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This paper presents a generalization of Pippard's network-model approach for thê calcu1ation of 
transport properties in metais in the presence of magnetic breakdown and partial phase coherence of 
the wave function. The generalization consists of introducing an ensemble of equivalent networks 
characterized by a well-defined fully coherent imite system of orbits. lt al1ows for relatively easy 
computation of the transport effective path in the infinite-re1axation-time approximation. The idea is 
applied to two specific examples: the linear chain and the hexagonal network; the latter can be 
considered a good model for magnesium and can be compareci with existing and future experiments. 

I. INTRODUCTION 

The aim of this paper is to present a model cal­
culation of phase-coherence effects on the trans­
port properties of systems in which magnetic 
breakdown is present. It is now over a decade 
since the existence of the phenomenon of mag­
netic breakdown (MB)-the interband tunneling of 
electrons in the presence of a strong magnetic 
field-has been recognized. 1 In this decade the 
experimental studies2 have not only decisively 
confirmed the existence of the phenomenon, but 
also the quality of the data has by far surpassed 
the limita of the existing theoretical analyses. In 
the presence of MB, oscillations in the magneto­
resistance have been observed which are caused 
by quantum effects distinct from the density-of­
states oscillations that are observed in the de 
Haas-van Alphen or Shubnikov-de Haas effects. 2• 3 

We can gain a qualitative understanding àf these 
new effects if we consider the semiclassical pic­
ture of electrons moving along well-defined tra­
jectories. 4 When MB 1s operative, the electron 
may choose between different paths in moving from 
a given initial position to a given final position. 
This multiplicity of paths indicates that in a quan­
tum treatment, observable interference effects 
should be present, as longas the electronic wave 
function.maintains its coherence along the various 
paths be tween given initial and final points. As 
Pippard 5 has shown, the parameter that governa 

the coherence length is the density of dislocations 
in the crystal. In a crystal with a very high density of 
dislocations, the coherence length is negligible, no 
interference effects are present, and the transport 
properties, as calculated from the Boltzmann equa­
tion, reproduce the general features of the experimen­
tal result. 6 As the density of dislocation is reduced, 
the coherence length increases and the first oscil­
lations in the magnetoresistance, coming from 
paths that encircle the smallest areas, begin to 
appear. This regime has been successfuly treated 
by Falicov et al. 7 Jf we try to improve on their 
approach there are two ways to go: we can either 
do quantum transport theory starting from a suit­
able approach, e. g,, Kubo's formula, or we can 
adopt a more modest, bu~ ad hoc scheme for cal­
culation of the conductivity based on semiclassical, 
e. g., Pippard's network, modela. 8 Theadvantages 
and disadvantages of both methods are quite clear. 
It we use the quantum transport approach, we have, 
to begin with, a well-defined theory for which, in 
principie, suitable approximation schemes could 
be devised. So far, however, nobody has succeeded 
in tackling the difficulties involved in such an ap- · 
proach. 9•10 Jf, on the other hand, we start from 
the network model, we step into a vacuum, so to 
speak. The próblem is not completely well-de­
fined and we must depend to some degree on in­
tuition. Although the network model has been 
amply discussed in the literature and ad hoc justi-
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FIG. 1. (a) Linear chain; (b) amplitudes and 
probabilities for this network. 

fications have been proposed, 4•8•9• 11 it remains es­
sentially a semiclassical model in which quantum­
mechanical properties are superimposed post hoc, 
à la Feynman, 12 only along the azimuthal degree of 
freedom. Ultimately we must let the experimental 
evidence decide on the validity of our construc­
tions. 

In this paper is presented what seems to be the 
most natural generalization of the network model 
for finite coherence lengths. This is described in 
Sec. II. 

In Sec. m we apply this generalization to the 
treatment of the linear chain. 4 In Sec. IV we ex­
amine the hexagonal network using the same ap­
proach, because it would be interesting to com­
pare our resulta with the experimental evidence, 
if and when it becomes available. As is well 
known, the topology of the hexagonal network is 
that of the most commonly used metal in these ex­
perimenta, 2' 3 i. e., Mg. In Sec. V, we make some 
brief concluding remarks. 

11. PHASE COHERENCE ANO EFFECTIVE PATH IN NET­
WORKMODEL 

.. In the semiclassical approximation the orbit in 
k space of an electron moving in the presence of 
a magnetic field is given by the intersection of a 
plane perpendicular to the field and a surface of 
constant energy. 1,13 The systems or orbits thus 
obtained (in the periodic-zone scheme) will be 
called a network. Figures 1 and 2 show the two 
types of networks examined in detail later on: 
the linear chain and the hexagonal network. Specü­
ic quantum effects can be considered by introduc­
ing the phase of the electronic wave functions in 
the WKB approximation. 4 In this way we can 
easily reproduce Onsager's quantization condition, 
which restricts the possible orbits to those whose 

are as (in k space) satisfy 

lei H 
a n= 21T --;;;-- (n + y) ' (2. 1) 

where n is a non-negative integer and 'Y is a small 
correction factor connected with the contribution 
of the radial motion. In the presence of MB this 
simple picture is modüied. The electron, instead 
of being totally reflected at the boundaries of the 
Brillouin zone, has a probability 

(2. 2) 

of tunneling into the next zone. In (2. 2), H is the 
applied magnetic field and H 0 is the magnetic 
breakdown field. 2' 14 

This tunneling has drastic consequences for the 
topological properties of the orbits. We can see 
immediately that the influence of MB on the quan­
tum aspects of the problem is striking, because 
the number of possible closed orbits now becomes 
enormous. The change in phase of the wave func­
tion of an electron traveling around a closed orbit 
is 

(2. 3) 

where a is the area of the orbit in iC space and cp0 

FIG. 2. Hexagonal network. We indlcate the trlaDgle, 
the lens, the two-lens, and the circle orbits. The branch 
c ls the standard branch. 
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is a constant phase. (In Ref. 2 the reader will find 
a detailed prescription for the handling of the 
phases of the electronic wave function in the pres­
ence of MB.) Naturally, only if the wave func­
tion remains coherent around the whole orbit is 
the quantization condition (2.1) applicable. Let 
us assume then that, in a given crystal sample, 
it ls possible to define a coherence length ~. lt 
determines the region in space wlthin which the 
electronic wave function maintains phase coherénce. 
The quantity ~ depends on the density of disloca­
tions. At the moment there is no theory for it, 
although its existence can be safely assumed from 
the experimental evidence. Only those closed or­
blts which are entirely contained within a coher­
ence length have to be treated quantum mechanical­
ly. Since the orbits in real space become smaller 
as the magnetic field increases, more and more 
such closed orbits become coherent. Now the 
consequences of this fact on the conductivity are 
investigated. 

To compute the conductivity the effective-path 
approach dueto Pippard is used. 5·' This method 
is simply a way of solving the Boltzmann equation 
and hence is a classical (or semiclassical) method. 
lt is extremely easy to apply in the infinite-relaxa­
tion-time limit. This means that scattering by 
phonons, impurities, etc., are neglected, i. e., 
mechanisms other than the magnetic breakdown 
process itself. The change in the electron dis­
tribution function saused by the presence of an 
externai electric E is treated as the continuing 
creation of electrons and boles. These quasi­
particles travei for a distance L before their 
centers of mass come to a rest. From this point 
on they cease to contribute to the conductivity. 
The current is given by 

j ea f-- ... = 471'slí L(E • dS), (2. 4) 

where the integration is over the Fermi surface. 
The problem reduces to the computation of the ef­
fective path L. Since we consider only the infinite­
relaxation-time limit, L is determined entirely by 
the probabilities of tunneling at each junction of 
the network. Of course, if we are interested in 
paths that lie wholly within a coherence length ~. 
we must consider them as a single unit. The rea­
son for this imposition lies in the hybrid nature 
of our calculation: the conductivity is calculated 
classically-hence we can only speak of probabili­
ties-and the motion of the electrons has to be 
computed quantum mechanically-hence we need 
to sum amplitudes. 

The advantage of the effective-path approach lies 
in the possibility of reducing its calculation to the 
solution of an algebraic equation. (The reader is 
again referred to Ref. 2, where this procedure is 

carefully described.) However, this is only feas­
ible if there is a periodic network. Although the 
semiclassical network is indeed periodic, as more 
and more orbits have to be considered fully co­
herent it is not obvious how periodicity can be re­
stored. In what follows the scheme for doing this 
is described. 

A given system of closed orbits is selected as 
a unit-denoted by Z. This unit is connected to 
the remainder of the network by a certain number 
of branches, along which an electron either enters 
into or emerges from it. To each branch {3 of the 
netw~k is associated an (as yet unknown) effective 
path L 8• If the probability that an electron coming 
into Z from a branch {3 and emerging from it in a 
branch {3' is denoted by P z(/3, f3' ), the following 
equation for the effective path of the branch {3 is 
found: - "" -Ls=.ú Pz(/3, f3')Lil', 

ll' 
(2. 5) 

where the sum is over all branches f3' that connect 
to Z. The probabilities P z(/3, {3') can be computed 
straightforwardly, even if, for largar units, some­
what laboriously. 

We have not yet said how the rest of the network 
is to be treated. We have made only the assump­
tion that we can associate with each branch of the 
network an effective path. If the network is such 
that, by a judicious choice of the position of Z, we 
can take {3 to be any branch in the network, we can 
understand (2. 5) not as a single equation, but as 
a system of equations for ali the effective paths 
in the network. In this case, periodicity is ef­
fectively restored and the various L8 are now re­
lated by simple geometrical transformations 
(translations and/or rotations). Equation (2. 5) 
contains thus a single unknown L, the effective 
path of some branch which has been chosen as 
our standard. An equivalent, and perhaps more 
transparent, way of reintroducing periodicity is 
to consider an ensemble of networks in which each 
member is the complete network treated semi­
classically, except for the unit Z in one of its 
possible positions, which is treated quantum me­
chanically. We then ensemble-average Eq. (2. 5) 
to obtain 

(2. 6) 

where the angular bracket denotes the averaging. 
Again we are left with a single unknown effective 
path L. 

This approach remains very simple 1f all branches 
of the network are equivalent. The procedure be­
comes more cumbersome when this is not the case. 

This scheme is somewhat similar to the one 
employed by Falicov et al. 7 in that a separation is 
made between regions in which the electrons move 



530 C. E. T. GONÇALVES DA SILVA AND L. M. FALICOV 8 

p 0.5 

0.5 
y 

1.0 

FIG. 3. Probabilities P(Z) for various orbits of the linear 
chain as a function of y = 6 -<HcobiH12• 

quantum meehanieally and regions in whieh they 
move elassieally. As a matter of faet, the en­
semble-averaged network may be imagined as 
eonsisting of alternating quantum-meehanical and 
classical regions that preserve the periodieity, 
although, of eourse, no definite mental picture 
can be made of it. 

III. UNEAR CHAIN 

We apply the ideas developed in the previous 
seetion to the caleulation of the magnetoresistance 
of the linear chain (Fig. 1). We make the assump­
tion that the overlap of the circles is small, i. e., 
that only a small fraction of the Fermi sphere is 

· contained in the second zone. With this assump­
tion we can negleet the contribution of these por­
tions of the Fermi surface to the conductivity, so 
that we have to eonsider only the topologically 
equivalent large ares of the eircle of the network 
in our calculation. With this approximation our 
approach becomes mathematically simple. The 
solution of (2. 6) is now straightforward. The prob­
abilities Pz({j, fj') are defined in Fig. [1(b)], where 
they are denoted by S" and T n· The corresponding 
amplitudes a" and Tn can be easily computed. They 
are 

(3. 1) 

(3. 2) 

and 

(] (]!'h 
CJ - :-:..lo~~~..,..,. 

n+l- 1- 70 -r,.e2lx (3. 3) 

(3. 4) 

where the amplitudes P and q are defined in Fig. 
l(b) and n is a non-negative integer. The phase 
lengths of the small and the large ares of circle 
are, respectively, 7] and X· The transversa mag­
ri.etoresistance is given by 

_ _! H L 
P- w n ie icry (3. 5) 

where n is the number of electrons per unit area, 
ry is the radius in real space of the orbit of an elec­
tron of the Fermi energy, and L is the effeetive 
path. 

Following our scheme, we ehoose a certain sys­
tem of orbits as fully eoherent (the lens, one cir­
cle, two circles, etc.), and using Eqs. (3. 1)-(3. 4), 
we compute the probabilities Sn and T n· These 
probabilities determine the effective path and the 
magnetoresistance. However, in reality we are 
not interested in these "pure" results, but rather 
in an average whieh takes into aecount the exist­
ence of the coherence length ~. Having computed 
the effective path for a given system of orbits Z, 
we assume now that the contribution of this unit Z 
to the total conductivity can be described by a prob­
ability P(Z). We thus set 

Lav=I) P(Z) (L(Z)) , (3. 6) 
z 

where the sum is over all the possible distinct 
units Z and (L(Z)} is the eorresponding ensemble­
averaged effeetive path. In order to justify sueh 
an expression we remark that, in a given crystal 
sample with a certain distribution of dislocations, 
we can use Pippard' s criterion to decide whether 

'\ I \ 
I \ 
I ' p I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
o 2 

H/H 0 

FIG. 4. Weighted average of the magnetoresistance 
(arbitrary scale) for the linear chain; 1j = 25 (Jlo/ m and 
X= 100(/lofd). 
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FIG. 5. Pure magnetoresistance for (a) the triangle, 
(b) the one-lens, and (c) the two-lens orbits in the hexa­
gonal network. 

or not the wave function maintains its coherence 
around a given closed orbit. This criterion says 
that the coherence is maintained if the orbit in 
real space encircles no dislocation. For a ran­
dom distribution of dislocations, with a density 
p per unit area, we use Poisson' s formula to ob­
tain the fraction of orbits with a given area A (in 
real space) which are "coherent." This is given 
by 

(3. 7) 

Of course, the fraction of orbits with area A 
whi~h are not coherent is 

ft(A)= 1-fo(A). (3. 8) 

For a given orbit of area A(Z) to give apure Z 
signal to the conductivity it must be coherent. But 
this condition is only a necessary one; it is not 
sufficient. Jf the orbit is part of a larger orbit, 
which is itself fully coherent, then the observed 
signal is the one corresponding to the larger orbit. 
We can see that if Z' is the smallest unit within 
which Z can be embedded, the probability P(Z) is 
given by 

P(Z)= Cf0(A(Z))ft(A(Z')), (3. 9) 

where C is a normalization constant. Because of 
the simple topology of the linear chain this ex­
pression can be easily evaluated. In Fig. 3 we 
have plotted the contributions of the various units 
as a function of 

(3. 10) 

where A 1 is the real-space area of the lens. The 
coherence field H cob is defined by the expression 
above. 

TABLE I. Area of fundamental orbits in the hexagonal 
network. 

triangle 
lens · 
circle 

Area (a.u.) 

6.49 X 10-3 
0.1395 
1.660 

In Fig. 4 we have plotted the magnetoresistance 
as a function of H/H0• We also indicate, in the 
low-field region, the semiclassical behavior of 
the magnetoresistance in the presence of magnetic 
breakdown. 6 The choice of parameters was made 
purely having in view the graphical display of the 
resulta. In particular, the ratio of the phase 
lengths 71 and x is not consistent with the neglect 
of the contribution of the electrons in the second 
zone to the conductivity. For all coherent units, 
except the lens, there are values of the magnetic 
field for which 

(3. 11) 

For these values of H we must introduce the 
finite relaxation time due to impurities, phonons, 
etc. , in order to avoid singularities in the mag­
netoresistance. 

IV. HEXAGONAL NETWORK 

For the hexagonal network, Fig. 2, we can 
easily apply the ideas of Sec. n only if we neglect 
the contribution of the little triangular portions 
(third-zone electrons) to the conductivity. Jf we 
do so, all the remaining branches of the network 

E 
u 
E 

..r:. 
o 

20r---------.-----------, 

~ or----------------------------~ 
o 

O L-------------~----------~ 34.00 34.10 34.20 
H (kG) 

FIG. 6. Detail of the magnetoresistance oscillations 
for the one-lens (lower curve) and two-lens (upper curve) 
orbits in the hexagonal network. 
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66.00 66.50 

H (kG) 

are equivalent. The computation of the probabili­
ties P z(f3, {3') is straightforward, although a simple 
recursion relation, as that found for the linear 
chain, does not exist. In computing the ampli­
tudes we employ throughout the phase conventions 
of Ref. 2. Choosing as our standard the branch 
marked c in Fig. 2, we find the contrlbution to the 
conductivity from a slab of thickness Ak. and with 
a density n of electrons per unit area to be 

ACJ== :11' nAk'nl e lc [L,.+ (/3)Ly] (4. 1) 

and 

3 nAk1 I e I c [ ( rn) 2 'ã] (4 2) Aay,.= 211' H Ly- v 3 L,.- v" • • 

a) I-----' 
10 gauss 

1 1V V v v v \J ~ ~ \ lLU 
-" o 
I 

65.09 g 65.00 
~~------,---,--,---,--,---,--, 

b) I-----' 
10 gauss 

65.72 
H (kG) 

65.81 

FIG. s. Details of the circle oscillations in the hexagonal 
network. 

FIG. 7. Envelope of the circle 
oscillations in the hexagonal network. 

The effective path for particles originating in 
the segment c has been denoted by 

(4. 3) 

We ignore the contribution of the remaining por­
tions of the Fermi surface to the conductivity. As 
Falicov et al. 1 have shown, for the fields we are 
interested in (H> 10 kG) this contribution is com­
pletely negligible. We preserve, however, a very 
important feature characteristic of ali hcp metais, 
e. g., Mg: the total compensation of electrons and 
boles at zero field. 

The magnetic breakdown field H 0 is assumed 
finite and constant in the slab Ak. and infinite 
everywhere else. For the slab we have set1 

30.-----------------------------------, 
20 

O L---------------------------------~ 
65.00 67.00 

H (kG) 

FIG. 9. Triangle Qower curve), one-lens (middle 
curve), and two-lens (upper curve) oscillations in the 
hexagonal network for the same range of fields as in Fig. 
7. 
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FIG. 10. Over-all envelope of the oscillations of the 
triangle (soltd line), one-lens (dashed llne), and circle 
(dotted line) orbits in the hexagonal network. 

B 0= 5. 3 kG. 

We have chosen the parameter nAk. in such a 
way as to obtain magnetoresistance values which 
are comparable to those of Mg: 

(4. 4) 

Using the free-electron model, we can estimate 
that Ak. !l!! O. 058k, !l!! O. 04 a. u. Thi,s is not an un­
reasonable value, since the interval Ak. over 
which breakdown is probable in Mg is of the order 
of 0.1 a. u. 

Finally, the remaining parameters which enter 
the calculation are the areas of the orbits in i{ 

o 
H/H coh 

FIG. 11. Probabllities P(Z) for various orbits in the 
hexagonal network. The dashed line is the sum of the 
contributl.ons shown in the figure. 

e r\ v 
E f \ 

..<: 30 I \ o .. I \ I I \ g 
20 I \ Q. 

"/ ~ 
I 

o 
o 10 20 30 

H (kG) 

FIG. 12. Envelope of the averaged magnetoresistance of 
the hexagonal network. 

space. There are just three basic orbits out of 
which all others can be built. In Table I we givf~ 
their areas. 2 

We adopt the convention that orbits described 
clockwise have positive areas (electron orbits) 
anel orbits described anticlockwise have negative 
area (bole orbits). The phase change associated 
with an orbit of area a is given by (2. 3). We have 
set <Po= O throughout. 

Figure 5 shows the results for the magnetoresis­
tance taking the triangle, the lens, and the two­
lens orbits into account. Figure 5(a) shows the 
triangle oscillations in the interval 30-32. 50 kG. 
This curve is obtained ü only the triangle orbits 
are coherent. In Fig. 5(b) we can see the conse­
quences of the one-lens orbits being fully coher­
ent. A fast oscillation with the lens period is 
superposed on the slow triangle oscillations. The 
amplitude of the fast oscillations is modulated by 
the triangle period. In Fig. 5 much the same is 
observed for the case in which the two-lens or­
bits are coherent. In this scale the only notice­
able difference from Fig. 5(b) is in the amplitude 
of the fast oscillations, which are somewhat larger. 
There is also a line-shape difference, however, 
as Fig. 6 shows. The amplitude of the fast oscil­
lations is still modulated by the triangle period. 
It is the general rule that whenever a higher fre­
quency is introduced the amplitude of the oscil­
lations with this higher frequency is modubi.ted by 
the lower frequencies. 

Figure 7 shows the envelope of the circle oscil­
lations in the interval 65-67 kG. Figures 8(a) anel 
8(b) show the circle oscillations themselves in a 
greatly expanded scale. We have chosen two more 
or less typical results. Following the general rule 
above, the fast circle oscillation amplitude is 
modulated by the lens anel also by the triangle os­
cillations. Figure 9 shows the triangle, one-lens, 
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FIG. 13. Detail of the oacillations 
of the averaged magnetoresistance 
hexagonal network. 
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31.50 31.60 31.70 31.80 
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and two-lens results in the interval 65-67 kG. It 
is very easy to correlate the features of the circle 
oscillations with the phase of the triangle or lens 
oscillations. Finally, in Fig. 10 we show the over­
all envelope for the triangle, one-lens, and circle 
oscillations up to the fields of 70 kG. 

Up to now we have presented only the pure os­
cillations. An averaging similar to the one de­
scribed in Sec. m must be performed for the hex­
agonal network also. In Fig. 11 we show the prob­
abilities P(Z) for the orbits we consider here. The 
coherence field H.,.,b is defined by an expression 
similar to (3. 10) in which the relevant areais that 
of the triangle. In Fig. 12 the envelope of the os­
cillations is plotted, and in Fig. 13 we show the os­
cillations in detail. The coherence field Hcob was 
chosen so that for fields of the order of 30 kG, 
H/Hcob is approximately 3, and the classical curve 
plus the triangle, one-lens, and two-lens oscilla­
tions contribute O. 999 of the total probability. As 
we see from Fig. 11, for H> 3Hcob the contribu­
-tions of orbits with areas larger than two lenses 
are indeed appreciable. Figure l2 should be com­
pared with Fig. 26 of Ref. 2(a). The agreement is 
quite good, considering ali the approximations in­
volved in our calculation. 

V. CONCLUSION 

We have shown how the network model can be 
treated for arbitrary coherence length ~. The 
introduction of an ensemble of equivalent networks 
allows for the restoration of the periodicity and 
hence for a straightforward computation of the 
transport properties, employing the effective-path 
approach. We applied this idea to the linear chain 
and the hexagonal network. 
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In the former case the simple topology permita 
the construction of a complete, closed-form solu­
tion. One curve for such a case is shown in Fig. 
4, where the highly nonlinear character of the os­
cillations isto be noted. The increasingly large 
number of coherent orbits as H increases makes 
the resistance differ drastically from the simple 
sinusoidal behavior [see Ref. 2(a)], and at the 
same time eliminates unphysical zeros and in­
finities which appear when only one specific orbit 
is coherent. 

The hexagonal case was treated approximately: 
besides the triangular orbits, we considered also 
the one-lens, two-lens, and circle orbits as fully 
coherent. Figures 5-10 once again clearly show 
the strong interdependence of the various oscilla­
tions and the interference effects between different 
coherent orbits. Comparison of these curves, and 
mostly of Fig. 12, with the available experimental 
data for Mg [see again Ref. 2(a)], shows good over­
all agreement. This gives a strong indication that 
our approach is correct. Jf better experimental 
curves, obtained on better crystals (with longe r ~ ), 
become available, as they most probably will, the 
procedures proposed and described in here can be 
straightforwardly used to obtain corresponding 
theoretical curves to be compared with the experi­
ment. 
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We discuss inhomogeneous broadening of the spectral !ines of shallow neutra! donors in a magnetic 
field. The broadening arises from electric fields and field gradients produced by donor and acceptor 
ions in partially compensated semiconductors of high purity. On the assumption that the ions and 
neutra! donors are randomly distributed in the semiconductor, line shapes are calculated and compared 
to observed line shapes in GaAs. Using the íon concentration as an adjustable parameter, we are able 
to account quantitatiV:ely for a number of observed effects on the random impurity model, but are led 
to suggest that some weak pairing between donor and acceptor ions is probably present. 

INTRODUCTION 

The study of the optical spectra of shallow do­
nors and acceptors in semiconductors is by now 
an old subject. Nevertheless, the problem of un­
derstanding linewidths and line shapes in such 
spectra has scarcely been touched. With the ar­
rival of relatively high intensity monochromatic 
sources of far-infrared radiation covering a dis­
crete but broad spectral range (particularly the 
far-infrared gas lasers), the commercial avail­
ability of long-travel infrared interferometers and 
improvements in methods of purifying semiconduc­
tors (especially GaAs and Ge) renewed study of 
spectral line shapes of shallow impurities in very 
pure semiconductors seems warranted. 

Some high-resolution magnetospectroscopy of 
dono r lines in very pure n-GaAs has already been 
reported 1 ; the experimental findings have motivated 
the present work. Although our discussions will 
be aimed at understanding inhomogeneous line 
shapes in n-GaAs, the underlying principies should 
be applicable to any sufficiently pure partially 
compensated semiconductor with hydrogenic donors 
or acceptors. 

Even the purest available n-type semiconductor 
materiais are often found to contain significant 
concentrations of acceptor impurities. This means 
that for .temperaturas at which conduction-band 
electrons are "frozen out," such materials will 
consist of a host lattice containing a mixture of 

neutra! donors, ionized donors, and ionized ac­
ceptors. Only the neutra! donors can absorb pho­
tons in the far infrared so that the ionized impu­
rities make their presence known in infrared-op­
tical-absorption experimenta exclusively by their 
perturbing effects on the neutrals. Most of this 
paper will be devoted to a discussion of how these 
perturbations affect the line shapes of optical tran­
sitions in the neutrals. 

An electron bound to a donor will experience not 
only the Coulomb potential of the central donor íon, 
but also the sum of Coulomb potentials from ali 
other charged impurity íons in the lattice. Assum­
ing that they are distributed isotropically, íons which 
are relatively very far away from the neutral donor 
tend to contribute a part of the externai potential 
which changes very little.over the region of space 
occUPied by the wave function ofthe donor electron. 
There are two main reasons for this. (1) Deriva­
tivas of the Coulomb potential decrease rapidly 
with increasing source-to-neutral-donor distance 
and (2) the potential gradients at the donor due to 
far-away charges tend to cancel out for an isotrop­
ic charge distribution. Because only spatial vari­
ation of the exterior potential2 over the donor vol­
ume can produce shifts in transition energies of 
the neutral donor, we can expect that only charges 
contained in a r~latively small region around the 
donor will be effective in shifting the donor tran­
sition energy. 

In Sec. I we write down the multipole expansion 


