Repositório Digital

A- A A+

Dimensionamento de equipes baseado em modelos de previsão, simulação e alocação : caso de uma empresa do setor elétrico

.

Dimensionamento de equipes baseado em modelos de previsão, simulação e alocação : caso de uma empresa do setor elétrico

Mostrar registro completo

Estatísticas

Título Dimensionamento de equipes baseado em modelos de previsão, simulação e alocação : caso de uma empresa do setor elétrico
Autor Magro, Magda Alexandra de Bona
Orientador Senna, Luiz Afonso dos Santos
Data 2003
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia de Produção.
Assunto Empresa do setor elétrico
Prestação de serviços
Previsão de demanda
Resumo O bom dimensionamento de equipes contribui para o aumento do nível dos serviços prestados pelas empresas, com o menor custo possível. Uma alternativa para abordar a questão foi dimensionar as equipes de eletricistas, de uma empresa do setor elétrico, (utilizando técnicas de previsão de demanda, de simulação e de alocação) para atender de forma otimizada, a demanda variável das atividades prestadas - fornecimento de energia. Um equilíbrio entre a demanda por serviços e a capacidade de execução da empresa evitaria longas filas de espera dos clientes e servidores (eletricistas) ociosos. Cinco etapas forma cumpridas: fase exploratória, coleta de dados, previsão de demanda e simulação do processo e alocação do recurso. Na primeira houve um entendimento de como chegava o pedido do serviço na empresa até a finalização da ordem de serviço. Na coleta de dados foram levantados aproximadamente 80 tipos diferentes de atividades desenvolvidas pelos eletricistas e classificadas de acordo com a prioridade de urgência, prazos de atendimento dos serviços e afinidade de execução das tarefas. Nesta etapa ainda foram coletados os volumes de serviços gerados e tempos médios de deslocamento e execução das atividades. Na terceira etapa foi utilizado um software de previsão de demanda chamado Forecast Pro, possibilitando a escolha automática do modelo de previsão mais apropriado para a série histórica em estudo. Na quarta etapa, foi utilizado um software de simulação de processos chamado Arena. Desenvolveu-se um modelo do processo real com os respectivos dados de entrada dos serviços, tempos de deslocamento e execução e número de equipes. Na última etapa, utilizando a ferramenta Solver do Excel otimizou-se o número de equipes. Um dos resultados da ação foi obter vários cenários com a variação do número de equipes e seus respectivos tempos médios de atendimento, sem causar nenhum dano para a empresa, podendo assim ser analisado qual o melhor cenário para ser implementado na companhia, minimizando o problema.
Tipo Dissertação
URI http://hdl.handle.net/10183/4564
Arquivos Descrição Formato
000457665.pdf (1.458Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.