Mostrar registro simples

dc.contributor.authorPakter, Renatopt_BR
dc.contributor.authorMarcos, Brunopt_BR
dc.contributor.authorLevin, Yanpt_BR
dc.date.accessioned2014-08-19T02:10:42Zpt_BR
dc.date.issued2013pt_BR
dc.identifier.issn0031-9007pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/101387pt_BR
dc.description.abstractSystems with long-range interactions, such as self-gravitating clusters and magnetically confined plasmas, do not relax to the usual Boltzmann-Gibbs thermodynamic equilibrium, but become trapped in quasistationary states (QSS) the lifetime of which diverges with the number of particles. The QSS are characterized by the lack of ergodicity which can result in a symmetry broken QSS starting from a spherically symmetric particle distribution. We will present a theory which allows us to quantitatively predict the instability threshold for spontaneous symmetry breaking for a class of d-dimensional self-gravitating systems.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review letters. Melville. Vol. 111, no. 23 (Dec. 2013), 230603, 5 p.pt_BR
dc.rightsOpen Accessen
dc.subjectQuebra espontanea de simetriaspt_BR
dc.subjectEnergia livrept_BR
dc.subjectGravitacaopt_BR
dc.subjectEquação de Boltzmannpt_BR
dc.titleSymmetry breaking in d-dimensional self-gravitating systemspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000917527pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples