Repositório Digital

A- A A+

Mapeamento digital de classes de solos : características da abordagem brasileira

.

Mapeamento digital de classes de solos : características da abordagem brasileira

Mostrar registro completo

Estatísticas

Título Mapeamento digital de classes de solos : características da abordagem brasileira
Outro título Digital soil mapping : characteristics of the brazilian approach
Autor Ten Caten, Alexandre
Dalmolin, Ricardo Simão Diniz
Mendonça-Santos, Maria de Lourdes
Giasson, Elvio
Resumo O solo é cada vez mais reconhecido como tendo um importante papel nos ecossistemas, assim como para a produção de alimentos e regulação do clima global. Por esse motivo, a demanda por informações relevantes e atualizadas em solos é crescente. Pesquisadores em ciência do solo estão sendo demandados a gerar informações em diferentes resoluções espaciais e com qualidade associada dentro do que está sendo chamado de Mapeamento Digital de Solos (MDS). Devido ao crescente número de trabalhos relacionados ao MDS, faz-se necessário reunir e discutir as principais características dos estudos relacionados ao mapeamento digital de classes de solos no Brasil, o que irá possibilitar uma perspectiva mais ampla dos caminhos, além de nortear trabalhos e demandas futuras. O mapeamento de classes de solos empregando técnicas de MDS é recente no país, com a primeira publicação em 2006. Entre as funções preditivas utilizadas, predomina o emprego da técnica de regressões logísticas. O fator de formação relevo foi empregado na totalidade dos estudos revisados. Quanto à avaliação da qualidade dos modelos preditivos, o emprego da matriz de erros e do índice kappa têm sido os procedimentos mais usuais. A consolidação dessa abordagem automatizada como ferramenta auxiliar ao mapeamento convencional passa pelo treinamento dos jovens pedólogos para a utilização de tecnologias da geoinformação e de ferramentas quantitativas dos aspectos de variabilidade do solo.
Abstract Soil is increasingly being recognized as having an important role in ecosystems, as well as for food production and global climate regulation. For this reason, the demand for relevant and updated soil information is increasing. Soil science researchers are being demanded to produce information in different spatial resolutions with associated quality in what is being called Digital Soil Mapping (DSM). Due to an increasing number of papers related to the DSM in Brazil, it is necessary to discuss the main characteristics of those studies related to the automated mapping of soil classes, which will enable a broader perspective of the subject and guide future works and demands. The mapping of soil classes using DSM techniques is recent in the country, the first publication in this topic occurred just in 2006. Among the predictive functions the predominant is logistic regression. The soil formation factor relief was used in all studies reviewed. Quality of predictive models was evaluated employing error matrix and kappa which were the most common procedures. The consolidation of this automated approach as an auxiliary tool to the conventional soil mapping will demand training of young soil scientists to use geoinformation technologies and quantitative tools to handle aspects of soil variability.
Contido em Ciência rural, Santa Maria. Vol. 42, n. 11 (nov. 2012), p. 1989-1997
Assunto Classificacao do solo
Reconhecimento do solo
[en] Pedometric
[en] Soil classes
[en] Soil survey
Origem Nacional
Tipo Artigo de periódico
URI http://hdl.handle.net/10183/98464
Arquivos Descrição Formato
000902892.pdf (50.49Kb) Texto completo Adobe PDF Visualizar/abrir

Este item está licenciado na Creative Commons License

Este item aparece na(s) seguinte(s) coleção(ões)


Mostrar registro completo

Percorrer



  • O autor é titular dos direitos autorais dos documentos disponíveis neste repositório e é vedada, nos termos da lei, a comercialização de qualquer espécie sem sua autorização prévia.
    Projeto gráfico elaborado pelo Caixola - Clube de Criação Fabico/UFRGS Powered by DSpace software, Version 1.8.1.