Repositório Digital

A- A A+

Um Modelo de conhecimento baseado em eventos para aquisição e representação de seqüências temporais

.

Um Modelo de conhecimento baseado em eventos para aquisição e representação de seqüências temporais

Mostrar registro completo

Estatísticas

Título Um Modelo de conhecimento baseado em eventos para aquisição e representação de seqüências temporais
Outro título An event-based knowledge model to support acquisition and representation of temporal sequences
Autor Mastella, Laura Silveira
Orientador Abel, Mara
Co-orientador De Ros, Luiz Fernando
Data 2005
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação.
Assunto Aquisicao : Conhecimento
Engenharia : Conhecimento
Geoinformatica
Ontologias
[en] Knowledge acquisition
[en] Knowledge engineering
[en] Sedimentary petrography
[en] Time ontologies
Resumo Ontologias de representação de conhecimento são modelos que agrupam e definem construtos de modelagem (tais como conceito, classe, frame). Uma ontologia temporal é uma especificação de uma conceitualização do domínio acrescida dos aspectos de tempo sobre os objetos do domínio. No caso de esta ontologia tratar somente de aspectos temporais ligados a eventos, ela é chamada ontologia de eventos. Este trabalho propõe uma extensão de uma ontologia de representação de conhecimento (RC) com construtos temporais, ou seja, estender um modelo de conceitualização de domínios com os construtos necessários para se representar eventos. A definição original de uma ontologia de RC foi estendida neste trabalho com os seguintes construtos: (i) o construto evento (que define um evento como um acontecimento que pode alterar objetos do domínio) e (ii) o construto relação-temporal (que define uma relação de tempo entre os eventos). O objetivo deste trabalho é, baseando-se nos novos construtos propostos na ontologia de RC, criar um modelo de conhecimento específico para um domínio, o qual suporta a representação das seguintes primitivas: características do domínio, eventos geradores das características do domínio, associações entre características do domínio, relações temporais entre eventos. Além disso, o modelo tem o objetivo de suportar métodos de raciocínio para inferir a seqüência em que as características do domínio foram geradas pelos eventos, ou seja, inferir a ordem dos eventos. O domínio de aplicação deste trabalho é a petrografia sedimentar. Esse domínio apresenta diversas tarefas de interpretação que exigem conhecimento especializado para sua solução. Dentre estas tarefas, o foco de estudo deste trabalho é a interpretação de seqüência diagenética, a qual procura identificar a ordem em que os processos diagenéticos atuaram sobre os constituintes das rochas sedimentares. Para compreender e coletar o conhecimento necessário para a modelagem dessa tarefa, as principais técnicas de aquisição de conhecimento para sistemas baseados em conhecimento foram aplicadas em sessões com um especialista em petrografia sedimentar, gerando os principais objetos do domínio que precisavam ser modelados para se atingir o objetivo da ordenação de eventos. Esses objetos foram representados como um modelo de conhecimento específico para o domínio da petrografia, aplicando os construtos de eventos e relação temporal. Esse modelo foi validado através da implementação de um módulo de inferência no sistema PetroGrapher. A validação foi efetuada comparando as respostas do algoritmo com as interpretações do especialista, e foi possível notar que apesar de a apresentação gráfica da seqüência de eventos ainda ser diferente da original do especialista, o algoritmo efetua a ordenação de eventos corretamente.
Abstract O domínio de aplicação deste trabalho é a petrografia sedimentar. Esse domínio apresenta diversas tarefas de interpretação que exigem conhecimento especializado para sua solução. Dentre estas tarefas, o foco de estudo deste trabalho é a interpretação de seqüência diagenética, a qual procura identificar a ordem em que os processos diagenéticos atuaram sobre os constituintes das rochas sedimentares. Para compreender e coletar o conhecimento necessário para a modelagem dessa tarefa, as principais técnicas de aquisição de conhecimento para sistemas baseados em conhecimento foram aplicadas em sessões com um especialista em petrografia sedimentar, gerando os principais objetos do domínio que precisavam ser modelados para se atingir o objetivo da ordenação de eventos. Esses objetos foram representados como um modelo de conhecimento específico para o domínio da petrografia, aplicando os construtos de eventos e relação temporal. Esse modelo foi validado através da implementação de um módulo de inferência no sistema PetroGrapher. A validação foi efetuada comparando as respostas do algoritmo com as interpretações do especialista, e foi possível notar que apesar de a apresentação gráfica da seqüência de eventos ainda ser diferente da original do especialista, o algoritmo efetua a ordenação de eventos corretamente. The application domain of this work is the sedimentary petrography. This domain presents several interpretation tasks that demand specialized knowledge for their solution. Among these tasks, the focus of this work is the diagenetic sequence interpretation, which aims to identify the order in that diagenetic processes occurred over the constituents of sedimentary rocks. In order to understand and collect the necessary knowledge for modeling this task, the main techniques of knowledge acquisition for knowledge-based systems were applied to an expert in sedimentary petrography. These sessions of knowledge acquisition revealed the domain objects that needed to be modeled to reach the objective of the ordering of events. Those objects were represented in a knowledge model for the petrography domain, which applied the proposed constructs (events and time relation). That model was validated by the implementation of an inference module in the PetroGrapher system. The validation proceeded by comparing the outputs of the algorithm with the expert's interpretations, and it was possible to notice that despite the graphic presentation of the sequence of events being different from what the expert produces as a sequence of events, the algorithm is able to order the events correctly.
Tipo Dissertação
URI http://hdl.handle.net/10183/10656
Arquivos Descrição Formato
000473710.pdf (2.138Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.