Repositório Digital

A- A A+

Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics

.

Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics

Mostrar registro completo

Estatísticas

Título Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
Autor Beatrici, Carine Priscila
Almeida, Rita Maria Cunha de
Brunnet, Leonardo Gregory
Abstract Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td/d+2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
Contido em Physical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 95, no. 3 (Mar. 2017), 032402, 8 p.
Assunto Adesão celular
Separação celular
Simulação computacional
Origem Estrangeiro
Tipo Artigo de periódico
URI http://hdl.handle.net/10183/169040
Arquivos Descrição Formato
001025520.pdf (2.309Mb) Texto completo (inglês) Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.