Repositório Digital

A- A A+

Detecção e qualificação de lesões melanocíticas através de evidências locais e de contexto

.

Detecção e qualificação de lesões melanocíticas através de evidências locais e de contexto

Mostrar registro completo

Estatísticas

Título Detecção e qualificação de lesões melanocíticas através de evidências locais e de contexto
Outro título Detection and qualification of melanocytic lesions using local and context evidences
Autor Bernart, Eliezer Emanuel
Orientador Bampi, Sergio
Co-orientador Scharcanski, Jacob
Data 2016
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação.
Assunto Computação gráfica
Processamento : Imagens médicas
[en] Classification
[en] Macroscopic images
[en] Melanocytic lesions
[en] Segmentation
Resumo Neste trabalho, um novo método não-supervisionado para segmentação de lesões melanocíticas em imagens macroscópicas é proposto levando em consideração regiões suspeitas, e também uma nova abordagem para classificação de lesões que faz uso de evidências locais e de contexto para estimar um índice de probabilidade para malignidade em cada lesão. O método proposto realiza a segmentação das imagens em três tipos de regiões disjuntas: ‘pele saudável’, ‘região de incerteza’ e ‘lesão’. Regiões de incerteza são refinadas através da utilização de feições estocásticas também de forma não-supervisionada, resultando em uma máscara binária que discrimina a pele da lesão. As máscaras obtidas apresentam um erro XOR comparável aos métodos estado da arte. A imagem é segmentada utilizando um algoritmo de superpixels e as sub-regiões que intersectam a máscara obtida são categorizadas como evidências locais. Estas evidências são representadas por uma descrição especializada que explora as características como cor e textura. Estas sub-regiões são então associadas à evidências de contexto definidas pela borda da lesão de onde foram extraídas e classificadas de forma independente através de uma abordagem supervisionada. Com o resultado da classificação destas evidências é possível obter um indicador probabilístico para malignidade associado a cada lesão, e levando em consideração um valor de tolerância é possível identificar lesões malignas em potencial. Os resultados obtidos com o método proposto são promissores e apresentam maior acurácia do que os métodos existentes na literatura apesar do erro XOR da segmentação das lesões ser maior, o que tende a confirmar o potencial do método proposto para discriminar lesões melanocíticas benignas e malignas.
Abstract In this work, a novel unsupervised method for melanocytic macroscopic image segmentation is proposed considering suspicious regions, and also a novel approach for lesion classification using local and context evidence to estimate a probabilistic index of malignity or benignity in each lesion. The proposed method segment the macroscopic images in three types of disjoint regions: ‘healthy skin’, ‘suspicious region’ and ‘lesion’. Suspicious areas are refined using stochastic texture features also in an unsupervised approach, resulting in a binary mask discriminating skin and lesion. The resulting masks present an XOR error similar to other state-of-art methods. In the next step, the image is segmented using a superpixels algorithm and subregions that intersect the obtained mask categorized as local evidence. A specialized representation describes color and texture information present in the local evidence region. The border of the segmented skin lesion defines the context evidence and using a supervised approach, local and context evidence are combined and classified independently. With the evidence classification results is possible to obtain a probabilistic index of malignity and benignity associated to each lesion, and considering a tolerance value is possible to identify potential malignant lesions. The results achieved with the proposed method are promissing and present greater accuracy than other techniques in the literature, even with a greater XOR error in segmentation step, confirming the proposed method’s potential to discriminate benignant and malignant melanocytic lesions.
Tipo Dissertação
URI http://hdl.handle.net/10183/134372
Arquivos Descrição Formato
000988366.pdf (2.671Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.