Mostrar registro simples

dc.contributor.advisorLimberger, Renata Pereirapt_BR
dc.contributor.authorComiran, Eloisapt_BR
dc.date.accessioned2016-09-15T02:12:43Zpt_BR
dc.date.issued2015pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/148120pt_BR
dc.description.abstractLisdexanfetamina (LDX) é um pró-fármaco estimulante de longa duração indicado para o tratamento dos sintomas do transtorno do déficit de atenção e hiperatividade e do transtorno da compulsão alimentar periódica. A hidrólise da ligação amida da LDX ocorre in vivo liberando a molécula terapeuticamente ativa d-anfetamina (d-ANF) e o aminoácido l-lisina. Visto que a LDX se biotransforma à d-ANF – um potente estimulante do sistema nervoso central com destaque tanto na clínica quanto na toxicologia – existe potencial para uso inadequado, abuso e desvio para fins não terapêuticos. Nos laboratórios de toxicologia, amostras biológicas com resultados positivos para anfetamina (ANF) são um desafio, uma vez que alguns testes toxicológicos podem detectar ANF devido à utilização de alguns medicamentos, dificultando a sua interpretação. Assim, são necessários métodos bioanalíticos eficientes aliados ao conhecimento farmacocinético, que permite a verificação da possibilidade de detecção, a estimativa da janela de detecção e as concentrações que podem ser alcançadas em diferentes matrizes biológicas. Dessa forma, neste trabalho, foram desenvolvidos métodos bioanalíticos para quantificação simultânea da LDX e de seu produto de biotransformação, a ANF, nas matrizes biológicas fluido oral, plasma e urina utilizando a cromatografia líquida acoplada a detector de massas sequencial (CL-EM/EM). A preparação de amostra é simples, utilizando a precipitação de proteínas para o plasma, com pouca quantidade de solvente orgânico, a diluição para o fluido oral e a filtração para urina, ambas com nenhuma quantidade de solvente orgânico. As curvas de calibração utilizando o padrão interno ANF deuterada apresentaram linearidade entre 1 e 128 ng/mL para o fluido oral e o plasma e entre 4 e 256 ng/mL para a urina. A menor concentração das curvas de calibração é igual ao limite inferior de quantificação. Precisão e exatidão intra e interdia ficaram dentro dos limites de ± 15% para os controles e ± 20% para o limite de quantificação. Os métodos foram seletivos e sem efeito residual, porém apresentaram um leve efeito matriz, frequentemente encontrado em métodos de CL-EM/EM. O método foi aplicado para análise das amostras do estudo farmacocinético da LDX e ANF nas matrizes biológicas fluido oral, plasma e urina após administração oral de LDX. Seis voluntários do sexo masculino coletaram amostras de fluido oral e plasma em tempos pré-determinados durante 72 horas e amostras de urina em intervalos pré-determinados durante 120 horas. Os dados foram avaliados de maneira não-compartimental e compartimental. Considerando a análise não-compartimental, a concentração máxima média da d-ANF foi quase seis vezes inferior no plasma em relação ao fluido oral e ocorreu em 3,8 e 4 horas, respectivamente, após a administração oral. A LDX atingiu a concentração máxima no plasma e no fluido oral em 1,2 e 1,8 horas após a administração oral, respectivamente, com um valor médio de pico de concentração quase duas vezes mais elevado no plasma em comparação com o fluido oral. A eliminação da d-ANF a partir do plasma e a partir do fluido oral foi semelhante, porém para LDX a eliminação a partir do fluido oral foi mais lenta, mesmo com concentrações mais baixas do que no plasma. A detecção da d-ANF ocorreu até 48-72 horas no plasma e fluido oral e até 120 horas em urina. Já para a LDX, a detecção ocorreu até 3, 5 e 12 horas no plasma, fluido oral e urina, respectivamente. LDX intacta e d-ANF foram detectadas nas três matrizes avaliadas. Na análise compartimental, o melhor ajuste de modelo foi observado para 1 compartimento para ambos os analitos tanto no plasma quanto no fluido oral. Houve uma correlação entre as concentrações do fluido oral e do plasma para d-ANF e entre as proporções de LDX intacta/d-ANF pelo tempo no plasma e no fluido oral. O método analítico desenvolvido pode ser aplicado em diferentes áreas do conhecimento a fim de certificar os resultados de uma análise de triagem positiva para ANF. Porém, para interpretação das situações tanto de triagem quanto de confirmação é necessário aliar o conhecimento farmacocinético gerado no trabalho, que demonstra se há a possibilidade de detecção na matriz analisada e por quanto tempo após a administração da LDX. Isto auxilia na diferenciação do uso de outros medicamentos derivados da ANF e do uso ilegal, para que as devidas providências legais e de manejos clínicos de tratamento e controle de dependência sejam tomadas quando necessário.pt_BR
dc.description.abstractLisdexamfetamine (LDX) is a long-acting prodrug stimulant indicated for the treatment of attention-deficit/hyperactivity disorder and binge-eating disorder symptoms. In vivo hydrolysis of lisdexamfetamine amide bond releases the therapeutically active d-amphetamine (d-AMPH) and the amino acid l-lysine. Since LDX biotransformation gives rise to d-AMPH - a potent stimulant of the central nervous system that stands out in clinical and toxicology - there is potential for misuse, abuse and diversion for non-therapeutic purposes. In laboratories of toxicology, biological samples with positive results for amphetamine (AMPH) are a challenge, since some toxicological tests can detect AMPH due to the use of some medications hindering the interpretation. Therefore, we need efficient bioanalytical methods combined with the pharmacokinetic knowledge, which allows to verify the possibility of detection, to assess the detection window and the concentrations that can be reached in different biological matrices. Hence, bioanalytical methods were developed for simultaneous quantification of LDX and its main biotransformation product AMPH in the biological matrices oral fluid, plasma and urine by liquid chromatography-mass spectrometry (LC-MS/MS). The sample preparation is simple, using protein precipitation for plasma, with a small amount of organic solvent, dilution for oral fluid and filtration to urine, both with no amount of organic solvent. Calibration curves using deuterated AMPH internal standard showed linearity between 1 and 128 ng/mL for oral fluid and plasma, and between 4 and 256 ng/mL for urine. The lowest concentration of the calibration curve is the lower limit of quantification. Intra and interday precision and accuracy were within the limits of ± 15% for controls and ± 20% for the limit of quantification. The methods were selective and no carry-over was observed, however with some matrix effect, often found in LC-MS/MS methods. The method was applied to analyze samples from LDX and AMPH pharmacokinetics study in the biological matrices oral fluid, plasma and urine following oral administration of LDX. Six male volunteers collected oral fluid and plasma samples at predetermined times during 72 hours and urine samples at pre-determined intervals during 120 hours. Data were evaluated through non-compartmental and compartmental analysis. Considering the noncompartmental analysis, the mean maximum concentration of d-AMPH was almost 6-fold lower in plasma than in oral fluid and occurred at 3.8 and 4 hours, respectively, after LDX administration. LDX maximum concentration was reached at 1.2 and 1.8 hours after LDX oral administration for oral fluid and plasma, respectively, with a mean peak concentration almost 2-fold higher in plasma when compared with oral fluid. Elimination of d-AMPH from oral fluid and from plasma were similar, albeit for LDX elimination from oral fluid was slower even with lower concentrations than plasma. Detection occurred until 48 to 72 hours in plasma and oral fluid and until 120 hours in urine for d-AMPH. Whereas for LDX, detection could be done for up to 3, 5 and 12 hours in plasma, oral fluid and urine, respectively. Intact LDX and d-AMPH were detected in the three evaluated matrices. In compartmental analysis, the best model fit was observed for 1-compartment model for both analytes in plasma and in oral fluid. There was a correlation between oral fluid and plasma d-AMPH concentrations and between intact LDX/d-AMPH ratios along time in plasma as well as in oral fluid. The bioanalytical methods developed can be applied in different fields of knowledge in order to ensure the results of a positive screening analysis for AMPH. Nevertheless, for interpretation of situations in both screening and confirmation tests is necessary to combine the pharmacokinetic knowledge produced in this study, which shows if there is the possibility of detection in the analyzed matrix and for how long after the administration of LDX. This results aid in the differentiation from other AMPH derived drugs use and from illegal use, so that appropriate legal action and clinical management strategies for treatments and control of dependence be taken when necessary.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectLisdexamfetamineen
dc.subjectCromatrografiapt_BR
dc.subjectAmphetamineen
dc.subjectFarmacocinéticapt_BR
dc.subjectToxicologiapt_BR
dc.subjectLiquid chromatography-mass spectrometryen
dc.subjectPharmacokineticsen
dc.subjectToxicologyen
dc.titleLisdexanfetamina : desenvolvimento e validação de métodos bioanalíticos por cromatografia líquida acoplada a detector de massas e avaliação famacocinética preliminarpt_BR
dc.title.alternativeLisdexamfetamine : development and validation of a method using liquid chromatography coupled to mass detector and preliminary pharmacokinetics evaluationen
dc.typeTesept_BR
dc.contributor.advisor-coFröehlich, Pedro Eduardopt_BR
dc.identifier.nrb001001125pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentFaculdade de Farmáciapt_BR
dc.degree.programPrograma de Pós-Graduação em Ciências Farmacêuticaspt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2015pt_BR
dc.degree.leveldoutoradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples