Repositório Digital

A- A A+

A framework for understanding the relationship between descending pain modulation, motor corticospinal and neuroplasticity regulation systems in chronic myofascial pain

.

A framework for understanding the relationship between descending pain modulation, motor corticospinal and neuroplasticity regulation systems in chronic myofascial pain

Mostrar registro completo

Estatísticas

Título A framework for understanding the relationship between descending pain modulation, motor corticospinal and neuroplasticity regulation systems in chronic myofascial pain
Autor Botelho, Leonardo Monteiro
Morales-Quezada, Leon
Rozisky, Joanna Ripoll
Brietzke, Aline Patrícia
Torres, Iraci Lucena da Silva
Deitos, Alícia
Fregni, Felipe
Caumo, Wolnei
Abstract Myofascial pain syndrome (MPS) is a leading cause of chronic musculoskeletal pain. However, its neurobiological mechanisms are not entirely elucidated. Given the complex interaction between the networks involved in pain process, our approach, to providing insights into the neural mechanisms of pain, was to investigate the relationship between neurophysiological, neurochemical and clinical outcomes such as corticospinal excitability. Recent evidence has demonstrated that three neural systems are affected in chronic pain: (i) motor corticospinal system; (ii)internal descending pain modulation system; and (iii) the system regulating neuroplasticity. In this cross-sectional study, we aimed to examine the relationship between these three central systems in patients with chronic MPS of whom do/do not respond to the Conditioned Pain Modulation Task (CPM-task). The CPM-task was to immerse her non-dominant hand in cold water (0−1◦C) to produce a heterotopic nociceptive stimulus. Corticospinal excitability was the primary outcome; specifically, the motor evoked potential (MEP) and intracortical facilitation (ICF) as assessed by transcranial magnetic stimulation (TMS). Secondary outcomes were the cortical excitability parameters [current silen tperiod (CSP) and short intracortical inhibition (SICI)], serum brain-derived neurotrophic factor (BDNF), heat pain threshold (HPT), and the disability related to pain (DRP). We included 33 women, (18–65years old). The MANCOVA model using Bonferroni’s Multiple Comparison Test revealed that non-responders (n=10) compared to responders (n=23) presented increased intracortical facilitation (ICF;mean±SD) 1.43(0.3) vs.1.11(0.12), greater motor-evoked potential amplitude (μV) 1.93(0.54) vs.1.40(0.27), as well a higher serum BDNF (pg/Ml) 32.56 (9.95) vs.25.59(10.24), (P<0.05 forall). Also, non-responders presented higher level of DRP and decreased HPT (P<0.05forall). These findings suggest that the loss of net descending pain inhibition was associated with an increase in ICF, serum BDNF levels, and DRP. We propose a framework to explain the relationship and potential directionality of these factors. In this framework we hypothesize that increased central sensitization leads to a loss of descending pain inhibition that triggers compensatory mechanismsas shown by increased motor cortical excitability.
Contido em Frontiers in human neuroscience. Lousanne. Vol. 10 (June 2016), article 308, 12 p.
Assunto Fator neurotrófico derivado do encéfalo
Neurofisiologia
Neuroquímica
Plasticidade neuronal
Síndromes da dor miofascial
[en] BNDF
[en] Chronic pain
[en] Cortical excitability
[en] CPM
[en] MEP
[en] QST
[en] TMS
Origem Estrangeiro
Tipo Artigo de periódico
URI http://hdl.handle.net/10183/148672
Arquivos Descrição Formato
000997146.pdf (2.105Mb) Texto completo (inglês) Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.