de nossa interface tátil. Novos experimentos com usuários envolveram a
participação de pessoas que se voluntariaram anteriormente para o teste do display para
mãos e outros que participaram do teste do cinto. Também participaram deste experi-
mento alunos do curso de Engenharia de Minas. A tarefa de navegação foi feita uti-
lizando o cinto tátil e o ambiente virtual foi projetado em um grande monitor 3D (ver
Figura C.4(a)).

Figure C.4 - Navegação em mina subterrânea. A Figura (a) mostra um voluntário reali-
zando a tarefa de navegação. (b) mostra a representação da mina virtual

Fonte: Próprio autor.

A tarefa de navegação envolveu uma situação de emergência em que o usuário preci-
saria trilhar uma trajetória predefinida até uma câmara de segurança dentro da mina. Ao
longo do caminho o usuário precisaria evitar colisões com entulhos e caminhos perigosos
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(ver Figura C.4(b)); essas informações eram passadas para ele através do cinto. A medida
que o usuário avançava em direção à câmara de segurança uma fumaça crescia atrapa-
lhando sua visão do caminho. Os usuários tiveram um desempenho muito melhor neste
último experimento. Os resultados mostraram que a percepção dos padrões melhorou.
Novas melhorias agora estariam relacionadas ao cinto e não mais ao vocabulário tátil.

C.3 Conclusão

A abordagem de prefixação foi escolhida como estratégia para melhorar a expressivi-
dade de nossos vocabulários táteis. Nós estudamos o uso de prefixos em comunicação
tátil e propomos o conceito de Padrão Tátil Modificador para linguagens vibrotáteis. Essa
abordagem foi explorada em diversos testes com usuários. O resultado de nossa pesquisa
é um compêndio contendo uma larga revisão sobre a área de comunicação vibrotátil e
a análise de diferentes vocabulários e displays táteis para navegação. Mais de oitenta
pessoas participaram de nossos experimentos. Diferentes protótipos foram criados para
renderizar o estímulo tátil em diferentes partes do corpo. Nossos experimentos cobriram
fatores relacionados à substituição sensorial e à estimulação multisensorial; voluntários
realizaram a tarefa de navegação em ambientes completamente escuros e também em
cenários iluminados onde deveriam utilizar visão e tato. E finalmente, formalizamos o
conceito de Padrão Tátil Modificador para displays vibrotáteis. Essa conceitualização é
uma das principais contribuições deste trabalho.


