Repositório Digital

A- A A+

Aplicação híbrida de inteligência computacional voltada à predição de séries temporais

.

Aplicação híbrida de inteligência computacional voltada à predição de séries temporais

Mostrar registro completo

Estatísticas

Título Aplicação híbrida de inteligência computacional voltada à predição de séries temporais
Autor Gouveia, Roger Nobre de
Orientador Barone, Dante Augusto Couto
Data 2013
Nível Graduação
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Informática. Curso de Ciência da Computação: Ênfase em Ciência da Computação: Bacharelado.
Assunto Armazenamento : Dados
Sistemas : Informacao gerencial
[en] Artificial neural networks
[en] Genetic algorithm
[en] Time series forecasting
Resumo Redes Neurais Artificiais (RNAs) possuem capacidade de aprender padrões, e depois reconhecê-los mesmo quando inseridos em ambientes ruidosos. Séries temporais (medições ordenadas ao longo do tempo) comumente possuem uma grande quantidade de ruído aleatório, o que dificulta a sua previsão. A utilização de RNAs para previsão de séries temporais parece adequada. O problema principal são a quantidade de decisões de projeto para a construção de uma RNA. No caso de previsão de séries temporais, a distribuição neuronal (DN) causa um dos maiores impactos. Algoritmos genéticos (AGs) são uma heurística poderosa adequados para resolver problemas de natureza combinatorial. É bastante lógico combinar AGs e RNAs para previsão de séries temporais. O AG cria RNAs com diferentes DNs. As diversas RNAs fornecem diferentes previsões, o que resulta em competição. Ao final do processo evolutivo, espera-se que a melhor RNA fosse capaz de realizar a melhor previsão. Apesar de seu comportamento aparentemente “inteligente”, os resultados ficaram abaixo do esperado. Os resultados foram comparáveis ao consolidado método Autoregressive Integrated Moving Average (ARIMA), mas foram ligeiramente inferiores.
Abstract Artificial Neural Networks (ANN) are capable of learning patterns, and then recognizing them even when inserted in noisy environments. Time series (measurements ordered in time) normally have great quantities of random noise, what hampers their forecasting. The utilization of ANNs to time series forecasting seems adequated. The main problem is the amount of project decisions to build an ANN. In the case of time series forecasting, the neural distribution (ND) causes one of the biggest impacts. Genetic algorithms (AGs) are a powerful heuristics able to solve problems of combinatorial nature. It is logical combinate GAs and ANNs for time series forecasting. The GA creates ANNs with different forecastings, what leads to competition. In the end of the evolutionary process, it is expected that the best ANN be capable of doing the best forecasting. Although its behaviour seems “intelligent”, the results were under the expected. The results were comparable to the consolidated method Autoregressive Integrated Moving Average (ARIMA), yet slightly worse.
Tipo Trabalho de conclusão de graduação
URI http://hdl.handle.net/10183/66078
Arquivos Descrição Formato
000870986.pdf (2.258Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.