Repositório Digital

A- A A+

Uma rede neural para o reconhecimento de padrões codificados em sequências

.

Uma rede neural para o reconhecimento de padrões codificados em sequências

Mostrar registro completo

Estatísticas

Título Uma rede neural para o reconhecimento de padrões codificados em sequências
Autor Balaniuk, Remis
Orientador Navaux, Philippe Olivier Alexandre
Data 1990
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Curso de Pós-Graduação em Ciência da Computação.
Assunto Inteligência artificial
Reconhecimento : Fala
Reconhecimento : Padroes
Redes neurais
Simulação
Resumo Este trabalho apresenta um modelo de rede neural voltado ao tratamento de informagbes codificadas em sequencias, tendo em vista que esta classe de informações nao tem um tratamento adequado nos modelos convencionais. Isso decorre da caracteristica destes modelos convencionais de manipular isoladamente as celulas de informacao apresentadas como entrada, sem Integra-las entre si. O modelo utiliza paradigmas a mecanismos conhecidos, tais coma a regra de HEBB, o modelo de Energia de Hopfield e o paradigma de organizacao em camadas, compondo-os com novas ideias e mecanismos direcionados para o tratamento de sequencias, em um sistema exploratório, extraindo com isso novas propriedades nao existentes em modelos tradicionais. Os novas mecanismos propostos permitem uma integragao entre entradas a rede e o contexto no qual elas sao apresentadas, para que com isso se forme uma Unica representacAo interna para Coda uma seqUencia de entradas. Todo o trabalho de validaco do modelo foi baseado em simulac6es, para as quaffs foi desenvolvido um ambiente em estacao de trabalho, dotado de interface grafica que permite o acompanhamento visual do funcionamento da rede. Para viabilizar a validacao do modelo por meio das simulac6es, tendo em vista os limites computacionais dos recursos disponiveis, foi proposto e utilizado um sistema de codificacao de informacbes ficticias simplicadas baseadas na fala, mais especificamente na organizacao fonetica. O sistema de codificação, embora simplificado, incorpora as mais importantes caracteristicas da codificação de informacbes realizada na fala, pelo menos pelo ponto de vista de seu reconhecimento por mein de redes neurais.
Abstract This work presents a Neural Network model to process sequence information, since this information class does not have a reasonable treatment in the conventional models. This is due to this models features that manipulate incoming information cells individually, without integrating them. The model uses already known mechanisms and paradigms, like the HEBB's rule, the Hopfield's Energy Model and the layer organization paradigm, added with new ideas and mechanisms for the sequence handling in a exploratory system, so that it extracts new properties not found in traditional models. The proposed new mechanisms allow the integration between network entries and context , in order to generate a unique internal representation. The model was validated through simulations. A workstation based environment was designed and implemented to support them. It incorporates a graphical interface that permits the network behavior visualization. In order to enable the model's validation through simulations and considering the computational limits of the available resources, a codification system was proposed to generate simplified ficticious and speech based informations. Although simplified, this codification system incorporates the most important features of the information codification that occur in the speech, at least from its neural network based recognition point of view.
Tipo Dissertação
URI http://hdl.handle.net/10183/26692
Arquivos Descrição Formato
000059419.pdf (26.23Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.