Repositório Digital

A- A A+

Automated prescreening of melanocytic skin lesions using standard camera images.

.

Automated prescreening of melanocytic skin lesions using standard camera images.

Mostrar registro completo

Estatísticas

Título Automated prescreening of melanocytic skin lesions using standard camera images.
Outro título Análise automática de lesões de pele melanocíticas utilizando imagens de câmeras convencionais
Autor Cavalcanti, Pablo Gautério
Orientador Scharcanski, Jacob
Data 2013
Nível Doutorado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação.
Assunto Computação gráfica
Informática médica
Processamento : Imagem
Segmentacao : Imagem
[en] Image processing
[en] Melanocytic skin lesions classification
[en] Melanoma
Resumo Melanoma é um tipo maligno de lesão de pele pigmentada, e atualmente está entre os tipos de câncer existentes mais perigosos. Entretanto, diferenciar casos malignos de benignos é uma tarefa difícil mesmo para experientes especialistas, e um sistema de diagnóstico auxiliado por computador pode ser uma ferramenta bastante útil. Normalmente, este sistema inicia por um pré-processamento da imagem, isto é, remoção de artefatos indesejados, como pelos, sardas ou efeitos de sombreamento. A seguir, o sistema executa uma etapa de segmentação, identificando as bordas da lesão. Por fim, baseando-se na área da imagem identificada como lesão, diversas feições são computadas e uma classificação é gerada. Neste tese, apresentada na forma de uma coleção de artigos publicados, nós apresentamos técnicas para automaticamente executar todos estes passos, resultando em um pré-diagnóstico para uma lesão de pele pigmentada baseado apenas em uma imagem convencional (uma simples fotografia). Nós testamos nossos métodos em bases de imagens públicas e atingimos melhores resultados de segmentação e classificação que os demais métodos presentes na literatura.
Abstract Melanoma is a type of malignant pigmented skin lesion, and currently is among the most dangerous existing cancers. However, differentiating malignant and benign cases is a hard task even for experienced specialists, and a computer-aided diagnosis system can be an useful tool. Usually, the system starts by pre-processing the image, i.e. removing undesired artifacts such as hair, freckles or shading effects. Next, the system performs a segmentation step to identify the lesion boundaries. Finally, based on the image area identified as lesion, several features are computed and a classification is provided. In this Thesis, presented as a collection of published papers, we detail approaches to automatically execute all these steps, resulting in a pre-diagnosis for a pigmented skin lesion based only in a standard camera image (i.e. a simple color photograph). We tested our methods on publicly available datasets and achieved better segmentation and classification results than methods previously proposed in the literature.
Tipo Tese
URI http://hdl.handle.net/10183/72926
Arquivos Descrição Formato
000891180.pdf (17.41Mb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.