Repositório Digital

A- A A+

Pattern reconstruction and sequence processing in feed-forward layered neural networks near saturation

.

Pattern reconstruction and sequence processing in feed-forward layered neural networks near saturation

Mostrar registro completo

Estatísticas

Título Pattern reconstruction and sequence processing in feed-forward layered neural networks near saturation
Autor Metz, Fernando Lucas
Theumann, Walter Karl
Abstract The dynamics and the stationary states for the competition between pattern reconstruction and asymmetric sequence processing are studied here in an exactly solvable feed-forward layered neural network model of binary units and patterns near saturation. Earlier work by Coolen and Sherrington on a parallel dynamics far from saturation is extended here to account for finite stochastic noise due to a Hebbian and a sequential learning rule. Phase diagrams are obtained with stationary states and quasiperiodic nonstationary solutions. The relevant dependence of these diagrams and of the quasiperiodic solutions on the stochastic noise and on initial inputs for the overlaps is explicitly discussed.
Contido em Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 72, no. 2 (Aug. 2005), 021908, 9 p.
Assunto Diagramas de fase
Processos estocasticos
Ruído aleatório
Origem Estrangeiro
Tipo Artigo de periódico
URI http://hdl.handle.net/10183/101620
Arquivos Descrição Formato
000535711.pdf (123.9Kb) Texto completo (inglês) Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.