Repositório Digital

A- A A+

Considerações numéricas relativas à solução de escoamentos incompressíveis externos baseadas no método de Runge-Kutta

.

Considerações numéricas relativas à solução de escoamentos incompressíveis externos baseadas no método de Runge-Kutta

Mostrar registro completo

Estatísticas

Título Considerações numéricas relativas à solução de escoamentos incompressíveis externos baseadas no método de Runge-Kutta
Autor Araujo, Denise da Rosa
Orientador De Bortoli, Álvaro Luiz
Data 2002
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática Aplicada.
Assunto Diferencas finitas
Escoamentos incompressíveis
Geometrias arredondadas
Método Runge-Kutta
Movimento de fluidos
Resumo Este trabalho apresenta um método numérico para a solução de escoamentos bi e tridimensionais de fluidos (quase) incompressíveis em torno de geometrias arredondadas. O escoamento bidimensional é analisado em torno da geometria de um cilindro (seção de um cilindro), para as equações de Euler e Navier-Stokes, e em torno da geometria aproximada de um tubarão para as equações de Euler. O escoamento tridimensional é analisado em torno de uma esfera e de um elipsóide. O método de integração empregado baseia-se no esquema explícito de Runge-Kutta de três estágios para as equações da quantidade de movimento e no de Relaxações Sucessivas para a pressão. Adota-se o esquema em diferenças finitas visando aproximações de segunda ordem no tempo e no espaço no sistema de coordenadas generalizadas. Testes numéricos são realizados para as diferentes geometrias aplicando as equações de Navier-Stokes e Euler e os resultados obtidos comparam adequadamente com dados analíticos, experimentais e/ou numéricos encontrados na literatura.
Abstract This work presents a numerical method for the solution of (almost) incompressible bi and tridimensional fl.ows for round geometries. Bidimensional fl.ows over a circular cylinder, using Euler and Navier-Stokes equations, and also for a shark approximated geometry, using Euler equations, are analyzed. Extension to tridimensional flows around a sphere and an elliptical geometry is realized. The integration method is based on the three-stage Runge-Kutta explicit scheme for momentum equations and successive under relaxation for pressure. Second order finite difference approximations for time as well as space terms in boundary fitted coordinates are employed. Numerical tests are carried out for different geometries for Euler and Navier-Stokes equations and the results showed to compare properly with analytical, numerical or experimental data found in the literature.
Tipo Dissertação
URI http://hdl.handle.net/10183/118190
Arquivos Descrição Formato
000283824.pdf (9.821Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.