Mostrar registro simples

dc.contributor.authorPakter, Renatopt_BR
dc.contributor.authorLevin, Yanpt_BR
dc.date.accessioned2014-09-23T02:12:52Zpt_BR
dc.date.issued2011pt_BR
dc.identifier.issn0031-9007pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/103668pt_BR
dc.description.abstractWe study a paradigmatic system with long-range interactions: the Hamiltonian mean-field (HMF) model. It is shown that in the thermodynamic limit this model does not relax to the usual equilibrium Maxwell-Boltzmann distribution. Instead, the final stationary state has a peculiar core-halo structure. In the thermodynamic limit, HMF is neither ergodic nor mixing. Nevertheless, we find that using dynamical properties of Hamiltonian systems it is possible to quantitatively predict both the spin distribution and the velocity distribution functions in the final stationary state, without any adjustable parameters. We also show that HMF undergoes a nonequilibrium first-order phase transition between paramagnetic and ferromagnetic states.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review letters. Melville. Vol. 106, no. 20 (May 2011), 200603, 4 p.pt_BR
dc.rightsOpen Accessen
dc.subjectMecânica estatísticapt_BR
dc.subjectTransformações de fasept_BR
dc.subjectTermodinâmica de não-equilíbriopt_BR
dc.subjectSistemas hamiltonianospt_BR
dc.titleCore-halo distribution in the Hamiltonian mean-field modelpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000794824pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples