Repositório Digital

A- A A+

Prediçao de distribuíção de espécies arbustivo-arbóreas no sul do Brasil

.

Prediçao de distribuíção de espécies arbustivo-arbóreas no sul do Brasil

Mostrar registro completo

Estatísticas

Título Prediçao de distribuíção de espécies arbustivo-arbóreas no sul do Brasil
Outro título Prediction of distribution of shrub and trees species in southern Brazil
Autor Verdi, Marcio
Orientador Jarenkow, Joao Andre
Co-orientador Guarino, Ernestino de Souza Gomes
Data 2013
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Biociências. Programa de Pós-Graduação em Botânica.
Assunto Arbustos
Ecologia vegetal
Fitossociologia
[en] Area under the receiver operating characteristic curve
[en] Atlantic forest
[en] Conservation
[en] Generalized linear models
[en] Species distribution modeling
[en] True skill statistic
Resumo Em vista das mudanças ambientais em nível global, disponibilizar informações ecológicas e buscar uma melhor compreensão dos fatores e processos que moldam a distribuição de espécies, é uma iniciativa importante para o planejamento de ações de conservação. Neste contexto, a importância e carência de informações sobre a distribuição geográficas das espécies nos motivaram a predizer a distribuição potencial de arbustos e árvores das famílias Lauraceae e Myrtaceae na Floresta Atlântica, no sul do Brasil. Modelos lineares generalizados (GLM) foram usados para ajustar modelos preditivos com os registros de ocorrência de 88 espécies em função de variáveis ambientais. As variáveis preditoras foram selecionadas com base no menor critério de informação de Akaike corrigido. Nós avaliamos o desempenho dos modelos usando o método de validação cruzada (10-fold) para calcular a habilidade estatística verdadeira (TSS) e a área sob a curva característica do operador receptor (AUC). Nós usamos GLM para testar a influência da área de ocorrência estimada, do número de registros das espécies e da complexidade dos modelos sobre a TSS e a AUC. Nossos resultados mostraram que as variáveis climáticas governam amplamente a distribuição de espécies, mas as variáveis que captam as variações ambientais locais são relativamente importantes na área de estudo. A TSS foi significativamente influenciada pelo número de registros e complexidade dos modelos, enquanto a AUC sofreu com o efeito de todos os três fatores avaliados. A interação entre estes fatores é uma questão importante e a ser considerada em novas avaliações sobre ambas medidas e com diferentes técnicas de modelagem. Nossos resultados também mostraram que as distribuições de algumas espécies foram superestimadas e outras corresponderam bem com a ocorrência por nós conhecida. Efetivamente nossos resultados têm fundamentos para embasar novos levantamentos de campo, a avaliação de áreas prioritárias e planos de conservação, além de inferências dos efeitos de mudanças ambientais sobre as espécies da Mata Atlântica.
Abstract In view of environmental change on a global level, providing ecological information and getting a better understanding of the factors and processes that shape species distribution is an important initiative for planning conservation actions. In this context, the importance and lack of information about the geographical distribution of species motivated us to predict the potential species distribution of shrubs and trees of the family Lauraceae and Myrtaceae, in the Atlantic Forest in southern Brazil. Generalized linear models (GLM) were used to fit predictive models with records of occurrence of 88 species according to environmental variables. Predictor variables were selected based on the lowest corrected Akaike information criterion. We evaluate the performance of the models using the method of cross-validation (10-fold) to calculate the true skill statistic (TSS) and area under the receiver operator characteristic curve (AUC). We used GLM to test the influence of the area of occurrence estimated, the number of records of the species and the complexity of the models on the TSS and AUC. Our results show that climatic variables largely govern the distribution of species, but the variables that capture the local environmental variations are relatively important in the study area. The TSS was significantly influenced by the number of records and complexity of models while the AUC suffered from the effect of all three evaluated factors. The interaction between these factors is an important issue and be considered for new reviews on both measures and with different modeling techniques. Our results also showed that the distributions of some species were overestimated and other corresponded well with the occurrence known to us. Indeed our results have foundations to support new field surveys, assessment of priority areas and conservation plans, and inferences of the effects of environmental change on species of the Atlantic Forest.
Tipo Dissertação
URI http://hdl.handle.net/10183/115515
Arquivos Descrição Formato
000903612.pdf (6.167Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.