Repositório Digital

A- A A+

Modeling velocity in gradient flows with coupled-map lattices with advection

.

Modeling velocity in gradient flows with coupled-map lattices with advection

Mostrar registro completo

Estatísticas

Título Modeling velocity in gradient flows with coupled-map lattices with advection
Autor Lind, Pedro Gonçalves
Corte-Real, João Alexandre Medina
Gallas, Jason Alfredo Carlson
Abstract We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have velocities obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies linearly with advection, while for weak diffusion a power law is found with a characteristic exponent proportional to the diffusion.
Contido em Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 66, no. 1 (July 2002), 016219, 6 p.
Assunto Dinâmica de fluidos computacional
Sistemas dinâmicos não-lineares
Teoria de redes
Velocidade
Origem Estrangeiro
Tipo Artigo de periódico
URI http://hdl.handle.net/10183/101355
Arquivos Descrição Formato
000325957.pdf (140.0Kb) Texto completo (inglês) Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.