Repositório Digital

A- A A+

Aplicação de filtros de Gabor no processo de classificação de imagens digitais com base em atributos de textura

.

Aplicação de filtros de Gabor no processo de classificação de imagens digitais com base em atributos de textura

Mostrar registro completo

Estatísticas

Título Aplicação de filtros de Gabor no processo de classificação de imagens digitais com base em atributos de textura
Autor Angelo, Neide Pizzolato
Orientador Haertel, Vitor Francisco de Araújo
Data 2000
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia. Curso de Pós-Graduação em Sensoriamento Remoto.
Assunto Imagem digital : Métodos de classificação : Filtragem de imagens : Filtros de Gabor : Bandas texturais : Máxima verossimilhança Gaussiana
Resumo No processo de classificação de uma imagem digital, o atributo textura pode ser uma fonte importante de informações. Embora o processo de caracterização da textura em uma imagem seja mais difícil, se comparado ao processo de caracterização de atributos espectrais, sabe-se que o emprego daquele atributo pode aumentar significativamente a exatidão na classificação da imagem. O objetivo deste trabalho de pesquisa consiste em desenvolver e testar um método de classificação supervisionado em imagens digitais com base em atributos de textura. O método proposto implementa um processo de filtragem baseado nos filtros de Gabor. Inicialmente, é gerado um conjunto de filtros de Gabor adequados às freqüências espaciais associadas às diferentes classes presentes na imagem a ser classificada. Em cada caso, os parâmetros utilizados por cada filtro são estimados a partir das amostras disponíveis, empregando-se a transformada de Fourier. Cada filtro gera, então, uma imagem filtrada que quantifica a freqüência espacial definida no filtro. Este processo resulta em um certo número de imagens filtradas as quais são denominadas de "bandas texturais". Desta forma, o problema que era originalmente unidimensional passa a ser multi-dimensional, em que cada pixel passa a ser definido por um vetor cuja dimensionalidade é idêntica ao número de filtros utilizados. A imagem em várias "bandas texturais" pode ser classificada utilizando-se um método de classificação supervisionada. No presente trabalho foi utilizada a Máxima Verossimilhança Gaussiana. A metodologia proposta é então testada, utilizandose imagens sintéticas e real. Os resultados obtidos são apresentados e analisados.
Tipo Dissertação
URI http://hdl.handle.net/10183/3165
Arquivos Descrição Formato
000288286.pdf (4.731Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.