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SU„2… Landau gluon propagator on a 1403 lattice
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We present a numerical study of the gluon propagator in the lattice Landau gauge for three-dimensional pure
SU(2) lattice gauge theory at couplingsb54.2, 5.0, 6.0 and for lattice volumesV5403, 803, 1403. In the
limit of large V we observe a decreasing gluon propagator for momenta smaller thanpdec5350250

1100 MeV.
Data are well fitted by Gribov-like formulas and seem to indicate an infrared critical exponentk slightly above
0.6, in agreement with recent analytic results.
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I. INTRODUCTION

The study of the infrared~IR! limit of QCD is of central
importance for understanding the mechanism of quark c
finement and the dynamics of partons at low energy. Des
being non-gauge-invariant, the gluon propagator is a pow
ful tool in this ~nonperturbative! investigation@1#. In particu-
lar, it would be interesting to express it in a closed form
recovering the phenomenology of Pomeron exchange f
first principles@2#.

Studies of the coupled set of Dyson-Schwinger equati
for gluon and ghost propagators in the Landau gauge pre
for the gluon propagator an IR behavior of the formD(p)
;p4k22 @implying D(0)50 if k.0.5]. The available pre-
dictions for the IR exponent arekP@0.52,1.00# in the four-
dimensional case@3,4# and k'0.648 or k50.75 in three
dimensions@4#.

Furthermore, in the minimal Landau gauge, the gau
fixed configurations belong to the regionV of transverse
configurations, for which the Faddeev-Popov operator
non-negative. This implies a rigorous inequality@5# for the
Fourier components of the gluon fieldAm(x) and a strong
suppression of the gluon propagator in the IR limit. In p
ticular, for dimensiond and infinite volume, it is proven tha
the ~unrenormalized! gluon propagator is less singular tha
p22d and that, very likely, it vanishes in the IR limit@5#. A
vanishing gluon propagator atp50, given by the form
p2/(p41l4), was also obtained by Gribov@6#. Here the
mass scalel arises when the configuration space is restric
to the regionV. A generalization of this expression has be
introduced in Ref.@7# as an ansatz for a nonperturbati
solution of the gluon Dyson-Schwinger equation.

Numerical studies@8,9# have now established that th
gluon propagator in the lattice Landau gauge shows a t
over in the IR region and attains a finite value forp50.
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Evidence of a decreasing gluon propagator for smallp has
been obtained in the 4DSU(2) andSU(3) cases~but only in
the strong-coupling regime! @10,11#, in the 3DSU(2) case
~also in the scaling region! @8,12,13#, in the 3DSU(2) ad-
joint Higgs model@13#, in the 4DSU(2) case at finite tem-
perature@14# and for the equal-time three-dimensional tran
verse gluon propagator in the 4DSU(2) Coulomb gauge
@15#. In this last case, one obtains an excellent fit of t
transverse propagator by a Gribov-like formula.

This work aims to verify the possibility of using Gribov
like formulas to fit data of the gluon propagator also in La
dau gauge. At the same time, we will try to obtain a value
the IR critical exponentk to be compared to the analyti
determinations mentioned above. In order to probe
infinite-volume limit and the IR region we consider th
three-dimensional case and theSU(2) group, using lattice
sizes up to 1403. Note that the study of the gluon propagat
in three dimensions is also of interest in finite-temperat
QCD @16#.

II. NUMERICAL SIMULATIONS

We consider the standard Wilson action forSU(2) lattice
gauge theory in three dimensions with periodic bound
conditions. The numerical code is entirely parallelized us
MPI. ~Technical details and a study of the code performa
are left for a subsequent work@17#.! For the construction of
staples we follow Ref.@18#. For the random number genera
tor we use a double-precision implementation of RANLU
~version 2.1! with luxury level set to 2. Computations wer
performed on the PC cluster at the IFSC-USP. The sys
has 16 nodes and a server with 866 MHz Pentium III C
and 256/512 MB RAM memory. The machines are co
nected with a 100 Mbps full-duplex network. The total com
puter time used for the runs was about 80 days on the
cluster.

In Table I we report, for each couplingb and lattice vol-
umeV, the parameters used for the simulations. All our ru
start with a random gauge configuration. For thermalizat
we use ahybrid overrelaxed~HOR! algorithm @19#. Each
HOR iteration consists of one heat-bath sweep over the
©2003 The American Physical Society02-1
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tice followed bym micro-canonical sweeps. We did not try
find the best tuning form; we usem54 for V5403, 803 and
m55 for V51403. In order to optimize the heat-bath cod
we implement two differentSU(2) generators, namely meth
ods 1 and 2 described in Ref.@20#, Appendix A, withhcutoff
52.

For the numerical gauge fixing we use thestochastic over-
relaxation~SOR! algorithm@21,22# with even/odd update. In
Table I we report the value of the tuning parameterpsor used
for each pair (b,V). We stop the gauge fixing when th
average value of@(¹•A)b(x)#2 is smaller than 10212. ~For a
definition of the lattice gauge fieldAm

b (x) and of the lattice
divergence¹ we refer to@8#.! We note that half of the con
figurations forV5803 were done using the so-calledCornell
method@21,22#, with tuning parametersacorn50.325, 0.32,
0.316 respectively atb54.2, 5.0, 6.0. In fact, the Corne
method is somewhat faster than the SOR algorithm and le
to a gauge fixing of comparable quality if one uses an ev
odd update@22#. A good estimator of the quality of the gaug
fixing is the quantitySQ @see Eq.~6.8! in Ref. @22##, which
should be zero when the configuration is gauge-fixed.
averaging over the gauge-fixed configurations, we find~at
b54.2) that the ratio between the final and the initial valu
of SQ is ~in 95% of the cases! about 5.3310210 with the
Cornell method and 2.4310211 with the SOR algorithm. At
the same time, the average CPU-time needed for upda
each site variable is about 11% smaller for the Corn
method. In any case, the CPU-time for gauge fixing w
quite significant for the large lattices. In order to go to ev
larger lattices one should probably implement a global al
rithm such as the Fourier acceleration method@21,22# with
the multigrid or conjugate gradient implementations int
duced in Ref.@23#, which are highly parallelizable.

We ran the 403 lattices on a single node, the 803 lattices
on two nodes and the 1403 lattices on four nodes. The pa
allelization of the code worked well. In fact, for runs on
and 4 nodes, we obtain speed-up factors 1.82 and 3.41
the heat-bath link update. For the micro-canonical link u
date the factors are respectively 1.87 and 3.77 and for
SOR site update we get 1.90 and 3.72.

TABLE I. The pairs (b,V) considered for the simulations, th
number of configurations, the numbers of HOR sweeps used
thermalization and between two consecutive configurations~used
for evaluating the gluon propagator! and the parameterpsor used by
the SOR algorithm.

b V Configurations Thermalization Sweepspsor

4.2 403 400 1100 100 0.70
4.2 803 200 2200 200 0.80
4.2 1403 30 2750 250 0.88
5.0 403 400 1320 120 0.69
5.0 803 200 2420 220 0.80
5.0 1403 30 3080 280 0.88
6.0 403 400 1540 140 0.68
6.0 803 200 2680 240 0.80
6.0 1403 30 3300 300 0.87
09150
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For eachb we evaluate the average plaquette^W1,1& ~see
Table II!. Results are in agreement with the data reported
Ref. @8#, but we now have smaller statistical errors.~The data
have been analyzed using various methods, describe
footnote 4 of Ref.@8#. Here we always report the large
error found.! We also evaluate the tadpole-improved co
pling b I[b^W1,1&. In this way, by using the fit given in Eq
~2! and Table IV of Ref.@24# we calculate the string tensio
As in lattice units~see Table II! and the inverse lattice spac
ing a21 using the input valueAs50.44 GeV. The fit is valid
for b*3.0, i.e. the couplingsb considered here are we
above the strong-coupling region. Let us notice that, if
compare the data for the string tension~in lattice units! with
data obtained for theSU(2) group in four dimensions@@25#,
Table 3#, then our values ofb correspond tob'2.28, 2.345,
2.41 in the four dimensional case. Finally, in the same ta
we report the lattice spacinga in fm and the smallest nonzer
momentum~in MeV! that can be considered for eachb.
Thus, with the lattice volumes and theb values used here we
are able to consider momenta as small as 59 MeV~in the
deep IR region! and physical lattice sides almost as large
25 fm.

In this work we did not do a systematic study of Gribo
copy effects for the gluon propagator. However, we co
pared data obtained using the SOR and the Cornell ga
fixing methods. In principle, different gauge-fixin
algorithms—or even the same algorithm with different v
ues of the tuning parameter@26#—can generate different Gri
bov copies starting from the same thermalized configurat
Thus, this comparison provides an estimate of the bias~Gri-
bov noise! introduced by the gauge-fixing procedure. W
found that, in most cases, the difference between the two
of gluon-propagator data is within 1 standard deviation a
that, in all cases, it is smaller than 2 standard deviatio
Moreover, this difference did not show any systematic effe
suggesting that the influence of Gribov copies on the glu
propagator~if present! is of the order of magnitude of the
numerical accuracy. This is in agreement with previous st
ies in Landau gauge for theSU(2) andSU(3) groups in four
dimensions@10,26,27#. A similar result has also been ob
tained for the Coulomb gauge@28#. Note that, in theU(1)
case@29#, Gribov copies can affect the behavior of the ph
ton propagator, making it difficult to reproduce the know
perturbative behavior in the Coulomb phase. The situatio
very different for theSU(2) andSU(3) cases, at least whe
considering the lattice Landau gauge. In fact, as said in

or
TABLE II. For each couplingb we report the value of the av

erage plaquettêW1,1&, the string tensionAs in lattice units, the
lattice spacing in fm and the smallest nonzero momentum~in MeV!
for the lattice volumeV51403. Error bars for^W1,1& have been
obtained taking into account the integrated autocorrelation time
the HOR algorithm. All the other error bars come from propagat
of errors.

b ^W1,1& As a ~fm! pmin ~MeV!

4.2 0.741861~2! 0.387~3! 0.174~1! 59.0~4!

5.0 0.786869~2! 0.314~2! 0.1407~8! 62.9~4!

6.0 0.824780~1! 0.254~1! 0.1138~5! 77.8~4!
2-2
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FIG. 1. Plot of the rescaled
gluon propagator as a function o
the lattice momentum forV5803

andb54.2 ~3!, 5.0 ~h!, 6.0 ~L!.
The second plot shows only the IR
region. Error bars are obtaine
from propagation of errors.
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Introduction, in the non-Abelian case the minimal-Landa
gauge condition implies@5# the positiveness of the Faddee
Popov matrix and a strict bound for the Fourier compone
of the gluon fieldAm(k). The bound applies to all Gribov
copies obtained with the numerical gauge fixing. Thus, if
behavior of the gluon propagator is determined by this bo
@5,6#, then this behavior should be the same for all latt
Gribov copies. This would explain why we do not s
Gribov-copy effects here. Clearly, the same result does
apply to theU(1) theory, since in this case the Faddee
Popov matrix is independent of the gauge field.

III. RESULTS AND CONCLUSIONS

We evaluate the lattice gluon propagatorD(k) and study
it as a function of the lattice momentump2(k) ~see Ref.@8#
for definitions!. In our simulations we consider, for eac
gauge-fixed configuration, all vectorsk[(kx ,ky ,kt) with
only one component different from zero and average over
three directions. For the gluon propagator we analyze
data by estimating the statistical error with three differe
methods: standard deviation, jack-knife with single-d
elimination and bootstrap~with 10000 samples!. We found
that the results obtained are in agreement in all cases. H
we always use the standard-deviation error.

Let us recall that in the three-dimensional case the c
pling g2 has dimensions of mass. Thus, in order to obtai
dimensionless lattice coupling we have to setb54/(ag2).
Then, with our notation@8#, the quantityaD(k) approaches
g2D (cont)(k)/4 in the continuum limit, whereD (cont)(k) is
the unrenormalized continuum gluon propagator.

In order to compare lattice data at differentb’s, we apply
the matching technique described in@@30#, Sec. V B 2#. ~Note
that we have already determined the lattice spacinga, as
described above.! We start by checking for finite-size effect
comparing data at different lattice sizes and sameb value. In
this way, we find~for eachb! a range of ultraviolet~UV!
momenta for which the data are free from finite-volume c
rections. We then perform the matching using data for th
momenta andV5403, since for this lattice volume the error
are smallest~about 1%!. In particular, when matching dat
obtained at two different values ofb, we first interpolate the
data for the largerb ~the fine lattice! using a spline. Finally,
we find the multiplicative factorRZ5Z(af)/Z(ac) corre-
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sponding to the best fit of the~multiplied! coarse-lattice data
to the same spline. The error ofRZ is estimated using a
procedure similar to the one described in@30#. The method
works very well~see Fig. 1!. Notice that we did not fix the
remaining global factorZ imposing a renormalization condi
tion, as done for example in Ref.@31#. Our case is equivalen
to settingZ(a)51 at b56.0.

The data obtained after the matching are shown forV
5803 in Fig. 1. Clearly, we find that the gluon propagat
decreases in the IR limit for momenta smaller thanpdec,
which corresponds to the mass scalel in a Gribov-like
propagator. From the plot we can estimatepdec

5350250
1100 MeV, in agreement with Ref.@8#.

In Fig. 2 we plot the rescaled gluon propagator at ze
momentum, namelyaD(0)/Z(a), as a function of the in-
verse lattice sideL2151/(aN) in physical units~fm21!. We
see that aD(0)/Z(a) decreases monotonically asL in-
creases, in agreement with Ref.@9#. It is interesting to notice
that these data can be well fitted using the simple ansad
1b/Lc both with d50 anddÞ0 ~see Fig. 2!. In order to
decide for one or the other result one should go to sign
cantly larger lattice sizes. We plan@32# to extend these simu
lations tob53.4 and lattice sizes up to 2603, allowing us to

FIG. 2. Plot of the rescaled gluon propagator at zero momen
as a function of the inverse lattice side forb54.2 ~3!, 5.0 ~h!, 6.0
~L!. We also show the fit of the data using the ansatzd1b/Lc both
with d50 anddÞ0. Error bars are obtained from propagation
errors.
2-3
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consider a valueL21'0.017 fm21. ~This requires running in
parallel on all nodes of our PC cluster.!

Following Ref.@15# we fit the data using a Gribov-like~or
Stingl-like! formula

D~p!5
s1zp2a

y21~p21x!2 , ~1!

wherez, s, a, x andy are fitting parameters. For non-negati
a this implies a finite gluon propagator in the IR limit, wit
a behavior given byD(p)}(s1zp2a). If y2.0 this form
corresponds to a propagator with poles atm6

2 52x6 iy ,
while if y2<0 the poles are real. Finally, note that the
exponentk considered in studies of Dyson-Schwinger equ
tions is given in terms ofa by k5(11a)/2, assuming
D(0)50. Results of our fits using the un-rescaled lattice d
D(k) are reported in Table III. We see thata decreases when
the physical lattice volume increases. Also, we always
y2.0 andx,uyu, which seems to support the scenario
purely imaginary poles found in@15#. Let us recall that the
poles of the gluon propagator are gauge-invariant~at all or-
ders in perturbation theory! @33#.

Notice that this fitting form leads in general to the wro
UV behavior, namelyD(p);p2a24. This is not a serious
problem, since the largest momentum we can conside
about 3.5 GeV, i.e. we are not really exploring the UV lim
On the other hand, the exponenta in Eq. ~1! plays a role
both in the IR and in the UV regimes. Thus, the values
tained fora probably correspond to averaging the behav
of the gluon propagator in these two regions. In particu
since we expectD(p);p22 in the UV limit, it is likely that
the IR behavior of the propagator be given by a sma
exponenta than the ones reported in Table III. To check th
we setx50 and introduce an anomalous dimensiong :

D~p!5
s1zp2a

y21p2~11g! . ~2!

Results for this fitting form are also reported in Table I
Indeed, we get values ofa smaller than in the previous cas

TABLE III. Fit of the data using Eqs.~1! and ~2!. In all cases
x2/DBF was of order 1. Note that for a lattice volumeV5N3 we
have 11N/2 data points and that all points have been used for
fits.

b V

Fit 1 Fit 2

a x uyu a y2

4.2 403 0.69~2! 0.17~2! 0.42~1! 0.48~4! 0.29~1!

4.2 803 0.66~2! 0.17~2! 0.36~1! 0.46~4! 0.24~1!

4.2 1403 0.61~4! 0.19~4! 0.35~3! 0.38~6! 0.25~2!

5.0 403 0.77~3! 0.11~2! 0.28~2! 0.53~6! 0.152~8!

5.0 803 0.71~2! 0.11~1! 0.214~9! 0.45~3! 0.118~6!

5.0 1403 0.71~3! 0.10~2! 0.22~2! 0.44~6! 0.12~1!

6.0 403 0.86~3! 0.069~8! 0.20~2! 0.64~6! 0.082~6!

6.0 803 0.84~2! 0.032~6! 0.166~8! 0.65~5! 0.051~3!

6.0 1403 0.80~2! 0.037~8! 0.123~7! 0.55~6! 0.040~4!
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~and still decreasing with increasing physical lattice volum!.
For the anomalous dimension we obtaing'0.65, with small
volume andb dependence. The problem with Eq.~2! is that
the introduction ofg compromises the pole interpretation.

Finally, one can also try the form

D~p!5
s1zp2a

~y21p4!g . ~3!

This corresponds to a propagator with purely imagina
poles m6

2 56 iy and at the same time allows the data
select the IR and the UV behaviors separately. The prob
in this case is that the fit is unstable for small lattice volum
On the contrary, forV51403 the fit works well and we ob-
tain a50.27(6), 0.29~7!, 0.38~8! respectively forb54.2,
5.0, 6.0 andg'0.72. Hence, oura values are of the order o
0.3, corresponding tok'0.65.~Again, there is a decrease o
a when the physical lattice volume increases.!

In order to check for possible effects from the breaking
rotational invariance@34# we redid our fits substitutingp2(k)
by p̃2(k)[p2(k)1p@4#(k)/12 ~see Ref.@35#!. One expects
this modification to play an important role in the UV lim
and to have a small effect in the IR case. For allb values and
lattice volumes we obtain good fits and results similar
those reported above. In particular, using Eq.~1! one still
finds y2.0 and x,uyu, supporting the scenario of purel
imaginary poles. At the same time, for the three fitting fun
tions, a decreases when the physical lattice volume
creases, but its value is about 20–30% larger than the
reported in Table III and above. In particular, using Eq.~3!
and data for V51403 we obtain a50.32(7), 0.39~8!,
0.59~12! respectively forb54.2, 5.0, 6.0 andg'0.7. This
implies slightly larger values fork5(11a)/2. The analysis
of these discretization effects and their influence on the
trapolation ofa and k to the continuum limit will be done
elsewhere@32#.

We have confirmed, by numerical simulations in the sc
ing region, that the transverse gluon propagator in 3DSU(2)
Landau gauge is a decreasing function for momentap
&350 MeV ~attaining a finite value atp50). Also, the data
are well fitted by the Gribov-like formulas~1!–~3! and we
obtain an IR critical exponentk in agreement with recen
analytic results. In order to eliminate remaining discretiz
tion and finite-volume effects@and in particular to check if
D(0)50], we need to simulate at larger lattice volumes a
at other values ofb.
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