Repositório Digital

A- A A+

Método variacional dependente do tempo para a equação de Schrödinger não linear e não-local em condensados de Bose-Einstein

.

Método variacional dependente do tempo para a equação de Schrödinger não linear e não-local em condensados de Bose-Einstein

Mostrar registro completo

Estatísticas

Título Método variacional dependente do tempo para a equação de Schrödinger não linear e não-local em condensados de Bose-Einstein
Outro título Time-dependent variational method for the non-linear and non-local Schrödinger equation in Bose-Einstein condensates
Autor Soares, Luiz Gustavo Ferreira
Orientador Haas, Fernando
Data 2016
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Física. Programa de Pós-Graduação em Física.
Assunto Condensação Bose-Einstein
Equação de Schrödinger
Metodos variacionais
Sistemas dinâmicos não-lineares
[en] Bose-Einstein condensates
[en] Long-range interactions
[en] Time-dependent variational method
Resumo Condensação de Bose-Einstein é um fenômeno quântico que pode ser observado macroscopicamente. Para a sua obtenção são necessários aprisionamentos externos, porém a presença desses leva ao colapso da função de onda. As interações de longo alcance são propostas como uma forma alternativa ao confinamento externo, um vez que podem prevenir o colapso da função de onda. Neste trabalho será apresentada uma revisão sobre os estudos de condensados de Bose-Einstein. Também, será buscada a solução aproximada da equação de Schrödinger não linear e não-local, a qual descreve condensados de Bose-Einstein com auto-interações de longo alcance. Para isso, será suposta uma forma espacial da função de onda, permitindo o tratamento analítico do sistema dinâmico resultante. Ao fim, por meio do método variacional dependente do tempo, será demonstrado que existem soluções estáveis para a função de onda sujeito a interações de longo alcance na forma gaussiana e gravitacional.
Abstract Bose-Einstein condensation is a quantum phenomenon that can be observed macroscopically. External trappings are required to obtain them, however the presence of these leads to the collapse of the wave function. Long-range interactions are proposed as an alternative to external confinement, since they can prevent the collapse of the wave function. In this work a review will be presented on the Bose-Einstein condensate studies. Also, we review the approximate solution of the non-linear and non-local Schrödinger equation, which describes Bose-Einstein condensates with long-range auto-interactions. For this, a spatial form of the wave function will be assumed, allowing the analytical treatment of the system. Finally, through the time-dependent variational method, it will be demonstrated that there are stable solutions for the wave function subject to long-range interactions in gaussian and gravitational form.
Tipo Dissertação
URI http://hdl.handle.net/10183/156632
Arquivos Descrição Formato
001015913.pdf (1.287Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.