Repositório Digital

A- A A+

On the application of focused crawling for statistical machine translation domain adaptation

.

On the application of focused crawling for statistical machine translation domain adaptation

Mostrar registro completo

Estatísticas

Título On the application of focused crawling for statistical machine translation domain adaptation
Autor Laranjeira, Bruno Rezende
Orientador Moreira, Viviane Pereira
Co-orientador Villavicencio, Aline
Data 2015
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação.
Assunto Estatística aplicada
Lingüística computacional
[en] Comparable corpora
[en] Domain adaptation
[en] Focused crawling
[en] Statistical machine translation
Abstract Statistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
Resumo O treinamento de sistemas de Tradução de Máquina baseada em Estatística (TME) é bastante dependente da disponibilidade de corpora paralelos. Entretanto, este tipo de recurso costuma ser difícil de ser encontrado, especialmente quando lida com idiomas com poucos recursos ou com tópicos muito específicos, como, por exemplo, dermatologia. Para contornar esta situação, uma possibilidade é utilizar corpora comparáveis, que são recursos muito mais abundantes. Um modo de adquirir corpora comparáveis é a aplicação de algoritmos de Coleta Focada (CF). Neste trabalho, são propostas novas abordagens para CF, algumas baseadas em n-gramas e outras no poder expressivo das expressões multipalavra. Também são avaliadas a viabilidade do uso de CF para realização de adaptação de domínio para sistemas genéricos de TME e se há alguma correlação entre a qualidade dos algoritmos de CF e dos sistemas de TME que podem ser construídos a partir dos respectivos dados coletados. Os resultados indicam que algoritmos de CF podem ser bons meios para adquirir corpora comparáveis para realizar adaptação de domínio para TME e que há uma correlação entre a qualidade dos dois processos.
Tipo Dissertação
URI http://hdl.handle.net/10183/117259
Arquivos Descrição Formato
000967675.pdf (1.692Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.