Repositório Digital

A- A A+

Seleção de variáveis para clusterização através de índices de importância das variáveis e Análise de Componentes Principais

.

Seleção de variáveis para clusterização através de índices de importância das variáveis e Análise de Componentes Principais

Mostrar registro completo

Estatísticas

Título Seleção de variáveis para clusterização através de índices de importância das variáveis e Análise de Componentes Principais
Outro título Clustering variable selection through variable importance indices and principal component analysis
Autor Cervo, Victor Leonardo
Orientador Anzanello, Michel José
Data 2013
Nível Mestrado
Instituição Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia de Produção.
Assunto Análise multivariada
Planejamento e controle da produção
[en] Clustering analysis
[en] Kernel functions
[en] Principal component analysis
[en] Variable selection
Resumo A presente dissertação propõe novas abordagens para seleção de variáveis com vistas à formação de grupos representativos de observações. Para tanto, sugere um novo índice de importância das variáveis apoiado nos parâmetros oriundos da Análise de Componentes Principais (APC), o qual é integrado a uma sistemática do tipo forward para seleção de variáveis. A qualidade dos agrupamentos formados é medida através do Silhouette Index. Um estudo de simulação é projetado para avaliar a robustez e o desempenho da sistemática proposta em dados com diferentes níveis de correlação, ruído e número de observações a serem clusterizadas. Na sequência, é apresentada uma versão modificada da sistemática original, a qual utiliza funções kernel para remapeamento dos dados com vistas ao incremento da qualidade de clusterização e redução das variáveis retidas para formação dos agrupamentos. A versão modificada é aplicada em 3 bancos de dados da indústria química, aumentando a qualidade da clusterização medida pelo SI médio em 150% e utilizando em torno de 6% das variáveis originais.
Abstract This thesis proposes new approaches for variable selection aimed at forming representative groups of observations. For that matter, we suggest a new variable importance index based on parameters derived from the Principal Component Analysis (PCA), which is integrated to a forward procedure for variable selection. The quality of clustering procedure is assessed by the Silhouette Index. A simulation study is designed to evaluate the robustness of the proposed method on different levels of variable correlation, noise and number of observations to be clustered. Next, we modify the original method by remapping observations through kernel functions tailored to improving the clustering quality and reducing the retained variables. The modified version is applied to 3 databases related to chemical processes, increasing the quality of clustering measured by SI on average 150%, while using around 6% of the original variables.
Tipo Dissertação
URI http://hdl.handle.net/10183/75915
Arquivos Descrição Formato
000891315.pdf (429.2Kb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.