Repositório Digital

A- A A+

Análise estatística bayesiana em processos com longa dependência

.

Análise estatística bayesiana em processos com longa dependência

Mostrar registro completo

Estatísticas

Título Análise estatística bayesiana em processos com longa dependência
Autor Dias Junior, Avelino Viana
Orientador Lopes, Silvia Regina Costa
Data 2010
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Assunto Algoritmos computacionais
Análise estatística
Estimadores : Estatística
Resumo A abordagem Bayesiana na inferência estatística tem sido muito utilizada como uma alternativa aos métodos clássicos. Neste trabalho, apresentamos uma abordagem Bayesiana para a estimação dos parâmetros dos modelos autoregressivos de médias móveis de ordens p e g, denotados por ARMA(p, q) e do modelo autoregressivo fracionariamente integrado de médias móveis, denotado por ARFIMA(p, d, q). Para o último modelo, a abordagem Bayesiana é realizada assumindo p = g = 0. Considerando o modelo AR(p), que é um caso particular do modelo ARMA(p, g) onde g = O, um estimador é proposto através da abordagem Bayesiana. A eficiência do estimador é verificada através de simulações de Monte Cario e os resultados são comparados com o método clássico da máxima verossimilhança. No caso do modelo ARFIMA(0, d, 0), um estudo teórico é realizado através de uma abordagem Bayesiana. Para estimar os parâmetros desse modelo, é utilizada a sua representação autoregressiva. Alguns algoritmos computacionais Bayesianos são apresentados nesse trabalho já que desempenham um papel importante na inferência Bayesiana. Alguns desses algoritmos, como o amostrador de Gibbs e o Metropolis-Hastings, foram utilizados na construção dos estimadores para os parâmetros dos modelos ARMA e ARFIMA.
Abstract The Bayesian approach in statistical inference has been widely used as an alternative to traditional methods. In this work, we present a Bayesian approach for estimating the parameters of the autoregressive moving average processes of orderp and q, denoted by ARMA(p, g) and of the autoregressive fractionally integrated moving average process, denoted by ARFIMA(p, d, g). For the later model, the Bayesian approach is performed assuming p = g = 0. Whereas AR(p), which is a particular case of the ARMA(p, g) model when g = O, an estimator is proposed via the Bayesian approach. The efficiency of the estimator is verified by Monte Cario simulations and the results are compared with the classical maximum likelihood estimator. In the case of ARFIMA(0, d, 0) process, a theoretical study is performed by the Bayesian approach. For estimating the parameters of that process we consider its infiriite autoregressive representation. Some Bayesian computational algorithms are presented in this work since they play an important role in Bayesian inferences. Some of these algorithms, such as Gibbs sampler and Metropolis-Hastings algorithm, were used in building the estimators for the parameters of ARMA and ARFIMA models.
Tipo Dissertação
URI http://hdl.handle.net/10183/115499
Arquivos Descrição Formato
000776362.pdf (695.7Kb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.