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Growth and form of two-dimensional rotating aggregates
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We propose a two-dimensional particle-cluster aggregation model which considers explicitly linear
and angular momentum conservation. Each aggregate is grown from a seed of given mass and given
initial angular velocity, to which particles of unitary mass and ballistic trajectories are added.
The fractal dimensions of the resulting aggregates are calculated and Fourier transform analysis is
performed. Very different features are found, as initial conditions are varied. Particularly, spiral
structures are found for a seed of high mass and high initial angular velocity.

PACS number(s): 05.40.+j, 81.35.+k, 95.30.—k

I. INTRODUCTION

Shape and growth of natural systems are definitely in-
fiuenced by the conditions imposed by conservation laws
of physical quantities. Particularly, conservation of an-
gular momentum and the consequent rotation play an
essential role in spiral structures as vortices or galax-
ies. Evidently, specific details are relevant and may not
be discarded when the purpose is to obtain quantitative
predictions about measurable characteristics of a given
system. However, when different systems may present
very similar patterns, one can guess that some univer-
sal law should be determinant. For example, the overall
pattern in cellular structures such as soap bubbles, poly-
crystalline grains, and biological tissues are determined
by the maximum entropy, subjected to topologic and ge-
ometric constraints [1].

Aggregation models provide a useful technique to in-
vestigate the role played by diferent conditions on the
growth dynamics of a system. It is an interesting point
to apply such a technique to investigate the inBuence of
rotation on the final shape of a cluster. Rotating aggre-
gates in the context of cluster-cluster aggregation have
been previously studied [2], but not fully considering the
classical mechanics conservation laws.

Here we propose a two-dimensional aggregation model
where conservation of total angular and linear momenta
are explicitly considered. A system made of many ag-
gregated particles may store angular momentum in two
channels: the motion of its center of mass and the rela-
tive motion of its particles. Hence, when a new particle
is aggregated to the system, through an inelastic colli-
sion, its angular momentum is distributed in these two
channels and both center of mass velocity and angular ve-
locity are changed in order to keep constant total linear
and angular momenta.

We consider an initial seed, with given mass mo, uni-
tary radius, and initial angular momentum 10, and inci-
dent particles with unitary mass following ballistic trajec-
tories coming from all directions with random velocities.

In the absence of rotation one recovers a ballistic version
of the Witten-Sander model [3,4].

To investigate the morphology of different aggregates
we determine a fractal dimension and perform a two-
dimensional (2D) Fourier analysis of their particle dis-
tributions, taking as basis functions logarithmic spirals,
which are specially adequate to study spiral point distri-
butions [5]. A crossover from a Witten-Sander-like be-
havior to a structure which presents a unique logarithm
spiral arm is observed.

The paper is organized as follows: Sec. II introduces
the model; in Sec. III we present the calculation pro-
cedure to obtain the aggregate fractal dimensions and
discuss the spiral transform; Sec. IV presents and dis-
cusses the results; and, finally, in Sec. V we summarize
our conclusions.

II. MODEL

We consider 2D ofF-lattice, particle-cluster aggregation
[3,4], with the incident particles describing straight tra-
jectories. The simulation begins with an initial seed of
unitary diameter, mass mo, and angular velocity uo, lying
at x = 0, y = 0. Particles with unitary mass and uni-
tary diameter are thrown towards the seed with random
velocities from random points of a circle centered at the
center of mass of the growing cluster, of radius 1.5r
where r is the maximum radius of the cluster. When
an incident particle touches the cluster it sticks to it ir-
reversibly. Particles that do not touch the cluster just
leave the circle. The process is repeated until the final
aggregate is obtained.

Total linear and angular momenta are conserved, i.e. ,
cluster linear and angular momenta are "updated" by
adding the momenta transferred by the incoming parti-
cle.

Particle speed is a random variable uniformly dis-
tributed over the interval [10d/s, 50d/s], where d is the
particles diameter and s is one "simulation time step. "
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This ensures a range of possible values for the particle's
probability of capture by the growing cluster. The veloc-
ity direction is also randomly distributed.

The simulations were performed on a Sun Sparc-
station 2 workstation, and five aggregates of about
104 particles each have been constructed for each set
of initial conditions: initial mass mo equal to 1,
10s, and 10i~ (where the incident particles have uni-
tary mass) and initial angular velocities uo equal to
0, 0.1,0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 rad/s.

Typical aggregates are shown in Fig. l. In the case
of unitary initial mass, one recovers a ballistic Witten-
Sander aggregation because after a very short transient
the angular velocity of the aggregate with respect to its
center of mass decays to zero (due to the increase in the
moment of inertia of the cluster). For mo = 10 interest-
ing behaviors appear, the angular velocity decays slowly,
and many particles may be added to the cluster before
it stops rotating. The "infinite initial mass" case is at-
tained when the initial mass is large enough to guarantee
that angular velocity remains constant during the aggre-
gation process. Here, constant rotation occurred with
mo ——10; however, if enough time is allowed, enough
mass will be added to the cluster and its angular veloc-
ity will finally decay to zero. We shall concentrate on the
mo ——10 and 10 aggregates, where interesting features
can be detected.

III. CLUSTER CHARACTERIZATION

Different fractal dimensions [4,6] are typical parame-
ters used to characterize the final products of aggregation
simulations. However, this characterization is very poor
to investigate some specific morphologic features that are
apparent in aggregates as those shown on Fig. 1: very dif-
ferent aggregates may have the same fractal dimension.
Hence, a further characterization is required and we shall
use a two-dimensional transform over the set of points as-
sociated with the positions of the particles in the cluster.
This is a 2D Fourier transform with the basis functions
being logarithmic spirals, which are especially adequate
to put in evidence spiral arm structure that a set of points
may present [7—9].

A. Box-counting dimension

Consider M, a set of points in a plane whose fractal
dimension is to be calculated. Consider also a square lat-
tice with lattice parameter 6 over the set. Box-counting
dimension D~ is defined as the limit (whenever it exists)

coo=0.5 CO0=1.0 I =1.50

(a) (c)

F0=0.2 &@0=1.5 CO0=2.5

(e)

FIG. 1. Typical clusters obtained from simulations. (a)—(c) The infinite mass regime is obtained for mp = 10 and (d)—(f)
the finite-mass regime for mo ——10 . The aggregates have the following fractal dimensions: (a) 1.75, (b) 1.69, (c) 1.58, (d) 1.84,
(e) 1.83, and (f) 1.82.
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where Np is the number of cells containing at least one
point of the set [10].

We averaged D~ for five different aggregates with the
same initial conditions. Care was taken with lower and
upper cutoffs, defined, respectively, by the diameter of
the aggregated particles and the size of the aggregate.
The number of particles in the aggregates is typically
104. The ballistic Witten-Sander model builds up com-
pact cluster, but this result is numerically very difficult
to obtain [11,12]: simulations up to 25000 particles were
necessary to reach a value near 2 for fractal dimension,
in the 2D case. The reason for this is the number of large
holes that are also "grown" with the aggregate. A similar
effect may also be present in our aggregation and finite-
size effects must be taken into account, as discussed in
Sec. IV.

B. 2D Fourier transform

Here we consider a Fourier transform which was first
introduced to study spiral galaxies [5,7—9] and is espe-
cially adequate to study the morphology of spiral clus-
ters.

Consider a function f(r, 8), defined in the real plane
in polar coordinates. The Fourier transform E„(p)(f} of
the function f is defined as [9]

& (p)(&) = f(r, 8)e' ~" '""+" ) d(ln r) d8, (2)

where p is real and n is an integer. E„(p) is complex and
it is convenient to define a real quantity I„(p) as

I (p) = I& (p)l'

TABLE I. Relation of geometric aspects of the spirals with
the spectra.

Geometric
characteristics

Effects on
spectra

Number of spiral arms N
Pitch angle a
Arm thickness o.

Arm's length

Peaks when m = kN
Position of the peak
Peak intensity
Peak thickness

be found only for even n. Analogously, when the points
are distributed over k logarithmic spirals with the same
pitch angle and with phase differences of (27r)/k between
each arm, peaks will only be found for values of n that
are multiples of k.

It is clear that the set of points we are interested in
analyzing is finite and the points are not exactly dis-
tributed over logarithmic spirals. The arms are also fi-
nite and have finite width. Nevertheless, the pitch angles
are reasonably constant for each aggregate and the phase
difference are roughly (2vr)/k for k-armed structures.

The consequence of the width and finite length of the
aggregate arms, together with statistical variations of the
pitch angle, is to make the analysis of resulting spectra
more complex: peaks may overlap and/or grow wider and
less intense. Table I summarizes this scenario.

Here we follow the protocol suggested by Refs. [5,7—9]
for the analysis of the spectra of the aggregates: we inves-
tigate the values of n where there are peaks, and compare
their intensity and width. The results are presented in
the following sections, together with the measures of the
fractal dimension D~.

As n is a discrete parameter, this Fourier transform
yields a collection of spectra I„(p). To verify the ade-
quacy of this transform in analyzing spiral aggregates,
consider the following function f(r, 8) that represents N
points distributed over the real plane

y(r, 8) = )~(r —r, )~(8 —8, ), —

where (r~, 8~) are the polar coordinates of the jth point.
The resulting spectrum for this distribution is given by

N

(p)
— ) ei (P in r~ +n6~ )

j=l
(5)

where the factor N is introduced for normalization pur-
poses.

Pronounced peaks are found around p = n/o. when-—
ever the points are distributed along a single logarithmic
spiral given by r = exp a8, where n is the tangent of the
pitch angle, that is, the angle between the perpendicu-
lar to the position vector and the tangent vector at any
point belonging to the spiral. In the case of points dis-
tributed over two spirals with the same pitch angle but
with a phase difference of 7r between the arms, peaks will

IV. RESULTS

Three situations are considered.
(i) Unitary initial mass, when the angular velocity

rapidly decays to zero. In this case, after few simulation
steps, the aggregate is equivalent to the Witten-Sander
ballistic model, and no new interesting phenomena were
detected.

(ii) Finite initial mass, typically mo = 10 . Here the
angular velocity decays slowly. The inner core structure
is then highly infIuenced by the angular velocity but the
external structure may evolve to a circularly symmetric
one, depending on the initial values of the angular mo-
mentum. In this case one or more arms may appear. It
will be discussed in detail in Sec. IV A.

(iii) Infinite initial mass, typically mo & 10, where
the angular velocity remains approximately constant.
Very different final patterns may appear, depending on
the initial angular velocity. This case also deserves spe-
cial attention and we shall return to it in Sec. IVB.

A. Finite initial mass

With mo ——10 the increase in the moment of iner-
tia is sufFicient to decrease the angular velocity, but the
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decay is slow enough to allow many particles to be aggre-
gated before it goes to zero. As a consequence, the inner
structure of the aggregate may have a different morphol-
ogy from its outer parts. When the aggregate rotates
with a non-negligible angular velocity its outer extremi-
ties screen the interior and one or more spiral arms may
grow. On the other hand, as particles are aggregated,
the moment of inertia increases, the angular velocity de-
creases and the screening of inner parts become less effi-
cient: the arms tend to widen up until the angular veloc-
ity is practically zero and there is a circularly symmet-

1.0

0.4
0

2.5
1.5

I

3000 6000
Number of aggregated particles

FIG. 3. Dependence of the strongest peak intensity for
n = 1 on the number of aggregated particles for clusters with
mp ——10, 4)p ——1.5 and 2.5.

(a)

ric probability of aggregating particles for every exterior
point of the clusters, destroying spiral distributions.

The greater the initial angular velocity, the faster the
increase in the moment of inertia, due to more efficient
screening and, consequently, to larger distances from the
center of mass to the sticking points where new particles
are aggregated: the higher rate to increase the moment of
inertia compensates the higher initial angular velocity. In
this case of finite initial mass, the aggregates present ap-
proximately the same form and, consequently, the same
box-counting dimension for all initial angular velocities,
roughly 1.8 (see Fig. 1).

Figure 2 shows three snapshots of a finite initial mass
cluster growth, at difFerent stages. The initial growth of
spiral arms and the posterior broadening of the arms are
clearly displayed.

The slowing down of the angular velocity and its con-
sequences in the structure of the cluster are also detected
by the Fourier analysis. Figure 3 shows the most intense
peak I„(p) for the aggregate shown in Fig. 2: the inten-
sity decreases as the number of particles grows, due to
the broadening of spiral arms.

B. Infinite initial mass

FIG. 2. Three snapshots of a cluster with mp ——10 and
uo = 2.5 for (a) 1000, (b) 6000, and (c) 9920 aggregated par-
ticles. The broadening of this spiral arm causes the decrease
of the Fourier-transform peak intensity in Fig. 3.

We consider irifinite initial mass when the initial mo-
ment of inertia is much larger than the moment of iner-
tia added to the cluster by all aggregated particles. This
limit is attained in the simulations for mo ——10i2, and
yields a constant angular velocity throughout the growth
process. While for a finite mass the interesting feature
is the crossover from a regime with a finite initial angu-
lar velocity to a zero one, here the interest is exactly the
opposite. As the patterns are determined by a constant
value of angular velocity, this case is especially suitable
for an investigation of the effects of rotation in the final
form of the aggregates. We investigate the dependence
of the structure of the cluster with angular velocity. For
uo = 0, the ballistic Witten-Sander model, D~ = 2, is
not yet attained due to finite-size effects which are still
important for 104 particles, as shown in Fig. 4.
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1.90 spectra for this case. The relative intensities of n = 1
and n = 2 peaks signals the crossover from a two arm
structure [where Iq(p) )Iq(p)] to a unique arm cluster
[Iq(p) )lq(p)]. This figure also presents the same plots
for m, o ——10 and ~0 ——1.5, where there is no crossover
because at this angular velocity we can only detect a
unique arm structure evolving since the beginning of the
aggregation process.

Figure 8 shows the intensity of the most intense peak
against n for different values of ~o. as the angular ve-
locity increases, the structure tends to present an unique

1.60
0

I

5000
NUmber of aggregated particles

10000

FIG. 4. Plot of D~ against the number of aggregated par-
ticles for uo ——0.0 and 0.2 in the infinite initial mass limit.

The dependence of D~ with cup in this case is shown in
Fig. 5. The behavior is not trivial: there is a minimum
at uo ——0.2. This effect is a consequence of different
screening regime of the inner core. Figure 6 shows three
different aggregates, for wp = 0, 0.2, and 0.5 (before, at,
and after the minimum).

For cup = 0.2 one observes formation of many spiral
arms. These arms, although not sufficiently defined to
present very peaked structures in its spiral transform
spectra, are complex enough to screen some inner parts
and to lower the cluster fractal dimension.

For uo ——0.5 the inner complex structure is com-
pletely screened by the longest arm: the angular velocity
becomes high enough to strongly favor sticking at the
outer points. More exterior points means more efBcient
screening: as the largest arm grows, the structure tends
to present a unique spiral arm. The Fourier analysis
clearly detects the crossover, which can be described as
a process that begins with a circularly symmetric struc-
ture and evolves towards a unique spiral arm, passing
through stages of many spiral arms which are succes-
sively screened by the largest one. Figure 7 shows the (b)

2.0

~~IS+
a~Q

1.5
0.0 1.0 2.0 3.0 (c)

FIG. 5. Dependence of D~ with wo for mo ——10 . The
averages are taken over five aggregates.

FIG. 6. Three clusters with mp = 10'2 and (a) ~p = 0, (b)
wp = 0.2, and (c) up = 0.5. These aggregates correspond to
the points before, on, and after the minimum of Fig. 5,
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similarity of these aggregates with that structures. For) 0.2, on the other hand, at the beginning of the
aggregation process the structure starts presenting many
arms, but as more particles are aggregated, the longest
arm screens the other ones and the external structure
tends to a unique spiral arm pattern. The rate at which
this larger arm effectively screens the internal structure
depends on the angular velocity. For low values, near 0.2,
this happens much slower and a complex inner structure
may grow before it is completely screened by the exter-
nal arm while for high values of angular velocity there
is no internal structure because a unique arm is favored
from the very beginning of the process (see Fig. 1). This
dynamics explains the plots in Fig. 5: besides the broad-
ening of the larger arm due to a lower angular velocity,
the complex internal structure also decreases the fractal
dimension for low values of ufo.

-n=1
= =n=2

0.0
0 5000

Number of aggregated particles
10000

FIG. 7. Intensity of the stronger peak for n=1 and 2 in the
infinite mass regime for (a) mo = 0.5 and (b) ue = 1.0.

arm, progressively better defined, with a sharply peaked
spectrum Ii (p).

In summary in the infinite initial mass case, two di6'er-
ent behaviors emerged, determined by the initial angular
velocity. For uo ( 0.2, the patterns are very complex,
many spiral (proto) arms may evolve, the fractal dimen-
sion decreases from 1.8 to 1.5 with increasing ~o and the
spectra I„(p) is very complex but qualitatively equivalent
to those found for some spiral galaxies [7,8], refiecting the

m m$0= 1.0

CO0 = 1.5

co„=2.0

0.0
0

1

3
ll

I'IG. 8. Intensity of the most intense peak against n for mo= 0.5, 1.0, 1.5 and 2.0 and mo ——10

V. CONCLUSIONS

Here we presented an ofF-lattice, particle-cluster aggre-
gation model, where the angular and linear momenta are
explicitly conserved, by considering inelastic collisions of
the particles with the cluster. We varied the initial seed
mass and angular momentum. The resulting aggregates
present very different morphologies, which have been an-
alyzed through the determination of the box-counting
dimension and 2D Fourier-transform spectra. This last
technique revealed itself especially suitable to study the
morphology of rotating aggregates because the aggre-
gates may present spiral arms.

Three initial mass conditions have been considered:
unitary mass, which stops rotating rapidly; finite mass,
where the angular velocity varies from an initial value
down to zero during the aggregation process; and infi-
nite mass, where the angular velocity remains constant
throughout the simulation. The second and third cases
exhibit diferent patterns and interesting features.

For initial finite mass, the anal aggregate form is very
similar and qualitatively independent of the initial angu-
lar velocity. There is an internal structure, where many
(proto) spiral arms may appear, but as the aggregate
stops rotating, the arms broaden up and the outer struc-
ture tends to get circularly symmetric. No peaked spec-
tra emerges from the spiral transform analysis.

In the case of infinite initial mass, the final form of
the aggregate strongly depends on the initial angular ve-
locity. For low angular velocities, a complex structure
emerges, with many broad spiral arms similar to the
structure of spiral galaxies. The fractal dimension (D~)
decreases with increasing angular velocity up to uo ——0.2,
where it reaches a minimum. At this angular veloc-
ity, as more particles are aggregated, the longest arm
screens the others, and a external, single-armed struc-
ture screens a complex inner core. The fractal dimen-
sion increases a little with angular velocity, and decreases
again, because a too large angular velocity causes the
width of the spiral arm to shrink. When the angular ve-
locity becomes too large no internal structure is formed
and, in the ~0 —+ oo limit, the cluster tends to a one-
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dimensional object. The 2D Fourier-transform spectra
manages to detect and quantify all these different behav-
iors and crossovers.

On the other hand, when enough time is allowed, the
"infinite initial mass" aggregates should stop rotating
and present a circularly symmetric external structure en-
volving an internal complex core, as in the finite mass
regime. The size and the complexity of this inner core
will be extended, and may deserve a careful investigation,
but due to the computation time required it is beyond the
aim of this paper.

Many physical systems may present spiral patterns. In
particular, spiral galaxies are found to present from two
to many spiral arms, very tightly wound or loosely open,
narrowly or widely spread along a (logarithmic) spiral di-
rection (for a review see Ref. [13] and references therein).
Their 2D Fourier spectra show that few components pro-
vide a good representation of their shape (ionized hy-
drogen region distributions) [7—9]. The logarithmic spi-
ral character also appears in our aggregates, and can be

taken as an indication of the role that angular momen-
tum conservation and the consequent rotation movement
plays in the growth of spiral arms in galaxies. A system-
atic investigation of these natural systems through ag-
gregation models that conserve total angular momentum
may bring some further insight about the physics govern-
ing the dynamics of growth of spiral arms in galaxies.
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