Repositório Digital

A- A A+

Uma sistemática para construção e escolha de modelos de previsão de risco de crédito

.

Uma sistemática para construção e escolha de modelos de previsão de risco de crédito

Mostrar registro completo

Estatísticas

Título Uma sistemática para construção e escolha de modelos de previsão de risco de crédito
Autor Selau, Lisiane Priscila Roldão
Ribeiro, Jose Luis Duarte
Resumo Com o aumento recente nos volumes de créditos a pessoas físicas e, por consequência, nos índices de inadimplência, as empresas estão buscando melhorar sua análise de crédito incorporando critérios objetivos. Técnicas multivariadas têm sido utilizadas para construir modelos de previsão de crédito que, baseados em informações cadastrais dos clientes, levam à criação de um padrão de comportamento em relação à inadimplência. O objetivo deste artigo é propor uma sistemática para construção de modelos de previsão de risco de crédito e avaliar seu desempenho usando três modelos específicos: análise discriminante, regressão logística e redes neurais. O método proposto (denominado Modelo PRC) é composto de seis etapas: (i) delimitação da população; (ii) seleção da amostra; (iii) análise preliminar; (iv) construção do modelo; (v) escolha do modelo; e (vi) passos para implantação. O Modelo PRC foi aplicado em uma amostra de 17.005 clientes de uma rede de farmácias com crediário próprio. Os resultados para este banco de dados específico apontam uma pequena superioridade do modelo de redes neurais em relação aos outros modelos, que pode ser atribuída a sua não linearidade em relação à combinação de variáveis.
Abstract Due to the growing consumer credit market and, therefore, insolvency indices, companies are seeking to improve their credit analysis by incorporating objective judgments. Multivariate techniques have been used to construct credit models. These models, based on consumer registration information, allow the identification of behavior standards concerning insolvency. The objective of this work is to propose a methodology for the construction of credit risk models and to evaluate prediction performance using three specific models: discriminant analysis, logistic regression, and neural networks. The proposed method (entitled PRC Model) embraces six steps: (i) population definition, (ii) sampling, (iii) preliminary analysis, (iv) model development, (v) model selection, and (vi) implementation steps. The PRC Model was applied to a sample of 17,005 customers of an organization which manages its own credit system and controls a pool of drugstores. The results for this specific database show slight superiority of neural networks over the other two techniques, which can be attributed to its non-linear approach when dealing with the combined effect of explanatory variables
Contido em Gestão e produção. São Carlos, SP. Vol. 16, n. 3 (jul./set. 2009), p. 398-413
Assunto Engenharia econômica
Modelos estatisticos
Redes neurais artificiais
[en] Credit analysis
[en] Discriminat analysis
[en] Logistic regression
[en] Neural networks
Origem Nacional
Tipo Artigo de periódico
URI http://hdl.handle.net/10183/129154
Arquivos Descrição Formato
000744312.pdf (978.4Kb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.