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Saturating field configurations for the massless Thirring-Wess model
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The saturation of the massless Thirring-Wess model by induced field configurations is presented. The
limiting procedure connecting the massless Thirring-%'ess model arith the Schwinger model is reexamined.
Special emphasis is put on studying the dependence of saturating field configurations and topological charges
on the vector-meson bare mass.

The saturation of Schwinger model' ' Qreen's
functions by induced instantons has been pre-
sented by Nielsen and Schroer in a recent series
of papers. ' ' These induced instantons appear
as solutions of an inhomogeneous field equation
but only after performing the functional integra-
tion in the fermionic degrees of freedom, They
are not the quasiclassical instantons of Belavin
et al. ,

' but nevertheless they are responsible for
the vaccum structure and the confinement proper-
ties exhibited by the Schwinger model.

On the other hand, Rothe and Swieca" have
pointed out that a better insight into the problem
of confinement can be obtained by regarding the
Schwinger model as the limit of a theory de-
scribing the dynamics of massless fermions
coupled (coupling constant e) to massive vector
mesons (bare mass mo). This is the so-called
massless Thirring-Wess (TW) model. ".In the
limit I,- 0 the massless TW model goes into
the Schwinger model.

Since the analysis of Hothe and Swieca' is fully
carried. out at the operator level, we have found
it interesting to reexamine the above-mentioned
limit but now putting special emphasis on studying
the m0 dependence of saturating field configUra-

tions and associated topological charges (winding
numbers).

The massless TW model is described by the
Lagrangian density

S=-gE„E" + gm02B„B"

+i)(x)y'(s„i'„)-g(x) ——(e„B")'.

Here, g(x) is a two-component massless fermion
field, B~ is a vector-meson fieM with bare mass
m„and E„„is its corresponding field-strength
tensor, i.e., F„„=B„B„—~„B„. The term
-(1/2a)(S„B")' has been added to maintain a
well-defined theory in the limit m0 0. Our con-
ventions are

x=(x', x'),
g00 g11 g10 g ]01

The massless TW model is solvable because
the fermion propagator in an external. B„field
is exactly known. For the 2n-point fermion
Green's function one finds

I

& 4(x ) ~ "P(x )k(y ) " k(y )&
= & '(0'" (x )" 0'"(x )~4 "(~ ) "~k"(y )&

x DB exp'~ — d'zd'z'B" z 0' z ~'B"z'

+i e J
d zB"(z)Z~(z; x~, . .. , x„;3l~, . ~ ~, 3 „)

~sl

Here, $~0~ and $~0~ are free fermion fields, Z, is a B~-independent external-current-like factor
containing y matrices and

2

(2)

where to simplify the notation we have introduced the definitions

m' = m, '+ e'/v, s,„=8/sz" .
The functional integral in (2) is to be evaluated using vacuum-sector boundary conditions. The fermion
renormalization constant Z is chosen so as to have

(P(x ) ~ k(x )T|(S ) ~ ~ ~ 4(y. ))l c„=.=&4'"(x ) ~ 0'"(x )0'"(y )" 0"(X ))
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One should notice that the inverse of the symmetric kernel 0„;(z, z') yields the exact vector-meson propa-
gator

a/~„(z, z') g„„&~(z-z', m')+ 1, ' s,„&,„[a~(z-z'; m') -az(z -z'; am, ')],
0

where &z(z -z', m') is the Green's function for a free massive' scalar field, i.e.,
(0,+m )E (z —z'; m ) =6[ ](z —z').

%e shall be interested first in the two-point function of the chiral. density operators

J.(z)=& 4(x)
2

"4(x) .

By using Eq. (2} as a starting point, one arrives at

(J' (x)J,'(y)) =8 '(J 0](x)J, (y)) Jr [DB„]e px(- d'zd'z'B" ( )zQ~„'„~( ,zz)B"(z')

+&8 d 8B 8 ~z~xyg (6)

where J'B[0](x) are the chiral densities constructed from the free fermion field operators and

H„(z;x, y) =2m~„&,"[D~(z —x) Dz(z ——y)].
Here,

(7)

2
Dz(z -x) =- —ln([&'( z -x[')+const

4m
(8)

is the free massless scalar field Green's function. As usual, infrared divergences are avoided by the
introduction of an infrared regulator mass p, . Since a finite renormalization mill. not alter our conclu-
sions, we establish p. =m.

There are two alternative procedures through which one can evaluate the functional integral in Eq. (6).
This, of course, applies for any quadratic functional integral. The first procedure is straightforward
and yields

(J' (x)J,(y)) =(J "(x)J "(y)) exp~ ——e dmzd z'H (z x, y)az' ""(z,z')ff, (z';x, y) ~ .i

The second procedure consists of expanding the effective action functional

B„,[B ),y]= —' f"f d d z(z)()e[B'(z') (e''„z) B,ef d'ezB {z)B(z;x, y) (10)

around the classical induced solution defined by

6S„,[B'(x,y]
5B"(z)

The Eeroth order of the expansion is

i S,(T [B"„jx,y].
The linear term in the quantum supplement ]I" (q" =B"-B"„)vanishes, while the quadratic term in q" is
independent of x and y and, after performing the functional integration, it cancels against S '. Therefore,

«-(x}J.(y)) =«'-"(x)J'"(y)) exp[+.~f [B".] Ix, y]).
It is by looking at Eq. (12) that one states that B,"] saturates the two-point function (J (x}J,'(y)) in the

massless TW model. From Eqs. (9) and (12) we have, as a consistency requirement, that

B„,[B"„Ix,y]=-
& f fd'ed'e B(z;xyld~' (ee''W, „(e',,x, y). "",

(12)

Our next step is to find B~~. The equation of motion for B"„ is obtained from Eqs. (10) and (11) and it
reads
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. (14)

whose solution is found to be

B"„(z;x, y) = Bf (z; y) + B "(z;x),
where

B.'(z; y) = —.e""6..[D~(z -y) —&~(z —y; m')], (16a)

B"(z;x) =—,e""s,„[D„(z—x) —4~(z —x; m2)] . (16b)

We remark that B ] Is independent of the gauge parameter a and, therefore, so is S,«[B,"] [x,y]. One can
check that the same is true for the right-hand side of (13). In fact

S„,[B"„,[x, )]=——f Jl d'x d'x'H„(x;x, y)d~d-(x. x )d„(x'.x, ,)

, [D~(x —y) —A~(x —y; m')], (17)

e'/v e'/7]
2 2 (18)

Thus one arrives at the conclusion that in the
massless TW model the two-point function

(J (x)J, (y)) is saturated by a pair of field config-
urations each with a nonvanishing topological
charge. Note that the winding numbers n, depend
continuously upon mo and that they tend to zero
in the limit of extremely massive vector mesons
(m, -~).

Our immediate task is to investigate the pos-
sible implications of the topology, namely, the
vacuum structure. The behavior of (J (x)J, (y))
for large spacel. ike separations can be found
from Eqs. (12) and (17). One easily arrives at

«(x) J.(y)&

const x((x-y[') o""o"". (19)
Ix- y l~ &

Hence, for m, & 0,

lim (J' (x)J,(y)) =0.
lX-3l l~

(20)

As one can see. the two-point function (J (x)J, (y))

as required.
We now look into the topological content of the

field configurations B, and B . The corresponding
winding numbers (topological charges), n, and n,
respectively, are given by the following expres-
sions":

verifies the cluster decomposition theorem and,
therefore, no chiral vacuum degeneracy arises.

Then, in the massless TW model one has a
nontrivial topology coexisting with a unique vacu-
um. Somehow this is the theoretical counterpart
of the situation in the Schwinger model.

In the limit mo- 0 (m- e/v z') a radical change
arises. In this case (Schwinger model} the be-
havior of (J' (x)J.(y)) for large spacelike separa-
tions is no longer given by Eq. (20). In fact, if
one replaces m0=0 in Eq. (19) one obtains

lim (J (x}J,(y)) = const 40.
)g yJ~oo

(21)

Then, in the limit mo 0 the cluster property
breaks down and, as a consequence, the vacuum
degenerates. 4 Also note [see Eq. (18)] that for
m, =0 the winding numbers n„associated with
the saturating field configurations B," and B",
respectively, reach their maximum absolute
values, i.e.,

n„(„,=+ 1. (22)

Needles to say, the anal. ytic continuation of Eqs.
(16) into Euclidean space yield, after setting
m =e/Ww, the instanton-antiinstanton pair already
found by Nielsen and Schroer. '

Our second object of interest is the two-point
fermion Green's function (g(x)T[)(y)), which should
reveal to us the confinement properties of the
theory. For the massless TW model one finds,
for a = 0, that

( &)dV, (x)) =x&0'd(x)Pd(x)) xxx —.[D (x-x)-x (x-x;m')]I,ip

where P (x) and (([)
'

(y) are free fermion fields. The subscripts in (23) refer to spin components.

(23)
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Once again one can write

&0 (x)7(' (y)& =(Ic'g" (x)7('g" (y)) exp(+.«[&."i Ix, y]),
where the new effective action 8 „; is given by

8 „,[8"Ix, y(= I J@*ad'a'a" (z)Q„".(z, z')3"(z'(

(24)

- e d zB" z &g„-e„„eg Dp z -x -D~ z -y (26)

This time the saturating field configuration, B,", , depends on a and is found to read

5;((z;x, y) =8,"(z;y)+Es" (z; x),
where

I

g,"(z;y) = —'2 e""s „[Dz(z -y)-az(z -y", m )]- 2 8,"[D~(z -y)-Lz(z -y;smo )],
0

(26)

(27a)

3'(z;x) =- , e—B,„[D~( z-x) —a~(z -x; m')]+, &"[D~(z -x) —L~(z —x; amo')]. (27b)

1 e /w 1 e'/v
2 m' 2 m, '+8'/z' (29)

Then, in the massless TV( model, where fermion
confinement does not arise,"the two-point
fermion Green's function is saturated by a pair
of field configurations each with nonvanishing
topological charge.

In the limit mo- 0, where fermion confinement
takes place (Schwinger model), "8' the winding
numbers n, acquire their maximum absolute
values

I 1
tSgz 0 (30)

After analytic continuation into Eucl. idean space,
the transversal parts of B," go, for F0=0, into
the transversal parts of the c instanton and c
antiinstanton, respectively (see Ref. 6). As far
as the longitudinal parts are concerned our results
differ from the corresponding ones in Ref. 6.
These differences can be traced back to the ab-
sence of the term

The effective action S,«evaluated at the solution
B',

&
also depends on the gauge parameter a. One

easily checks that, for a=0,

8S.«[&'.(Ix, y]= —2[De(x-y) -&z(x-y;m')],
(28)

as re(luired [see Eqs. (23) and (24)].
The a-dependent part of the field configurations

8," and B" is fully contained in the longitudinal
terms. Hence, the winding numbers n, and R„,
corresponding to the field configurations B,' and
4", respectively, are independent of a. One
finds that"

r~
exp -ie B"s ds„

Jy

in our definition of the two-point function
((j(,(x)(j(,(y)). That the introduction of this term
can be avoided has been pointed out by Rothe
and Swieca."

Ne have come to an end in our particular analy-
sis of the limiting procedure connecting the mass-
less T% model with the Schwinger model. The
situation can be summarized as follows. The
topological ingredient is alzvays present except,
of course, for mo- ~. A nonvanishing mechanical
mass for the vector mesons (mo& 0) implies ex-
plicit breaking of second-kind gauge invariance and
a limitation in the absolute values of the. winding
numbers associated with the saturating field con-
figurations. In this case y, invariance is a good
symmetry and fermions remain unconfined. For
m, =0 one has spontaneous (and non-Goldstone)
symmetry breaking of gauge and y, invariance.
The winding numbers reach their maximum ab-
solute values and fermion confinement takes place.

Only in the l.imit m, - 0 does the topol. ogical
content of the theory become strong enough to
give rise to a nontrivial. vacuum structure and to
fermiog. confinement. It is interesting to note
that in the limit mo- 0 the magnitude of the topo-
logical. charges becomes exactly tuned with the
class index of the gauge transformations con-
necting two successive vacuums in the Schwinger
model. "'"
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