Mostrar registro simples

dc.contributor.advisorNavaux, Philippe Olivier Alexandrept_BR
dc.contributor.authorRodrigues, Eduardo Rochapt_BR
dc.date.accessioned2011-11-23T01:20:12Zpt_BR
dc.date.issued2011pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/34776pt_BR
dc.description.abstractWeather forecasting models are computationally intensive applications and traditionally they are executed in parallel machines. However, some issues prevent these models from fully exploiting the available computing power. One of such issues is load imbalance, i.e., the uneven distribution of load across the processors of the parallel machine. Since weather models are typically synchronous applications, that is, all tasks synchronize at every time-step, the execution time is determined by the slowest task. The causes of such imbalance are either static (e.g. topography) or dynamic (e.g. shortwave radiation, moving thunderstorms). Various techniques, often embedded in the application’s source code, have been used to address both sources. However, these techniques are inflexible and hard to use in legacy codes. In this thesis, we explore the concept of processor virtualization for dynamically balancing the load in weather models. This means that the domain is over-decomposed in more tasks than the available processors. Assuming that many tasks can be safely executed in a single processor, each processor is put in charge of a set of tasks. In addition, the system can migrate some of them from overloaded processors to underloaded ones when it detects load imbalance. This approach has the advantage of decoupling the application from the load balancing strategy. Our objective is to show that processor virtualization can be applied to weather models as long as an appropriate strategy for migrations is used. Our proposal takes into account the communication pattern of the application in addition to the load of each processor. In this text, we present the techniques used to minimize the amount of change needed in order to apply processor virtualization to a real-world application. Furthermore, we analyze the effects caused by the frequency at which the load balancer is invoked and a threshold that activates rebalancing. We propose an automatic strategy to find an optimal threshold to trigger load balancing. These strategies are centralized and work well for moderately large machines. For larger machines, we present a fully distributed algorithm and analyze its performance. As a study case, we demonstrate the effectiveness of our approach for dynamically balancing the load in Brams, a mesoscale weather forecasting model based on MPI parallelization. We choose this model because it presents a considerable load imbalance caused by localized thunderstorms. In addition, we analyze how other effects of processor virtualization can improve performance.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectProcessamento paralelopt_BR
dc.subjectHigh performance computingen
dc.subjectMetereologiapt_BR
dc.subjectDynamic load balancingen
dc.subjectWeather forecast modelsen
dc.subjectProcessamento : Alto desempenhopt_BR
dc.subjectProcessor virtualizationen
dc.titleDynamic load-balancing : a new strategy for weather forecast modelspt_BR
dc.typeTesept_BR
dc.contributor.advisor-coPanetta, Jairopt_BR
dc.contributor.advisor-coKale, Laxmikant V.pt_BR
dc.identifier.nrb000792718pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2011pt_BR
dc.degree.leveldoutoradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples