Mostrar registro simples

dc.contributor.authorRiboldi, Gustavo Peliciolipt_BR
dc.contributor.authorVerli, Hugopt_BR
dc.contributor.authorFrazzon, Jeversonpt_BR
dc.date.accessioned2010-05-07T04:15:27Zpt_BR
dc.date.issued2009pt_BR
dc.identifier.issn1471-2091pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/21690pt_BR
dc.description.abstractBackground: Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results: BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. Conclusion: The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested asa possible candidate for interaction with other factors and/or regulators.en
dc.format.mimetypeapplication/zippt_BR
dc.format.mimetypeapplication/zippt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofBMC biochemistry. London. v. 10, art. 3 (2 Feb. 2009)pt_BR
dc.rightsOpen Accessen
dc.subjectEnterococcus faecalispt_BR
dc.subjectCofator ferro-enxofrept_BR
dc.subjectModelagem molecularpt_BR
dc.titleStructural studies of the Enterococcus faecalis SufU [Fe-S] cluster proteinpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000689438pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
Thumbnail
Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples