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SU(2) Landau gluon propagator on a 148 lattice
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We present a numerical study of the gluon propagator in the lattice Landau gauge for three-dimensional pure
SU(2) lattice gauge theory at couplings=4.2, 5.0, 6.0 and for lattice volumas=40°, 8¢°, 14C. In the
limit of large V we observe a decreasing gluon propagator for momenta smallepthan 350fé8° MeV.
Data are well fitted by Gribov-like formulas and seem to indicate an infrared critical expestightly above
0.6, in agreement with recent analytic results.
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I. INTRODUCTION Evidence of a decreasing gluon propagator for smailas
been obtained in the 4BU(2) andSU(3) casegbut only in
The study of the infrarediR) limit of QCD is of central  the strong-coupling regimeg10,11], in the 3DSU(2) case
importance for understanding the mechanism of quark cont@lso in the scaling regior{8,12,13, in the 3DSU(2) ad-
finement and the dynamics of partons at low energy. Despitiint Higgs model[13], in the 4DSU(2) case at finite tem-
being non-gauge-invariant, the gluon propagator is a powerperature[14] and for the equal-time three-dimensional trans-
ful tool in this (nonperturbativeinvestigation 1]. In particu- ~ verse gluon propagator in the 48U(2) Coulomb gauge
lar, it would be interesting to express it in a closed form for[15]- In this last case, one obtains an excellent fit of the
recovering the phenomenology of Pomeron exchange frorfansverse propagator by a Gribov-like formula. _
first principles[2]. This work aims to verify the possibility of using Gribov-

Studies of the coupled set of Dyson-Schwinger equationgke formulas to fit data of the gluon propagator also in Lan-

for gluon and ghost propagators in the Landau gauge predi%au gauge. At the same time, we will try to obtain a value for

. the IR critical exponent« to be compared to the analytic
for the gluon propagator an IR behavior of the fobip) o ;
—p*=2 [implying D(0)=0 if x>0.5]. The available pre- determinations mentioned above. In order to probe the

dicti for the IR i 0521.00 in the f infinite-volume limit and the IR region we consider the
ictions for the Tk exponen are<[0.52,1.00 in 1€ four - hree-dimensional case and tB&J(2) group, using lattice
dimensional casé¢3,4] and k~0.648 or k=0.75 in three

sizes up to 149 Note that the study of the gluon propagator
dimensiong4]. P y 9 propag

) o in three dimensions is also of interest in finite-temperature
Furthermore, in the minimal Landau gauge, the gaugepcp [16].

fixed configurations belong to the regidn of transverse
configurations, for which the Faddeev-Popov operator is
non-negative. This implies a rigorous inequaliB] for the
Fourier components of the gluon field,(x) and a strong We consider the standard Wilson action 8J(2) lattice
suppression of the gluon propagator in the IR limit. In par-gauge theory in three dimensions with periodic boundary
ticular, for dimensiord and infinite volume, it is proven that conditions. The numerical code is entirely parallelized using
the (unrenormalizeyi gluon propagator is less singular than MPI. (Technical details and a study of the code performance
p?~9 and that, very likely, it vanishes in the IR linfi6]. A are left for a subsequent woftt7].) For the construction of
vanishing gluon propagator gt=0, given by the form staples we follow Refl18]. For the random number genera-
p?/(p*+\*), was also obtained by Gribol6]. Here the tor we use a double-precision implementation of RANLUX
mass scale arises when the configuration space is restrictedversion 2.1 with luxury level set to 2. Computations were
to the region(). A generalization of this expression has beenperformed on the PC cluster at the IFSC-USP. The system
introduced in Ref[7] as an ansatz for a nonperturbative has 16 nodes and a server with 866 MHz Pentium 1ll CPU
solution of the gluon Dyson-Schwinger equation. and 256/512 MB RAM memory. The machines are con-
Numerical studieq8,9] have now established that the nected with a 100 Mbps full-duplex network. The total com-
gluon propagator in the lattice Landau gauge shows a turnputer time used for the runs was about 80 days on the full
over in the IR region and attains a finite value fo=0.  cluster.
In Table | we report, for each coupling and lattice vol-
umeV, the parameters used for the simulations. All our runs

Il. NUMERICAL SIMULATIONS

*Email address: attilio@if.sc.usp.br start with a random gauge configuration. For thermalization
"Email address: mendes@if.sc.usp.br we use ahybrid overrelaxed(HOR) algorithm [19]. Each
*Email address: taurines@if.ufrgs.br HOR iteration consists of one heat-bath sweep over the lat-
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TABLE I. The pairs (3,V) considered for the simulations, the TABLE Il. For each couplingd we report the value of the av-
number of configurations, the numbers of HOR sweeps used foerage plaquettéW, ;), the string tension/o in lattice units, the
thermalization and between two consecutive configuratioised  lattice spacing in fm and the smallest nonzero momeriarivieV)
for evaluating the gluon propagajand the parametqr,,, used by  for the lattice volumeV=14G. Error bars for(Wy ;) have been

the SOR algorithm. obtained taking into account the integrated autocorrelation time of

the HOR algorithm. All the other error bars come from propagation
B \% Configurations  Thermalization = Sweepspg,, of errors.

4.2 4G 400 1100 100 0.70

42 8¢ 200 2200 200 o080 Wad Vo a (fm) Prin (MEV)

42 146 30 2750 250 0.88 4.2 0.74186(2)  0.3813)  0.1741) 59.04)

50 4G 400 1320 120 069 50 0.78686&2)  0.3142)  0.14079) 62.94)

50 8¢ 200 2420 220 080 6.0 0.82478(1)  0.2541)  0.11385) 77.84)

50 146 30 3080 280 0.88

6.0 40 400 1540 140 0.68 For eachB we evaluate the average plaqueti, ;) (see

60 8¢ 200 2680 240 080 Table Il). Results are in agreement with the data reported in

6.0 146 30 3300 300 0.87  Ref.[8], but we now have smaller statistical errafBhe data

have been analyzed using various methods, described in
footnote 4 of Ref.[8]. Here we always report the largest
tice followed bym micro-canonical sweeps. We did not try to €/Tor found) We also evaluate the tadpole-improved cou-
find the best tuning fom; we usem=4 for V=403, 808 and  PNg Ai=B(Wy 1. In this way, by using the fit given in Eq.
m=5 for V=14C. In order to optimize the heat-bath code @ r?md Tgble I\./ of Ref[24] we calcula’Fe the strlng tension
we implement two differenB U(2) generators, namely meth-, .‘/; |n_I1att|ge unltsgsee Table Nland the inverse Iat.t".:e spac-
ods 1 and 2 described in Ré20], Appendix '\ withh ing a~ ' using the input valug/c=0.44 GeV. The fit is valid

—s ' ' cuoff — for B=3.0, i.e. the couplings3 considered here are well

. - . above the strong-coupling region. Let us notice that, if we
For the numerical gauge fixing we use gtechastic over- g bling reg

. . . compare the data for the string tensi@m lattice unitg with
relaxation(SOR) algorithm[21,22 with even/odd update. In  y5ta obtained for th&U(2) group in four dimensiong25],

Table I we report the value of the tuning parameigy; used  Tapje 3, then our values o correspond tg8~2.28, 2.345,
for each pair B,V). We stop the gauge fixing when the 2 41 in the four dimensional case. Finally, in the same table
average value df(V-A)°(x)]* is smaller than 10" (Fora e report the lattice spacirain fm and the smallest nonzero
definition of the lattice gauge fieIAZ(x) and of the lattice momentum(in MeV) that can be considered for eagh
divergenceV we refer to[8].) We note that half of the con-  Thus, with the lattice volumes and tifevalues used here we
figurations forV=_80° were done using the so-call&@brnell  are able to consider momenta as small as 59 MieVthe
method[21,22, with tuning parameters.,,=0.325, 0.32, deep IR regionand physical lattice sides almost as large as
0.316 respectively aB=4.2, 5.0, 6.0. In fact, the Cornell 25 fm.
method is somewhat faster than the SOR algorithm and leads In this work we did not do a systematic study of Gribov-
to a gauge fixing of comparable quality if one uses an evenéopy effects for the gluon propagator. However, we com-
odd updat¢22]. A good estimator of the quality of the gauge pared data obtained using the SOR and the Cornell gauge-
fixing is the quantity>q [see Eq.(6.8) in Ref.[22]], which  fixing methods. In principle, different gauge-fixing
should be zero when the configuration is gauge-fixed. Byalgorithms—or even the same algorithm with different val-
averaging over the gauge-fixed configurations, we fiad ues of the tuning parametgt6]—can generate different Gri-
B=4.2) that the ratio between the final and the initial valuesbov copies starting from the same thermalized configuration.
of 24 is (in 95% of the casgsabout 5.3 10" 1% with the  Thus, this comparison provides an estimate of the (&5
Cornell method and 2410 ! with the SOR algorithm. At  bov noisé introduced by the gauge-fixing procedure. We
the same time, the average CPU-time needed for updatinigund that, in most cases, the difference between the two sets
each site variable is about 11% smaller for the Cornellof gluon-propagator data is within 1 standard deviation and
method. In any case, the CPU-time for gauge fixing waghat, in all cases, it is smaller than 2 standard deviations.
quite significant for the large lattices. In order to go to evenMoreover, this difference did not show any systematic effect,
larger lattices one should probably implement a global algosuggesting that the influence of Gribov copies on the gluon
rithm such as the Fourier acceleration metfad,22 with propagator(if preseny is of the order of magnitude of the
the multigrid or conjugate gradient implementations intro-numerical accuracy. This is in agreement with previous stud-
duced in Ref[23], which are highly parallelizable. ies in Landau gauge for tHeU(2) andSU(3) groups in four
We ran the 49 lattices on a single node, the Blittices  dimensions[10,26,27. A similar result has also been ob-
on two nodes and the 1#0attices on four nodes. The par- tained for the Coulomb gaud@8]. Note that, in theU(1)
allelization of the code worked well. In fact, for runs on 2 case[29], Gribov copies can affect the behavior of the pho-
and 4 nodes, we obtain speed-up factors 1.82 and 3.41 faon propagator, making it difficult to reproduce the known
the heat-bath link update. For the micro-canonical link up-perturbative behavior in the Coulomb phase. The situation is
date the factors are respectively 1.87 and 3.77 and for theery different for theSU(2) andSU(3) cases, at least when
SOR site update we get 1.90 and 3.72. considering the lattice Landau gauge. In fact, as said in the
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Introduction, in the non-Abelian case the minimal-Landau-sponding to the best fit of th@nultiplied) coarse-lattice data
gauge condition implief5] the positiveness of the Faddeev- to the same spline. The error &, is estimated using a
Popov matrix and a strict bound for the Fourier componentprocedure similar to the one described 80]. The method
of the gluon fieldA (k). The bound applies to all Gribov works very well(see Fig. 1 Notice that we did not fix the
copies obtained with the numerical gauge fixing. Thus, if theremaining global factoZ imposing a renormalization condi-
behavior of the gluon propagator is determined by this boundion, as done for example in R¢B1]. Our case is equivalent
[5,6], then this behavior should be the same for all latticeto settingZ(a)=1 at 3=6.0.
Gribov copies. This would explain why we do not see The data obtained after the matching are shown\for
Gribov-copy effects here. Clearly, the same result does not80° in Fig. 1. Clearly, we find that the gluon propagator
apply to theU(1) theory, since in this case the Faddeev-decreases in the IR limit for momenta smaller thap.,
Popov matrix is independent of the gauge field. which corresponds to the mass scalein a Gribov-like
propagator. From the plot we can estimatgye,
=350 3" MeV, in agreement with Ref8].

In Fig. 2 we plot the rescaled gluon propagator at zero

We evaluate the lattice gluon propagal®fk) and study momentum, namelaD(0)/Z(a), as a function of the in-
it as a function of the lattice momentupt(k) (see Ref[8]  verse lattice sidé ~*=1/(aN) in physical units(fm~1). We
for definitions. In our simulations we consider, for each see thataD(0)/Z(a) decreases monotonically as in-
gauge-fixed configuration, all vectois=(k,,k,,k;) with  creases, in agreement with REd]. It is interesting to notice
only one component different from zero and average over thenat these data can be well fitted using the simple arsatz
three directions. For the gluon propagator we analyze the-p/L¢ both with d=0 andd+0 (see Fig. 2 In order to
data by estimating the statistical error with three differentdecide for one or the other result one should go to signifi-
methods: standard deviation, jack-knife with single-datacantly larger lattice sizes. We pl&82] to extend these simu-

elimination and bootstrapwith 10000 samplés We found |ations tog=3.4 and lattice sizes up to 2§Gallowing us to
that the results obtained are in agreement in all cases. Here

we always use the standard-deviation error.

Let us recall that in the three-dimensional case the cou-
pling g? has dimensions of mass. Thus, in order to obtain a
dimensionless lattice coupling we have to gkt 4/(ag?).
Then, with our notatio8], the quantityaD(k) approaches
gD (k)/4 in the continuum limit, wheréd(€°"(k) is
the unrenormalized continuum gluon propagator.

In order to compare lattice data at differesis, we apply
the matching technique described|i80], Sec. VB 4. (Note
that we have already determined the lattice spa@ngs
described abovgWe start by checking for finite-size effects,
comparing data at different lattice sizes and sghwalue. In
this way, we find(for eachB) a range of ultraviole{UV) 0
momenta for which the data are free from finite-volume cor-
rections. We then perform the matching using data for these
momenta and&/ = 40°, since for this lattice volume the errors

Ill. RESULTS AND CONCLUSIONS

0.2
1L (fm™

0 0.05 0.1 0.15

FIG. 2. Plot of the rescaled gluon propagator at zero momentum

are smalles{about 1%. In particular, when matching data
obtained at two different values @ we first interpolate the
data for the largep (the fine lattice using a spline. Finally,
we find the multiplicative factoiR,=2(a;)/Z(a.) corre-

as a function of the inverse lattice side f&= 4.2 (X), 5.0(0), 6.0
(©). We also show the fit of the data using the ansatd/L° both
with d=0 andd+0. Error bars are obtained from propagation of
errors.
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TABLE lII. Fit of the data using Eqs(1) and(2). In all cases  (and still decreasing with increasing physical lattice volume
x*/DBF was of order 1. Note that for a lattice volutve=N® we  For the anomalous dimension we obtain0.65, with small
have 1+ N/2 data points and that all points have been used for thg/olume andB dependence. The problem with @) is that
fits. the introduction ofy compromises the pole interpretation.
Finally, one can also try the form

Fit 1 Fit 2
2
B v @ X ly| @ y s+zpPe
42 43 0692 0172 0.421) 0.484) 0.291) D(p)=m- (3

42 8¢ 0662 0.172) 0.361) 0.464) 0.241)

42 146 0614 0.194) 0.353) 0.386) 0.252)

50 40 0773 0.112 0282 0536) 0.1528) This corresponds to a propagator with purely imaginary
50 8F 0712 01X1) 02149) 0453) 0.1186)  polesm? ==+iy and at the same time allows the data to
50 146 0713 0102 0222) 0446 0.121) select the IR and the UV behaviors separately. The problem
6.0 40 0.863) 0.0698) 0.202) 0.646) 0.0826) in this case is that the fit is unstable for small lattice volumes.
6.0 8F 0.842) 0.0326) 0.1668) 0.655 0.0513) On the contrary, foV =140 the fit works well and we ob-
6.0 146 0.802) 0.0318) 0.1237) 0.556) 0.0404) tain «=0.276), 0.297), 0.388) respectively for=4.2,
5.0, 6.0 andy=0.72. Hence, ouw values are of the order of
0.3, corresponding ta=~0.65.(Again, there is a decrease of
consider a valué ~1~0.017 fmi L. (This requires running in o when the physical lattice volume increages.

parallel on all nodes of our PC cluster. In order to check for possible effects from the breaking of
Following Ref.[15] we fit the data using a Gribov-liker  rotational invarianc§34] we redid our fits substituting?(k)
Stingl-like) formula by P2(k)=p?(k) + pl*(k)/12 (see Ref[35]). One expects
s+ zpPe this modification to play an important role in the UV limit

D(p)= , (1) anq to have a small effec_t in the IR.case. For,&lualue_s gnd
y“+(pe+x) lattice volumes we obtain good fits and results similar to
. _ those reported above. In particular, using Et). one still
wherez, s, a, X andy are fitting parameters. For non-negative ¢4 y2>0 andx<|y|, supporting the scenario of purely

a this implies a finite gluon propagator inzthe IR limit, with i 54inary poles. At the same time, for the three fitting func-
a behavior given b)D(p)oc(erzpz ). It y*>0 this form  iions o decreases when the physical lattice volume in-
corresponds to a propagator with polesral = —x*iy,  creases, but its value is about 20-30% larger than the one
while if y°<0 the poles are real. Finally, note that the IR yeported in Table Ill and above. In particular, using E3).
exponentx considered in studies of Dyson-Schwinger equa-ang data for V=14 we obtain «=0.327), 0.398),
tions is given in terms ofa by «=(1+a)/2, assuming (5912 respectively for3=4.2, 5.0, 6.0 andy~0.7. This
D(0)=0. Results o_f our fits using the un-rescaled lattice datamplies slightly larger values fok=(1+ «)/2. The analysis
D(k) are reported in Table Ill. We see thatlecreases when of these discretization effects and their influence on the ex-

the physical lattice volume increases. Also, we always géfrapolation of« and « to the continuum limit will be done
y2>0 andx<|y|, which seems to support the scenario of elsewherd 32].

purely imaginary poles found ifiL5]. Let us recall that the e have confirmed, by numerical simulations in the scal-
poles of the gluon propagator are gauge-invariabtall or-  ing region, that the transverse gluon propagator irS3I{2)
ders in perturbation theory33. Landau gauge is a decreasing function for momepta

Notice that this fitting form leads in general to the wrong <350 Mev (attaining a finite value gv=0). Also, the data
UV behavior, namelyD (p) ~p?*~“. This is not a Serious  are well fitted by the Gribov-like formulagl)—(3) and we
problem, since the largest momentum we can consider igptain an IR critical exponenk in agreement with recent
about 3.5 GeV, i.e. we are not really exploring the UV limit. gnajytic results. In order to eliminate remaining discretiza-
On the other hand, the exponeatin Eq. (1) plays a role  tjon and finite-volume effectfand in particular to check if

both in the IR and in the UV regimes. Thus, the values obp(0)=0], we need to simulate at larger lattice volumes and
tained fora probably correspond to averaging the behaviory; other values of.

of the gluon propagator in these two regions. In particular,
since we expedD (p)~p~ 2 in the UV limit, it is likely that
the IR behavior of the propagator be given by a smaller

exponenta than the ones reported in Table Ill. To check this ACKNOWLEDGMENTS
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