Repositório Digital

A- A A+

Extensões normalizantes de anéis

.

Extensões normalizantes de anéis

Mostrar registro completo

Estatísticas

Título Extensões normalizantes de anéis
Autor Steffenon, Rogerio Ricardo
Orientador Ferrero, Miguel Angel Alberto
Data 2000
Nível Doutorado
Instituição Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Assunto Anéis : Extensões normalizantes de anéis : Correspondência biunívoca : Ideais primos : Extensões intermediárias : Radicais primos
Resumo Nesta tese, estudamos extensões normalizantes de anéis. Mais precisamente, R é um anel semiprimo e S é uma extensão normalizante livre de torção de R. Estendemos os resultados obtidos para bimódulos em [M. Ferrero, Closed submodules of normalizing bimodules over semiprime rings, Comm. Algebra, a aparecer], para as extensões de anéis e introduzimos o conceito de módulo R-essencialmente normalizante. Em particular, construímos a extensão canônica livre de torção S* de S. Além disso, obtemos uma correspondência biunívoca entre ideais fechados, ideais primos fechados e ideais semiprimos fechados de S, S é S0, onde S0 é o normalizador de R em S*. Também provamos alguns resultados referentes a tipos especiais de ideais primos e radicais de anéis.
Abstract In this thesis we study normalizing extensions of rings. More preciselly, R is a semiprime ring and S is a torsion-free normalizing extension of R. We extend the results obtained in [M. Ferrero, Closed submodules of normalizing bimodules over semiprime rings, Comm. Algebra, to appear] for bimodules to rings extensions and we introduce the concept of R-essentially normalizing module. In particular, we construct the canonical torsion-free extension S* of S. Moreover, we obtain a one-to-one correspondence between closed ideals, closed prime ideals and closed semiprime ideals of S, S* and S0, where S0 is the normalizer of R in S*. Also, we prove some results referring to special types of prime ideals and radicals of rings.
Tipo Tese
URI http://hdl.handle.net/10183/93346
Arquivos Descrição Formato
000280706.pdf (398.9Kb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.