Mostrar registro simples

dc.contributor.advisorWeber, Tiagopt_BR
dc.contributor.authorMorais, Lucas Eduardo Corazzapt_BR
dc.date.accessioned2023-10-21T03:43:19Zpt_BR
dc.date.issued2023pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/266180pt_BR
dc.description.abstractO trabalho compreende o treinamento de um modelo de Aprendizado Profundo para a detecção de defeitos de fabricação em Placas de Circuito Impresso, utilizando as topologias de Rede Neurais Convolucionais Tiny-YOLOv4, YOLOv5 e Faster R-CNN, e sua posterior adaptação a uma plataforma de hardware limitado Raspberry Pi 3B+ Para o treinamento de validação dos modelos, foi utilizada a base de dados PCB Defect Dataset (DING et al., 2019). No decorrer do trabalho, foi utilizada a técnica de pruning não estruturado L1, considerando diferentes níveis de esparsidade, e a quantização de pesos dos modelos, nos formatos numéricos 32 bits ponto flutuante, 16 bits ponto flutuante e 8 bits inteiro, por meio das bibliotecas ONNX e TFLite, visando diminuir a carga computacional e tamanho de memória ocupado pelo modelo. Após avaliação dos resultados obtidos com as diferentes topologias, considerando a aplicação das técnicas de pruning e quantização, um modelo final foi selecionado, segundo o critério da aproximação da Curva de Pareto, e testado na plataforma Raspberry Pi 3B+. Os resultados, obtidos com o modelo YOLOv5, submetido ao pruning e quantizado, na plataforma Raspberry Pi, são de mAP(IoU=0,5) de 0,972 e tempo de inferência de 1,872 segundos, demonstrando a viabilididade desta abordagem.pt_BR
dc.description.abstractThe work comprises the training of a Deep Learning model for the detection of manufacturing defects in Printed Circuit Boards, using the Tiny-YOLOv4, YOLOv5 and Faster R-CNN Convolutional Neural Network topologies, and its subsequent adaptation to a Raspberry Pi 3B+ limited hardware platform For the training and validation of the models, the PCB Defect Dataset (DING et al., 2019) database was used. Throughout the work, the L1 unstructured pruning technique was used, considering different levels of sparsity, and the quantization of model weights, in 32-bit floating point, 16-bit floating point and 8-bit integer formats, using the ONNX and TFLite libraries, in order to reduce the computational load and memory size occupied by the model. After evaluating the results obtained with the different topologies, considering the application of the pruning and quantization techniques, a final model was selected, according to the Pareto Curve approximation criterion, and tested on the Raspberry Pi 3B+ platform. The results obtained with the YOLOv5 model, subjected to pruning and quantized on the Raspberry Pi platform, are a mAP(IoU=0.5) of 0.972 and an inference time of 1.872 seconds, demonstrating the viability of this approach.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectAprendizado de máquinapt_BR
dc.subjectDeep learningen
dc.subjectObject detectionen
dc.subjectPlaca de circuito impressopt_BR
dc.subjectDetecção de falhaspt_BR
dc.subjectPCB manufacturing defectsen
dc.subjectFaster R-CNNen
dc.subjectPruningen
dc.subjectQuantizationen
dc.titleDetecção de defeitos de fabricação em placas de circuito impresso através de visão computacional e aprendizado profundopt_BR
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb001185662pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2023pt_BR
dc.degree.graduationEngenharia Elétricapt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples