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Nature of the insulating state in the three-band Hubbard model: 
A tight-binding approach 

A. Beatrici and M. A. Gusmão 
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil 

(Received 31 October 1994) 

We study the three-band Hubbard model, commonly used to describe the copper-oxygen planes 
of high-Tc superconductors, from the point of view of electronic properties. Utilizing perturba­
tion theory around the atomic limit to evaluate finite-temperature Green's functions, one-particle 
densities of states are calculated in some simple approximations. Both metallic paramagnetic and 
insulating antiferromagnetic solutions are obtained, depending on the hole concentration. We dis­
cuss the overall scenario obtained here in comparison with experimental results and other theoretical 
approaches. 

I. INTRODUCTION 

A great deal of theoretical work has been devoted to 
studying electronic properties of the Cu02 planes that 
are a common feature of high-Tc superconducting mate­
riais. It is accepted that the relevant orbitais are 3d.,2_y2 
for copper and 2p., or 2py for oxygen. Based on this, 
three-band models1 have been proposed that vary in gen­
erality depending on the choice o f parameters such as the 
on-site Coulomb interactions, the charge transfer (CT) 
gap between copper and oxygen leveis, the hopping ma­
trices, and a nonlocal Coulomb interaction. 

It is still a matter of controversy whether or not 
the low energy excitations of such multi-band models 
can be reproduced by an effective one-band Hubbard 
Hamiltonian. 2 Also, the role o f charge and spin degrees 
of freedom in determining the nature of the ground state 
has yet to be clarified. Starting from the atomic limit, 
with a Coulomb interaction at copper sites much larger 
than the bare CT gap, it is obvious that the ground state 
for one hole per Cu02 cluster has this hole occupying 
the copper site, while all oxygen orbitais are empty. The 
lowest lying excitations are clearly of charge transfer na­
ture. Corrections to second order in the copper-oxygen 
hybridization3 yield an antiferromagnetic (AF) insulat­
ing ground state, with the hole still at the copper site, 
and the oxygen orbitais providing a superexchange mech­
anism for the AF interaction. On the other hand, band 
structure calculations4 and Hartree-Fock treatment of 
the Coulomb interaction5 •6 show the hybridization lead­
ing to formation of bandlike (extended) states. In this 
case, the nature of the AF state also changes towards a 
bandlike character, and the AF gap no longer coincides 
with the CT gap as in the localized description. 

In order to further investigate this controversial point, 
i.e., the nature of the insulating AF state in the three­
band Hubbard model, we utilize a tight-binding approach 
that, although starting from the atomic limit, is able 
to obtain the exact band structure in the uncorrelated 
limit. We treat the hopping (hybridization) as a pertur­
bation, employing a regular many-body perturbative ex-
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pansion with a diagrammatic representation to calculate 
one-particle Green's functions. From these, the density 
of states is obtained and analyzed with respect to the 
presence and position of gaps, spin polarization, and de­
gree of p-d admixture as the total number of holes in the 
system is varied. In this paper, we remain in the simplest 
approximation scheme, closely related to the Hubbard I 
decoupling of the equations of motion for Green's func­
tions in the single-band Hubbard model. 7 

Our results indicate that there is an important trans­
fer o f spectral weight from the almost empty ( and, thus, 
weakly correlated) p band to the lowest lying band, which 
was originally o f pure d character. This can yield a metal­
lic ground state if a paramagnetic solution is imposed. 
However, an insulating AF solution is obtained dose to 
the stoichiometric concentration, with a gap opening in­
side the lowest lying band. We will discuss in some detail 
the relation between these results and those obtained by 
the Hartree-Fock approximation, 5 slave-boson theory, 8 

and the local moment approach,3 as well as a possible 
relationship with spectroscopic measurements. 9 

The paper is organized as follows. In Sec. 11 we in­
troduce the model Hamiltonian and the relevant Green's 
functions, describing the perturbation method. In Sec. 
111 we describe the approximation we will adopt, and 
calculate the Green's functions and densities of states for 
the paramagnetic case. The antiferromagnetic solution 
is presented in Sec. IV. Our main results are discussed 
in Sec. V. 

11. THE MODEL AND PERTURBATION 
APPROACH 

The usual three-band Hubbard model1 for the Cu02 

planes of high-Tc superconductors is described by the 
Hamiltonian 
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H= (êd -t-t) L d!o.diu + ud L nftnf~ 
iu i 

ju j 

-- t L ( d!uPju + H.c.) , (1) 
(ij)u 

where êd (êp) is the atomic energy of copper (oxygen) 
sites, t-t is the chemical potential, Ud (Up) is the on-site 
Coulomb repulsion between two holes in the same copper 
(oxygen) site, and t denotes the hopping matrix between 
neighboring copper and oxygen sites. We are working 
in the hole representation. Thus d!u (P}u) creates a hole 
with spin a- at the corresponding copper ( oxygen) site. It 
is important to keep track of the kind of oxygen orbital 
(p., or Py) that corresponds to a given site. We do not dis­
tinguish between them in the Hamiltonian for economy 
of notation. We will not consider here the presence of 
a nonlocal Coulomb interaction between holes in nearest 
neighbor atoms as well as a direct hybridization between 
oxygen orbitais. 

The relevant temperature (Matsubara) Green's func­
tions are, for example, 

(2) 

where the angular brackets indicate ensemble average, 
and T is the time-ordering operator, here referring to 
the imaginary time T, which is defined in the interval 
[-,6, ,6], with ,B representing the inverse of the tempera­
ture. There are definitions similar to Eq. (2) for GfJu, 
G'j}'u' etc. 

Applying the usual formalism of perturbation theory, 
we consider the local part of H [see Eq. (1)] as the unper­
turbed Hamiltonian H 0 , and the hoppi.ng term is taken 
as the perturbation H 1 . Equation (2) then becomes 

with 

The subscript zero on the angular brackets indicates that 
the averages are taken with respect to the unperturbed 
Hamiltonian. In Eqs. (3) and (4) the "time" dependence 
of the operators is also given by H o, in contrast with Eq. 
(2). 

The density of states is obtained through 

where 

dd 1 Gdd+() 
Pu (w) = --Im iiu w ' 

7r 
(5) 

(6) 

is the Fourier transform of the retarded (real-time) 
Green's function. Similar relations hold for ~P(w), in 
which case one has to sum the contributions from p., and 
Py orbitais. 

111. PARAMAGNETIC CASE 

In order to calculate Green's functions through Eq. (3) 
we utilize a diagrammatic representation for the pertur­
bation series, similar to the one that has been presented 
by Metzner10 for the one-band Hubbard model. In the 
present case, all possible local Green's functions may ap­
pear at each vertex. Selecting only chainlike diagrams, 
which can be summed up by means of a Dyson's equa­
tion, we obtain the simplest approximation, in which the 
diagonal Green's functions, for the paramagnetic case, 
assume the form 

(7a) 

and 

where 

2 ( 2 k.,a 2 kya) 'Yk = 4t cos 2 + cos 2 , (8) 

a being the lattice parameter. The lower case g's that 
appear in the above equations stand for the zeroth order 
(atomic) Green's functions, which read 

a( ) _ 1 - (n~) + (n~) 
9u Wn - · · U + ' 

ZWn - êa + J-t ZWn - êa - a 1-t 
{9) 

where ü = -a- and a = d, p. The average number of 
particles in both d and p atomic orbitais is determined, 
together with the chemical potential, through the self­
consistency relation 

( Ot) l' 1 L iwnT 1 """aaa( ) nu = 1m (.i e N L..J ku Wn • 
T-tO+ fJ 

Wn ku 

(10) 

In this section we consider only the paramagnetic case. 
We thus set (n~) = (n;:), and full translation invariance 
has been used in deriving Eqs. (7a) and (7b). 

The chain approximation introduced above is equiva­
lent to the so called Hubbard I decoupling scheme when 
the equations of motion for the Green's functions are 
utilized.7 This approximation becomes exact in the non­
interacting limit Ud = Up = O. The one-particle density 
of states for this case is shown in Fig. 1. There, the po­
sitions of the original atomic d and p leveis are shown by 
arrows. We can see that the hybridization gives rise to 
three bands (bonding, nonbonding, and antibonding), in 
agreement with band structure calculations.4 The charge 
transfer gap ~ is not renormalized with respect to the 
atomic value ~ = êp - êd. The nonbonding band, of zero 
width and p character, is due to the combination of p., 
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FIG. 1. Density o f states in the noninteracting limit for the 
Cu02 structure (with l:!..jt = 2.8). We also show separately 
the contributions from d (dotted) and p (dashed) leveis. The 
arrows indicate the positions of the atomic leveis. 

and Py orbitais that do not hybridize with the d.,•-y• or­
bital. This band is related to the isolated g~ that appears 
in Eq. (7b). 

When Coulomb interactions are taken into account, 
the bands are split, similar to what occurs in a strongly 
correlated single-band system. The positions of the new 
subbands depend on the relative values of the energy 
parameters. Their widths depend also on the over­
all filling factor, i.e., the total number of particles in 
the system. We have chosen our parameters such that 
tl.jt = 2.8, Ud/t = 8, and Up/t = 2.4. These values lie in 
the range generally considered as consistent with exper­
imental observations.11 The resulting density of states 
is shown in Fig. 2 for the stoichiometric situation (one 
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FIG. 2. Density of states in the chain approximation for 
the paramagnetic case and zero doping ( n = 1). The arrows 
indicate the positions of the atomic levels, and the dotted 
verticalline shows where the chemical potential is. The values 
of the parameters are !:!.. = 2.8, Ud = 8, and UP = 2.4, in units 
of t. 
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FIG. 3. Same as in Fig. 2, except that now Up = O. 

10.0 

hole per unit cell).12 In the absence of hybridization one 
would have only 8 functions in the positions indicated by 
arrows in the figure. The outer ones would have purely d 
character while the inner ones would be purely of p char­
acter. In this case, one would have the leftmost "band" 
completely filled (one hole per copper atom) while all the 
others would be empty. With the hybridization included, 
we can see from Fig. 2 that the chemical potential ( dot­
ted line) falls within the lowest lying band. The other 
bands are still empty. However, the occupied band is 
not completely filled. There has been a transfer of spec­
tral weight from the upper subbands to the lowest one.13 

This is due to the fact that the p levels in the atomic 
limit would be empty, which strongly diminishes corre­
lation effects on oxygen sites. This can be seen by the 
narrowness of the band that lies dose to eP + UP, while 
the rest of the density of state (DOS) does not differ sig­
nificantly with respect to the case Up = O, shown in Fig. 
3. This weakly correlated nature of the p orbitais yields a 
hybrid band whose character is intermediate between the 
strong correlation limit (one particle per subband) and 
the uncorrelated limit (two particles per band). Only 
for a strongly hole doped system (n "' 1.27) do we find 
a CT insulator, with the chemical potential lying inside 
the first gap. 

This picture is very different from what we would ex­
pect on the basis of experimental results. However, we 
must look for magnetic solutions before we can compare 
our results with experiment. 

IV. ANTIFERROMAGNETIC SOLUTION 

In order to look for an antiferromagnetic solution we 
divide the lattice in two sublattices, A and B, such that 
copper atoms nearest to each other belong to different 
sublattices. Next we impose the antiferromagnetic con­
dition, i.e., that the average number of holes in a given 
si te of sublattice A with a given spin orientation is equal 
to the corresponding average for sublattice B with oppo-
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site spin. We also consider that there will be no moment 
formation on oxygen sites, imposing the average occupa­
tion of these sites for both spin orientations to be the 
same. With these conditions, all equations of the chain 
approximation can be written in terms of quantities re­
lated to only one of the copper sublattices. 

The Green's functions are again obtained by summa­
tion of all chainlike diagrams. In contrast to the para­
magnetic case, these functions are now spin dependent. 
There are two copper sites (A and B) and four oxy­
gen sites per unit cell. It is convenient to perform a 
partial renormalization that takes into account all possi­
ble hybridization processes between a copper site and its 

which includes the contributions of all four oxygens in 
the unit cell. Here we have defined 

k"'a k a 
tk = 4t2 cos 2 cos i- . (14) 

The self-consistency process [see Eq. (10)] involves ad­
justing (n~), (nf), and (nP) = 2(n~), together with the 
chemical potential J-t for a given total number of holes 
n = (n~) + (nf) + 2(nP). We reproduce the paramag­
netic solution obtained before if we impose the equality 
(nf) = (n~) at the start of the self-consistency process. 
However, depending on the total number of holes, this 
solution may be unstable, in the sense that an arbitrarily 
small difference between the two initial occupation num­
bers for different spin orientations willlead to a magnetic 
solution ( (nf) =f. (n~)) when self-consistency is achieved. 
In this case, a gap opens in the density of states around 
the chemical potential as well as in the other subbands, 
as shown in Fig. 4. The spin polarization is evidenced in 
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FIG. 4. Density ofstates in the chain approximation for the 
antiferromagnetic case and n =1, with the same parameters 
as in Fig. 2. 

neighboring oxygens. These partially renormalized local 
Green's functions are 

(11) 

With this, the total Green's functions are given by 

(12) 

for copper sites belonging to sublattice A, and 

(13) 

the detailed plot of the low energy region shown in Fig. 
5. 

In Fig. 6 we show the variation of the sublattice mag­
netization m = (n~)- (nf) as a function of the total num­
ber of holes. We can see that the stability region of the 
AF solution lies asymmetrically around the stoichiomet­
ric condition n = 1, in (at least) qualitative agreement 
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FIG. 5. Low energy part of the DOS in the AF state, show­
ing separately the contributions from d levels with up ( dotted) 
and down ( dashed) spins, and from the p levels ( continuous 
line). 
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FIG. 6. Copper sublattice magnetization as a function of 

the total density of holes in the AF solution. 

with the experimentally observed asymmetry of the AF 
stability region under electron or hole doping. Also, the 
value of the copper moment at n = 1 is quantitatively in 
dose agreement with observations. 14 Furthermore, ana­
lyzing the behavior of the magnetization as a function 
of temperature we obtain a mean-field-like curve with a 
Néel temperature that points to a value of the effective 
exchange interaction of about 1400 K. This is very dose 
to current estimates.15 

V. CONCLUSIONS 

We have presented here one-partide densities of states 
for the three-band Hubbard model described by Eq. (1), 
utilized as a model for the Cu02 planes of the high-Tc 
superconductors. These densities of states have been ob­
tained from the corresponding Green's functions, which 
have been calculated through perturbation theory around 
the atomic limit, in the simplest approximations. 

We wish to emphasize some points concerning the re­
sults presented here that may differ from current expec­
tations. Starting from the uncorrelated case, one would 
have a lowest lying (hybrid) band that can hold up to two 
holes. Qualitatively, one could think that a Hubbard-like 
splitting of this band due to correlations would yield an 
insulating state when this band was half filled (n = 1). 
However, as we have shown, the fact that this is a hy­
brid band, and that correlation effects are different on 
the two kinds of initial orbitais, makes the effective cor­
relation weaker than in the single-band Hubbard model. 
The result is that the lowest lying band can hold more 
than one hole, even after correlation effects have been 
taken into account. Nevertheless, an insulating antifer­
romagnetic state is obtained for a hole density dose to 1, 
with a gap opening inside the lowest band. 

The picture we have is, thus, the following. For a small 
number ofholes (strong electron doping), the lowest band 
is partially filled and the system is metallic. When the 
number of holes approaches unity (from weak electron 

doping up to a little above the stoichiometric situation) 
an antiferromagnetic gap opens inside the lowest lying 
band, giving rise to a magnetically ordered insulating 
ground state. When the number of holes is further in­
creased the AF state becomes unstable, the gap doses, 
and we go back to a situation in which the lowest lying 
band is partially filled, yielding a metallic state. Only 
for strong hole doping do we reach again an insulating 
condition, now due to the presence of the CT gap. 

We would like to mention an important point related to 
experiment that can possibly support these results. Pho­
toemission studies9 show that the Fermi levei for both 
electron or hole doping remains in the same energy re­
gion, dose to the value that one would expect from band 
theory calculations, and the original gap is completely 
filled when the AF arder disappears. This is in qualita­
tive agreement with our calculations. In contrast, it could 
not be understood in terms of an effective Hubbard-like 
one-band model, where a jump of the Fermi levei across 
the correlation gap should be expected when going from 
hole to electron doping.16 

In a certain sense, our results agree with those ob­
tained by the Hartree-Fock (HF) approximation,5 at least 
with respect to the nature of the insulating state, which 
presents a bandlike AF gap that does not coincide with 
the CT one. However, in the HF solution the AF in­
stability of the paramagnetic (PM) solution is due to a 
perfect nesting property ofthe Fermi surface,5 which can 
be viewed as related to the van Hove singularity of the 
DOS. This is not the case in our treatment, although 
the form of the DOS could suggest an interpretation on 
the same lines. We checked this point by repeating the 
calculations with a model (rectangular) density of states. 
Despi te the absence of the two-dimensional van Hove log­
arithmic singularity in this DOS, we still obtained the AF 
state. It is important to mention that the same approxi­
mation is not able to find the AF phase in the half-filled 
single-band Hubbard model. Thus in the present case 
the method incorporates correctly the role of p orbitais 
in a superexchange mechanism that explains antiferro­
magnetism in high-Tc compounds. 

A metallic character of the paramagnetic solution has 
also been found in a slave-boson treatment o f the problem 
by Riseborough and Hanggi.8 They actually suggest that 
the insulating behavior could be due to the opening up 
of an AF gap at the Fermi surface, as obtained here. 
In addition, it has been argued17 that it is possible to 
explain effects of diamagnetic substitutions on the Néel 
temperature of La2 Cu04 by the assumption of a metallic 
state in the PM phase. 

A comparison with local moment approaches, in par­
ticular the Zhang-Rice3 picture, is notas easy. Although 
our starting point is the same (the atomic limit), and the 
effective Heisenberg exchange interaction that we found 
is in the expected range, as we mentioned in the end of 
Sec. IV, the charge transfer nature of the ground state 
seems to be preserved in the Zhang-Rice results. In con­
trast, we find that the holes in the stoichiometric case do 
not reside on cooper sites, but present a hybrid nature, 
with an important admixture of copper and oxygen leveis 
in the occupied part of the spectrum. We could suggest 
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that our partial renormalization of the local Green's func­
tions that led to Eq. (11) contemplates, at least in part, 
the hybridization mechanism that leads to formation of 
the so called Zhang-Rice singlet. However, our decou­
pling of the local averages contributing to these Green's 
functions is probably the weakest point of the present 
treatment, and may explain the weak-coupling-like char­
acter of our final results. An extension of the work to 
include many-loop corrections to the local Green's func­
tions is now in progress. 

A complete three-band model for the copper-oxygen 
planes of high-Tc superconductors should contain direct 
hybridization between oxygen orbitais, as well as nonlo­
cal Coulomb interaction between holes in nearest neigh­
bor atoms. We have investigated the effect of including 
a hopping term connecting oxygen sites within our ap­
proach. Preliminary results indicate that the main effect 
is a broadening of the nonbonding band, with consequent 
reduction of the CT gap. A nonlocal Coulomb interac­
tion is not easy to include in our formalism because, in 
contrast to the local one, it has to be treated as a per­
turbation. Thus we are faced with a double perturba-
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