Repositório Digital

A- A A+

Pontos críticos, transições de fase e anomalias tipo água para potencial isotrópico de duas escalas com aumento do poço atrativo

.

Pontos críticos, transições de fase e anomalias tipo água para potencial isotrópico de duas escalas com aumento do poço atrativo

Mostrar registro completo

Estatísticas

Título Pontos críticos, transições de fase e anomalias tipo água para potencial isotrópico de duas escalas com aumento do poço atrativo
Autor Pinheiro, Leonardo
Orientador Barbosa, Marcia Cristina Bernardes
Co-orientador Diehl, Alexandre
Data 2017
Nível Doutorado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Física. Programa de Pós-Graduação em Física.
Assunto Água
Anomalias
Dinâmica molecular
Transformações de fase
Resumo A água, por ser a substância de fundamental importância para a existência de vida, é alvo de diversos estudos, principalmente, ao longo das últimas décadas. Apesar de bastante conhecida, a água é uma substância com diversos comportamentos singulares, classificadas em geral como anomalias da água. Com a intenção de descrever tais anomalias, diversos modelos de água para estudos computacionais foram desenvolvidos até hoje, embora nenhum seja capaz de descrever todas as anomalias conhecidas. Baseados em modelos atomísticos de água, surgiram também modelos efetivos de interação entre partículas em um sistema de apenas uma espécie, com a ideia de generalizar o estudo sobre anomalias. Nossos estudos de Dinâmica Molecular e Monte Carlo são realizados em um sistema de partículas interagindo através de potenciais efetivos, compostos por duas escalas de comprimento: um ombro repulsivo a curtas distâncias e a outra sendo uma escala variável, que pode ser repulsiva ou fortemente atrativa, dependendo dos parâmetros utilizados. A análise mostra que o sistema apresenta comportamento anômalo. As regiões de anomalias de densidade, difusão e estruturais encolhem no diagrama de fase de pressão versus temperatura à medida que o sistema se torna mais atrativo. Uma transição líquido-líquido é formada com o aumento do poço de atração. Encontramos que a transição de fase gás-líquido é do tipo Ising em 3 dimensões (3D) para todos os potenciais e sua temperatura crítica aumenta com o aumento da atração. Nenhum comportamento tipo Ising 3D para a transição de fase líquido-líquido foi detectado nas simulações Monte Carlo, o que pode estar relacionado à presença de fases amorfas estáveis. Com relação a sistemas em confinamento, usando Monte Carlo, estudamos o transporte através de nanotubos. Posicionando dois volumes de controle com densidades diferentes, um em cada abertura do nanotubo, induzimos o transporte de partículas através do nanotubo confinante. As partículas do sistema interagem através de um potencial efetivo de duas escalas de comprimento. Analisamos uma família de três potenciais, onde variamos a escala de comprimento menor, desde um ombro repulsivo até um pequeno poço de atração. O estudo mostra que o sistema se configura em camadas no interior do nanotubo e que o transporte apresenta uma sequência de mínimos e máximos, a medida que o raio interno do nanotubo é reduzido, o que caracteriza um comportamento anômalo, já que se espera apenas uma redução no transporte a medida que o espaço interno do nanotubo diminui. Tal comportamento descrito para o transporte, e também a formação de camadas, apenas não são encontrados para o potencial com o poço atrativo. Com relação à estrutura e às propriedades de transporte, as partículas confinadas não diferem sob as mesmas condições para as duas geometrias empregadas. Através da análise da energia de interação das partículas confinadas, verificamos também que a origem da formação de camadas e o comportamento distinto do transporte se deve não apenas ao fato da existência de duas escalas de comprimento no potencial de interação mas também à presença de uma barreira de energia significativa entre essas escalas.
Abstract Water, being a substance of fundamental importance for the existence of life, has been the target of several studies, mainly in the last decades. Although well known, water is a substance with several different behaviors, generally classified as water anomalies. In order to describe such anomalies, various models of computational studies are developed to date, although none is able to describe all as known anomalies. Based on water models, also on effective models of interaction between parts in a system of only one species, with an idea to generalize the study on anomalies. Our Molecular Dynamic and Monte Carlo studies are performed in a system of particles interacting through core-softened (CS) potential, composed by two length scales: a repulsive shoulder at short distances and the another a variable scale, that can be repulsive or strongly attractive depending on the parameters used. The system shows water-like anomalous behavior. The density, diffusion and structural anomalous regions in the pressure versus temperature phase diagram shrink in pressure as the system becomes more attractive. The liquid-liquid transition appears with the increase of the attraction well. We found that the liquid-gas phase transition is Ising-like for all the CS potentials and its critical temperature increases with the increase of the attraction. No Ising-like behavior for the liquid-liquid phase transition was detected in the Monte Carlo simulations might be due to the presence of this stable amorphous phases. Considering confined systems, using Monte Carlo, we studied the transport through nanotube. Using two volumes of control with different densities, one at each opening of the nanotube, we induced the transport of particles through the confining nanotube. The particles of the fluid system interact through an core-softened potential with two length scales. We looked at a family of three potentials, where the scale changes from smaller length from repulsive shoulder to a small attraction well. The study shows that the system is formed in layers inside the nanotube and that the transport has a sequence of minimum and maximum as the internal radius of the nanotube is reduced, which characterizes an anomalous behavior, since it is expected only a reduction as the internal space of the nanotube reduces. Such behavior described for transport and also the layers formation only are not found for a potential with attractive well. By analyzing the interaction energy of the confined particles, we also verified that the origin of the layers formation and the distinct behavior of the transport are due not only to the existence of two length scales in the interaction potential but also to the presence of a barrier between these scales.
Tipo Tese
URI http://hdl.handle.net/10183/165404
Arquivos Descrição Formato
001045429.pdf (5.345Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.