Repositório Digital

A- A A+

A equação unidimensional de difusão de nêutrons com modelo multigrupo de energia e meio heterogêneo : avaliação do fluxo para problemas estacionários e de cinética

.

A equação unidimensional de difusão de nêutrons com modelo multigrupo de energia e meio heterogêneo : avaliação do fluxo para problemas estacionários e de cinética

Mostrar registro completo

Estatísticas

Título A equação unidimensional de difusão de nêutrons com modelo multigrupo de energia e meio heterogêneo : avaliação do fluxo para problemas estacionários e de cinética
Outro título The one dimensional diffusion equation with multi group energy model and heterogeneous media: flux evaluation to stationary and kinetic problems
Autor Ceolin, Celina
Orientador Vilhena, Marco Tullio Menna Barreto de
Data 2014
Nível Doutorado
Instituição Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Assunto Equações de transporte de neutrons
Metodos numericos
Reator nuclear
[en] Firefly algorithm
[en] Harmony search
[en] Meta-heuristic algorithms
[en] Structural optimization
[en] Truss structures
Resumo Na presente tese é resolvida a equação de difusão de nêutrons estacionária, bem como problemas de cinética, em geometria unidimensional cartesiana multi-região considerando o modelo de multigrupos de energia. Um dos objetivos e inovação neste trabalho é a obtenção de uma solução aproximada com estimativa de erro, controle de precisão e na forma de uma expressão analítica. Com esse tipo de solução não há a necessidade de recorrer a esquemas de interpolação, geralmente necessários em caso de discretizações do domínio. O fluxo de nêutrons é expandido em uma série de Taylor cujos coeficientes são encontrados utilizando a equação diferencial e as condições de contorno e interface. O domínio é dividido em várias células, cujo tamanho e o grau do polinômio são ajustáveis de acordo com a precisão requerida. Para resolver o problema de autovalor é utilizado o método da potência. A metodologia é aplicada em um benchmark que consiste na solução da equação de difusão como condição inicial e na solução de problemas de cinética para diferentes transientes. Os resultados são comparados com sucesso com resultados da literatura. A convergência da série é garantida pela aplicação de um raciocínio baseado no critério de Lipschitz para funções contínuas. Cabe ressaltar que a solução obtida, em conjunto com a análise da convergência, mostra a solidez e a precisão dessa metodologia.
Abstract In the present dissertation the one-dimensional neutron diffusion equation for stationary and kinetic problems in a multi-layer slab has been solved considering the multi-group energy model. One of the objectives and innovation in this work is to obtain an approximate solution with error estimation, accuracy control and in the form of an analytical expression. With this solution there is no need for interpolation schemes, which are usually needed in case of discretization of the domain. The neutron flux is expanded in a Taylor series whose coefficients are found using the differential equation and the boundary and interface conditions. The domain is divided into several layers, whose size and the polynomial order can be adjusted according to the required accuracy. To solve the eigenvalue problem the conventional power method has been used. The methodology is applied in a benchmark problem consisting of the solution of the diffusion equation as an initial condition and solving kinetic problems for different transients. The results are compared successfully with the ones in the literature. The convergence of the series is guaranteed by applying a criterion based on the Lipschitz criterion for continuous functions. Note that the solution obtained, together with the convergence analysis, shows the robustness and accuracy of this methodology.
Tipo Tese
URI http://hdl.handle.net/10183/96762
Arquivos Descrição Formato
000917981.pdf (613.9Kb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.