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Magnetic susceptibility and specific heat of tbe Anderson lattice: Perturbative expansion 
around the atomic limit 
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The Green's functions relevant to the periodic Anderson Hamiltonian are calculated via perturbation 
theory around the atomic limit. The approximation reproduces exact results in three different limits: 
zero bandwidth, zero hybridization, and zero Coulomb correlation. The density of states, the magnetic 
susceptibility, and the electronic specific heat are calculated and discussed in both the Kondo and 
intermediate-valence regimes for different values of hybridization and Coulomb repulsion. The results 
are in qualitative agreement with experiments and are related to other theoretical calculations. 

I. INTRODUCTION 

A large class of rare-earth and actinide compounds ex­
hibit anomalous properties that vary from intermediate 
valence (IV) (such as SmS) to Kondo lattices and heavy­
fermion systems (such as CeCu2Si2). 1 In these com­
pounds the linear coefficient ( y ) of the electronic specific 
heat increases from the usual value of 4-10 mJ/mol K 2 

for normal metais, reaching 102 mJ/mol K for IV com­
pounds and 103 mJ/mol K 2 for heavy-fermion systems. 2 

Although specific differences may be stated between IV 
and Kondo systems, common characteristics can be 
found, such as decreasing values for the static susceptibil­
ity at high temperatures, Pauli-like susceptibility at low 
temperatures-in the nonmagnetic compounds-and 
one or more peaks in the specific heat, indicating high 
electronic effective masses. 

A suitable description of rare-earth Kondo and IV sys­
tems should take into account the following characteris­
tics: (a) strongly correlated f electrons; (b) delocalized 
( 5d, 6s ) conduction electrons; (c) mixing between f and 
conduction (c) electrons (hybridization). These are the 
basic ingredients of the periodic Anderson Hamiltonian 
(PAH), which extends the one-impurity Anderson model3 

to the "one-impurity-per-site" description and is one of 
the most studied models to describe this kind of system. 
We write the Hamiltonian as 

H=Ha+Hh, 

separating the atomic part 

(1) 

H a= ~ Enfa + !!_ ~ nfanfa +V~ (cito-fia+ H. c.) , (2) 
i,a 2 i,u i,a 

and the hopping term 

Hh = ~ t;jclacja · 
i,j,a 

(3) 

In Eqs. (2) and (3), c;t (f?l creates a conduction (f) elec­
tron at site i, E is the energy of the f levei, U is the 
Coulomb repulsion between f electrons, V is the hybridi­
zation between f and c electrons (here considered as 
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purely local), and tii is the hopping matrix, or Fourier 
transform of the electronic kinetic energy of the conduc­
tion electrons, Ek. 

Different theoretical treatments of the PAH have been 
explored: Green's-function techniques, variational calcu­
lations, slave boson approach, etc. Comprehensive re­
views of methods and results can be found in the litera­
ture (see, for example, Ref. 4). In particular, it is il­
luminating to solve the atomic part, H a, of the Hamil­
tonian, Eq. (2), which can be exactly diagonalized. 5 

Severa} authors have calculated physical properties in the 
atomic limit such as magnetic susceptibility and specific 
heat, 6- 8 and the results obtained reproduce important 
features observed in real systems. This fact strongly sug­
gests an interesting approach to the problem: to start 
with the atomic solution and introduce the hopping term 
as a perturbation. The only drawback of this method re­
sides in the complex nature o f the perturba tive expansion 
due to the presence of the interaction term in the unper­
turbed Hamiltonian, which prevents the applicability of 
Wick's theorem (see Sec. li). 

Within the perturbative scheme referred to above, a 
simple approximation, which essentially imposes Wick's 
theorem, has been employed with reasonable results in 
the calculation of the one-particle density of states. 5•9 In 
this paper, we use a similar approximation to calculate 
the static magnetic susceptibility (Sec. III) and the 
specific heat (Sec. IV) of the Anderson lattice in both 
Kondo and IV limits. The results can be successfully 
compared with experiments as well as other theoretical 
approaches. For completeness, we include in Sec. li a 
brief review of the method and calculation of the density 
of states. A final criticai discussion of our results is 
presented in Sec. V. 

11. PERTURBATION 
AROUND THE ATOMIC LIMIT 

As stated in Sec. I, the atomic part of the P AH, Eq. (2), 
can be exactly diagonalized. The energy eigenvalues 
(Em) and eigenvectors ( I..Pm) ), with the corresponding 
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number of particles (N m ) and total spin (S~ ), are indicat­
ed in Table I. 

We are interested in the finite-temperature one-particle 
Green's functions10 

!1/j~(r 1 -r2 )=-('T.,a;''c,(r1 )aJ':(r2 )), (4) 

where the superscripts a and ô represent either f- or c­
electron indices (e.g., ah=.f,act=.ct), 'T.,. is the "time" 
ordering operator, and the imaginary time r varies from 
zero to /3= l!kBT. 

From the knowledge of the eigenvalues and eigenvec­
tors of Ha, the atomic Green's functions can be calculat­
ed, using a spectral representation 11 (in the grand­
canonical ensemble), yielding 

gf;(wk)= ~ l: (m!ag,.ln )(nla;~lm) 
m,n 

(5) 

TABLE I. Number ofparticles, eigenvectors, eigenvalues, and spin of H 0 • 

o 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

4 

lt/lm) 

lt/11 >=lo> 

lt/12) =costfof\lo) -sintfoc 110) 

lt/13) =costfofllo) -sintfoc !lo) 

lt/14)=sintfof\ IO)+costfoc\ lO) 

lt/ls) =sintfof1 lO) +costfoc 1 lO) 

lt/16) = ftd lO) 

lt/11) = t1c! lo> 

ltf!s)= ~ <t\c! + t1c\ >lo) 

lt/19) =a9<f\cl- f! c\ )+b9f\J1 +c9c\c li O} 

ltf!w> =aw<f\c 1-tlc r >+bwf\11 +cwc\cllo> 

lt/lu} =au <f\c 1-f! c\ )+buf\11 +cuc1c1IO} 

lt/112} =sin8f\Jlc r +cos8f\c \c tio) 

ltf!B)=sinOf\Jlcl +cosOflc\cllo} 

lt/114} = -cos8f\Jlc 1 +sin8f\c \c !lO) 

lt/11s} = -cosOf\Jlcl +sin8flc \c !lo} 

lt/116> =f\!! c 1c11o> 

tantfo= [ [ Vl 2 

1
112 

E+ E +V2 
2 2 

1 
a;= -V-;2=+=4=V=;2;=[E=;=;2;=+='=(=E=; -=2E=-=u=> ::::;2;:::-] 

R 81 =arccos 312 (-Q) 

R= -k[2(E3+ E'/,)-3(E2Eu+ EEb>+ 18V2(2E-Eu>] 

Em 

E1=0 

E2=tE- [ [ ~ r+V2 r12 

E3=E1 

E4=tE+ [ [ ~ r+V2 r2 

Es=E4 

E 6=E 

E1=E 

E 8 =E 

E 9 =E+ ~ +2V-Qcos [ ~1 ] 

U [81+rr] E10 =E+3+2V-Qcos - 3-

U - [ 81+2rr] E11 =E+J+211-Qcos --3-

E12 = 3E:U _ [ [ E;U r+V2 r2 

E13=E12 

E14 = 3E:U + [ [ E;u ]\v2 r2 

E1s=E14 

EI6=2E+U 

Eu=2E+U 

i=9, 10,11 
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where Z is the grand-canonical partition function, 
Wmn =E;,-E~, E;, =Em -p,Nm, and Wk =(TT/J3)(2k + 1 ), 
k integer. 

In order to calculate the full Green's function, the usu­
al S-matrix perturbation expansion 12 is applied to the 
hopping term, and the Green's functions are written as 

a& _ ( 'T l1;';,.(71)ajJ<72)S(/3))0 
gija(1"1-1"z)-- (S({3))o (6) 

where 

An identical expansion, applied to the Hubbard model, 
has been performed formally by Metzner in a recent pa­
per. 13 We are not going to discuss the details of the per­
turbation expansion. Instead, we will introduce the sim­
plest approximation, which consists in decoupling the 
remaining local averages of four or more fermion opera­
tors in products of pair averages. This is equivalent to 
imposing Wick's theorem, which is not valid due to the 
presence o f the Coulomb interaction term in H a. Within 
this approximation, the total Green's function satisfies 
the Dyson-like equation 

!l~6(k,wn )=g~6 (wn )+g~c(wn )E(k)!l~6(k,wn), (9) 

where 

o (k )= ~ J(3d o .. ( ) i(wnr-k·Rij) 
~a >(J)n ~ 1" ~lja 1" e ' 

j o 
(lO) 

_ f(3 i(wnr) 
ga(wn )- dTga(T)e . 

o 
(11) 

We want to point out that this approximation, besides 
reproducing exactly the atomic limit, is also exact for 
zero Coulomb repulsion when Wick's theorem does apply 
and/or zero hybridization when the bands decouple into 
a purely local f "band" and an uncorrelated conduction 
band. We also stress the fact that the important local 
couplings U and V are not treated perturbatively. 

The density of states for electrons of type a and spin a 
is given by the relation 

p~(w) =- ..!_ lim !líf~(w + i7J) , 
1T 11->0+ 

(12) 

where !líf~(w+i7]) is obtained through the analytic con­
tinuation iwn -">-W+i7], as the retarded version of 

!líf~(wn )=!l~6(wn )= ~ :l: gaô(k,wn), 
k 

(13) 

which is the local Green's function renormalized to in­
clude the effect of the band. 

Equation (9) acquires a simple form in the case 
a=8=c, when we have 

g~(k,wn )=~a -IE(k) ' 

where 

(14) 

S({3)= i ( -l)n 
n=O n! 

X ffJd1"1 .•. ff3d1"n 'T ,..:lh(71) ... Hh(Tn) · 
o o 

(7) 

Due to the local character of the unperturbed Hamil­
tonian the averages of products of fermion operators can 
be exactly decoupled for the different sites, e.g. (dropping 
the spin index), 

which is actually spin independent. 
Introducing the density of states for the uncorrelated 

conduction band, 

1 
p0(E)= N :l:8(E-E(k)), 

k 

we can recast Eq. (9) in the form 

gcc(w )=JdEl(E) 
a n ~-E · 

(15) 

For simplicity, instead of calculating p0(E) for a given 
lattice, with a specified set of t;/s, we introduce a model 
density of states 

_3 [~-~] 
4W W 2 

IEI~W 
(16) 

O iEi?:W. 

W being half the bandwidth. With this, the integral in 
[Eq. (15)] leads to 

!l~(wn)= 4~ 12~W+(W2-~2 )ln [~~:]] (17) 

and for the remaining Green's functions, Eq. (9) yields 

(18) 

!7{/(wn )=g{/(wn )+g~c(wn) 

Xg<j(wn )~(Wn )!l~(wn) · (19) 

We used Eqs. (12), (13), (18), and (19) to obtain the f 
and c densities of states. Figure 1 shows the results at 
low temperatures (TI W =O. 002 ), in the symmetric case, 
2E + U=O. The central pair of peaks corresponds to the 
Kondo resonance, with a gap caused by the coherent hy­
bridization. For higher temperatures other states are ex­
cited, leading to a more complicated structure. Figure 2 
shows the evolution of the density of states near the Fer­
mi levei as a function of the temperature in the nonsym­
metric case E /W= -2, U /W=6, V /W=O.l. As in 
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FIG. 1. Density of states at low temperatures in the sym­

metric case. The continuous line represents f electrons, the 
dashed line represents c electrons. The chemical potential f.L lies 
at zero. The parameters are T /W=0.002, E /W= -2, 
U /W=4, and V /W=0.3. 

the symmetric case, at low temperatures, there is a gap 
and two Kondo peaks near the Fermi levei, but now the 
Fermi levei is not in the gap. The peaks that appear 
when the temperature increases (on the left of the central 
gap for T/W=0.01 and on both sides ofit for T:::0.02) 
arise from transitions between excited atomic states. The 
area under the Kondo peaks decreases with increasing 
temperature, but they do not disappear as in the impurity 
case. 14 This is also suggested in the calculation presented 
by Brandow15 and in the analysis of the optical 
reftectivity by Marabelli, Wachter, and Walker. 16 

111. STATIC MAGNETIC SUSCEPTIBILITY 

We are interested in the zero-field static susceptibility, 

gf.LB d I x=-----<nt-n~) ' (20) 
2 dh h=O 

where 

nit=nft +n{r (21) 

In order to evaluate the magnetic susceptibility we calcu­
lated numerically Eq. (20) by adding a small external-field 

p( ro) 
3 

TIW=0.04 

FIG. 2. View of the density of states near the Fermi levei for 
different temperatures in the nonsymmetric case E /W= -2, 
U /W=6, and V /W=0.3. The continuous (dottedl line 
represents the f (conduction) electrons. The vertical line stands 
for the chemical potential f.L· 

term to the model Hamiltonian, 17 

H:=Ha+gJLBh l:Siz, (22) 

where g is the Landé factor, ILB is the Bohr magneton, 
and the spin operator Siz is related to the site occupation 
by 

(23) 

The number of electrons 1s obtained from the Green's 
functions through 

(24) 

Notice that now the Green's function does depend on 
spin. From Eqs. (20) and (24) we have 

Xi=-T lim 
-r_..o- [..!!._ ~ { g{f- g{f + g~c- g~c Je -iwnr I 

dh ~ •t d •t d . 
a,run 

(25) 

The derivative with respect to the applied field in this last 
equation has been performed numerically. 

Figure 3 shows results in the nonsymmetric Kondo 
case (E /W= -2, U /W=6) for different hybridization 
values. A Curie-W eiss susceptibility is obtained for high 
temperatures and a Pauli-like one for low temperatures 
(in the symmetric case the Fermi levei lies in the gap and 
X->-0 for T -..O). The itinerant nature of the low­
temperature susceptibility is confirmed by the vanishing 
of the local contribution (short-dashed line in Fig. 3) due 
to the complete suppression of the local magnetic mo­
ment (Kondo-compensated state). This is in qualitative 
agreement with experimental observations for certain Ce 
compounds such as CeAI3, CeCu6, and CeCu2Si2• 18•2 

In the IV limit the susceptibility (Fig. 4) decreases 
slowly with T for a large temperature range. The peak is 
Iower than in the Kondo case and decreases for increas­
ing hybridization (we use E= -0.1 and U=2.0 in Fig. 
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FIG. 3. Logarithm of the static susceptibility vs temperature 
for different values of the hybridizations V /W=O.l, 
V /W=0.2, V /W=O. 3, and V /W=O. S in the Kondo limit. 
The other parameters are E /W= -2 and U /W=6. 
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FIO. 4. Static susceptibility vs temperature in the IV case for 
different hybridizations V /W=O.l, V /W=0.2, V /W=0.3, 
and V /W=O.S. The short-dashed line is representative of the 
atomic case for V /W=O.l, the remaining plots include hop­
ping. The other parameters are E /W= -0.1 and U /W=2. 

4). There are no qualitative changes for higher U values. 
This temperature behavior (up to T /W -0.01) can be 
qualitatively compared with experimental results for Sm 
compounds such as SmS, SmSe, and SmTe. 19 We do not 
expect to observe the high-temperature peak that appears 
in Fig. 4 in real systems; if it does appear, it should be 
much broader so that the susceptibility would decrease 
less in the region between the peaks. In fact, in our cal­
culation, this (high-temperature) peak arises from the ex­
ponential suppression of the spin t of the one- and three­
particle states which is overestimated by the local ap­
proach. 

IV. SPECIFIC HEAT 

The electronic specific heat of the system is obtained as 
the derivative of the average energy with respect to tem­
perature, i.e., C=d(H) !dTor, using Eqs. (1)-(3), 

C= :T{E(n{+n{)+v<cVr+frcr+c!Jl+Jlc!) 

+U(n{n{)+(Hc)l, (26) 

with 

(Hc)= ~E(k)(ctacka) (27) 
k,a 

The temperature derivative with respect to the terms 
on V, E, and U in Eq. (26) has been evaluated numerical­
ly. The averages involving two operators have been ob­
tained from the related Green's functions: 

(a~ta~)= lim [r~Y~6(run)e-iw"-r] 
T-+0- w,. 

(28) 

Similarly, the fourth term of expression (26) can also be 
written as 

In order to avoid a naive decoupling of the Coulomb 
term, we introduce another Green's function 

A'tfla·< r)= ( T .,.a;"at ( r)a;"~ ( r>afu.( r)af:(O)) 

and write 

(n~a~Ta~.)= lim [r~A~r(run)e -;.,".,.]· 
1'......,.0- l!Jn 

(29) 

Following a procedure analogous to the one employed 
for the one-particle Green's function, we find 

A~~r(k,li.ln )=A~~u·(lün H A~':ru•(lün )Eu·(k)Y~r(k,li.ln) , 

(30) 

where A(~~a·<li.ln) is the local contribution to the Green's 
function described by Eq. (30), which can be exactly cal­
culated by means ofthe eigenstates of H 0 • 

The relevant A Green's functions satisfy the relations 

(31) 

A~~~(run )=A0!~·(li.ln )+ A0!~·(lün )H(s) , (32) 

A~<J.(run )=A~<fu•(lün H Ao~~·(li.ln )g<J.5<run lH(s), 

(33) 

(34) 

with 

Figure 5 shows the results in the symmetric Kondo 
case with hybridizations V=O.l and 0.05. As usual, we 
plot the linear coefficient of the electronic specific heat, 
y=C/T. In the long-dashed-line plot (V=O.l, includ­
ing hopping) two peaks are observed: The higher­
temperature one is also obtained in the local (no hopping) 
limit (short-dashed line in Fig. 5), and can be associated 
with the formation of the Kondo singlet; the lower­
temperature one is due to the high density of states in the 
vicinity of the Fermi levei. The same structure can be ob­
served for V=0.05 (continuous line in the same figure), 

ClT 

100 

10 

1 

VIW=O 
VIW=0.1(atomlc} 
VIW=0.1 ,, 

- VIW=O.OS .' 

' 
/' 

I \ 

1 0·6 1 o-s 1 0-4 1 0·3 1 0·2 1 0·1 

TIW 

\ 

" 

FIO. 5. Ratio of specific heat and temperature vs temperature 
in the Kondo limit for V /W=O.OS and V /W=O.l. The 
short-dashed line is representative of the atomic case for 
V /W=O.l, the remaining plots include hopping. The parame­
ters are E /W= -2 and U /W=4. 
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FIG. 6. Ratio of specific heat and temperature vs temperature 

in the IV limit for V /W=0.2, V /W=0.3, and V /W=0.5. 
The parameters are E /W= -0.1 and U /W=2. 

the effective mass for this hybridization is m • ~75. The 
ratio between the amplitudes of these peaks depends on 
the hybridization and varies from - 2 to - 10 for V rang­
ing from 0.2 to 0.05 (with E= - 2). This kind of struc­
ture has recently been observed in CeCu4Al and 
CeCu4Ga, 20 although the high-temperature peak has 
been interpreted as a crystal-field effect. A similar profile, 
with less pronounced peaks, is also visible in a C /T vs T 
plot2 for UBe13• We should mention the variational treat­
ment made by Brandow, 21 in which these two peaks are 
also found and attributed to the same origin. 

Contrary to the Kondo limit, in the IV case (Fig. 6) a 
single peak is observed in the plot C /T vs T for a 
relevant temperature range (i.e., T ~O. 1). This peak is a 
consequence of the high density of states near the Fermi 
levei which also occurs in the IV case. Despite being 
lower than in the Kondo case, it explains the ratio C /T 
observed in IV Yb compounds in which it reaches the 
value of 260 mJ/mol K2. 2 

V. CONCLUSIONS 

W e have presented a perturbative method for ap­
proaching the Anderson lattice in which the hybridiza­
tion and the Coulomb repulsion are calculated exactly in 
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