Mostrar registro simples

dc.contributor.authorArenzon, Jeferson Jacobpt_BR
dc.contributor.authorAlmeida, Rita Maria Cunha dept_BR
dc.date.accessioned2014-08-19T02:10:10Zpt_BR
dc.date.issued1993pt_BR
dc.identifier.issn1063-651Xpt_BR
dc.identifier.urihttp://hdl.handle.net/10183/101306pt_BR
dc.description.abstractWe present results for two difFerent kinds of high-order connections between neurons acting as corrections to the Hopfield model. Equilibrium properties are analyzed using the replica mean-field theory and compared with numerical simulations. An optimal learning algorithm for fourth-order connections is given that improves the storage capacity without increasing the weight of the higherorder term. While the behavior of one of the models qualitatively resembles the original Hopfield one, the other presents a new and very rich behavior: depending on the strength of the fourth-order connections and the temperature, the system presents two distinct retrieval regions separated by a gap, as well as several phase transitions. Also, the spin-glass states seems to disappear above a certain value of the load parameter α, αg.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical Review. E, Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics. New York. Vol. 48, no. 5 (Nov. 1993), p. 4060-4069pt_BR
dc.rightsOpen Accessen
dc.subjectFísica da matéria condensadapt_BR
dc.subjectRedes neuraispt_BR
dc.subjectBiofísicapt_BR
dc.subjectModelos de cerebropt_BR
dc.titleNeural networks with high-order connectionspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000056962pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples