Repositório Digital

A- A A+

Modelagem mecânica e aproximação de Galerkin mínimos quadrados de escoamentos axissimétricos de fluídos pseudoplásticos sujeitos a efeitos de inércia

.

Modelagem mecânica e aproximação de Galerkin mínimos quadrados de escoamentos axissimétricos de fluídos pseudoplásticos sujeitos a efeitos de inércia

Mostrar registro completo

Estatísticas

Título Modelagem mecânica e aproximação de Galerkin mínimos quadrados de escoamentos axissimétricos de fluídos pseudoplásticos sujeitos a efeitos de inércia
Outro título Mechanical modeling and galerkin least-squares approximations for axisimmetric flows of pseudoplastic fluids subjected to inertiaeffects
Autor Martins, Renato da Rosa
Orientador Frey, Sérgio Luiz
Data 2006
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Assunto Elementos finitos
Fenomenos de transporte
Mecanica dos fluidos
Resumo Existe um grande interesse no entendimento de escoamentos de fluidos não-Newtonianos através de contrações abruptas. Este interesse se origina na importância destes escoamentos em processos poliméricos e no freqüente uso do escoamento com contração abrupta como um problema teste para validação de métodos numéricos. As duas propriedades reológicas mais freqüentemente apontadas e estudadas nos fluidos não-Newtonianos são: a viscosidade dependente da taxa de cisalhamento e a natureza viscoelástica destes fluidos. O caráter viscoelástico do fluido é descrito pelo número de Deborah. Na sua definição usual, o número de Deborah envolve as propriedades elásticas do fluido, isto é, o coeficiente primário de tensão normal ou tempo de relaxação terminal originado dos experimentos com tensões de relaxação. Para caracterizar a viscosidade pseudoplástica dos fluidos não-Newtonianos, utiliza-se a equação viscosidade de Carreau, a qual emprega uma viscosidade para baixas taxas de cisalhamento, um tempo característico igual ao recíproco da taxa de cisalhamento na qual se dá o início da pseudoplasticidade, e a inclinação da região power-law da viscosidade para altas taxas de cisalhamento. Ao número de Deborah, pode-se definir o número de Carreau de modo que ele possa ser utilizado para medir o efeito pseudoplástico nos escoamentos não-Newtonianos. A metodologia de elementos finitos utilizada, conhecida como método Galerkin Mínimos Quadrados (GLS), supera as dificuldades enfrentadas pelo método de Galerkin clássico em escoamentos sujeitos a altos números de Reynolds, a saber: a compatibilização dos subespaços de velocidade e pressão – satisfazendo deste modo a condição denominada de Babuška-Brezzi – e as oscilações espúrias devido a natureza assimétrica da aceleração convectiva da equação de momentum. O método GLS, adicionando termos malha-dependentes à formulação clássica de Galerkin, aumenta a formulação de Galerkin sem, contudo, prejudicar sua consistência. Esta dissertação objetiva a modelagem mecânica e simulação numérica via o método de Galerkin Mínimos-Quadrados, de escoamentos planares e axissimétricos de fluidos pseudoplásticos de Carreau através de contrações abruptas.
Abstract There is a great interest in understanding the flow of non-Newtonian fluids through sudden contractions. This interest arises from the importance of these flows in polymeric processes and in the frequent use of the flow with sudden contraction as a problem test for validation of numeric methods. The two most frequently mentioned and studied rheological properties of non-Newtonian fluids are the shear rate dependent viscosity and the viscoelastic nature of these fluids. The Deborah number describes the viscoelastic characteristic of the fluid. The Deborah number, in its basic definition, involves the elastic properties of the fluid, i.e., the primary coefficient of normal tension or time of terminal relaxation, originating experiments with relaxed tensions. The pseudoplastic viscosity of non-Newtonian fluids, usually the Carreau viscosity equation, is characterized by the employment of a low rate shear viscosity, a characteristic time - equal to the reciprocal of the shear rates in the beginning of the pseudoplasticity - and the slope of the power-law region of the viscosity for high shear rates. The Carreau number, with the Deborah number, can be used to measure the pseudoplastic effect in non-Newtonian flows. The finite elements method employed in this work, known as the Galerkin least-squares method (GLS), improve on the difficulties faced by the classic Galerkin method in flows subjected to high Reynolds numbers, i.e., the compatibility of sub-spaces of velocity and pressure (the Babuška-Brezzi condition) and the spurious oscillations due to the asymmetric nature of the convective acceleration of the momentum equation. The GLS method, adding mesh-dependents terms to the classic formulation of Galerkin, increases its stability without harm its consistency. This work has as main objective the mechanical modeling and numerical simulation, via the GLS method, of planar and axisymmetric flow of Carreau pseudoplastic fluids through an abrupt 4:1 contraction. In order to take into account the inertia and pseudoplastic effects, the Reynolds and Carreau numbers and power-law coefficient have been investigated within a range of 0<Re<100 and 0<Cu<100 and 0,2<n<1,0, respectively. All numerical results shown to be physically relevant and in accordance with the literature.
Tipo Dissertação
URI http://hdl.handle.net/10183/10330
Arquivos Descrição Formato
000595985.pdf (1.978Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.